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2. Abstract 23 

Histamine (HA) is a neurotransmitter synthesized in most mammalian tissues exclusively by histidine 24 

decarboxylase enzyme. Among the plethora of actions mediated by HA, the modulatory effects on steroidogenesis 25 

and proliferation in Leydig cells (LC) have been recently described. In order to determine if the effects reported in 26 

LC could be extrapolated to all steroidogenic systems, we studied the effect of this amine on proliferation and 27 

steroidogenesis of the adrenal cortex,  using two adrenocortical cell lines as experimental models, the murine Y1 28 

and the human NCI-H295R cells.  29 

Even when steroidogenesis was not modified by HA in adrenocortical cells, the biogenic amine inhibited the 30 

proliferation of H295R cells. This action was mediated by the activation of the HRH1 receptor subtype and an 31 

increase in the production of inositol phosphates as second messengers, causing a cell cycle arrest in the G2/M 32 

phase. These results indicate a new role of HA on human adrenocortical cells proliferation that could contribute to 33 

a better understanding of tumor pathology as well as to the development of new therapeutic agents. 34 

35 
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3. Introduction  36 

Histamine (HA) is a monoamine neurotransmitter synthesized exclusively by histidine decarboxylase (HDC) in 37 

most mammalian tissues. It carries on its function through the activation of four different subtype receptors, 38 

namely HRH1, HRH2, HRH3 and HRH4, all of them members of the G-protein coupled receptor (GPCR) family 39 

and associated with different signal transduction pathways (Jones and Kearns 2010). 40 

As regards steroidogenesis, HA was shown to stimulate this process in testicular parenchyma of the golden 41 

hamster (Mayerhofer, et al. 1989). Our group extended those observations reporting a dual concentration-42 

dependent effect of the amine on steroidogenesis in MA-10 murine Leydig cells and in purified rat Leydig cells 43 

(Mondillo, et al. 2005). These results revealed a novel biological activity of HA, namely, the negative modulation 44 

of testicular steroid synthesis via HRH1. In addition, our results have also shown that NOS activation is the main 45 

intracellular mechanism by which HA exerts its anti-steroidogenic effects (Mondillo, et al. 2009).  46 

Over the last years, proliferative actions of HA have become more relevant as is evidenced by the increasing 47 

number of scientific publications (Falus, et al. 2011). In this respect, it has been shown that HA can act as both 48 

anti-mitogenic (Cricco, et al. 2006; Meng, et al. 2011; Petit-Bertron, et al. 2009) and mitogenic agent (Francis, et 49 

al. 2009; Medina, et al. 2011; Molina-Hernandez and Velasco 2008; Stoyanov, et al. 2012) depending on the cell 50 

type and the HA receptor pattern expressed. Particularly, our recent studies showed, for the first time, the 51 

proliferative effect of HA in MA-10 Leydig cells, mediated via HRH2 activation, increased cAMP production and 52 

ERK phosphorylation (Pagotto, et al. 2012). 53 

Among steroidogenic tissues, the adrenal cortex is responsible for the production of steroid hormones essential for 54 

life. It has been demonstrated that HA is able to regulate adrenal steroidogenesis in rat and dog by acting on CNS 55 

via the HRH1 by an ACTH-independent mechanism (Bugajski 1984; Tsujimoto, et al. 1993). Furthermore, it is 56 

known that the chromaffin cells of the adrenal medulla are capable of responding to HA via the HRH1, 57 

stimulating the secretion of catecholamines and neuropeptides which, in turn, act in a paracrine way on cortical 58 

cells regulating adrenal cortisol secretion (Bunn and Boyd 1992). Concerning the presence of  HA in the adrenal 59 

gland, it has been identified in guinea pig and rat adrenal glands, most being present in the cortex (Endo and 60 

Ogura 1974). Possible sources of cortical HA would be those from subpopulations of adult chromaffin cells 61 
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present in the medulla (Tuominen, et al. 1993), the endings of the splanchnic nerve and the contribution of mast 62 

cells that are arranged surrounding adrenal arterioles, near the capsule (Borges 1994; Hinson, et al. 1989).  This 63 

background supports an indirect effect of HA on the regulation of adrenal steroidogenesis. However, the literature 64 

concerning a possible direct effect of the amine on adrenocortical cells is controversial, in part because they come 65 

from studies on different species and utilize experimental approaches in which adrenocortical cells are partially or 66 

even not isolated. For example, studies with perfused dog adrenal glands or guinea-pig primary cultures refer to a 67 

direct effect of HA on cortisol secretion (Aikawa, et al. 1986; Matsumoto, et al. 1981) while others have 68 

postulated the direct action of this amine only on chromaffin cells, using a bovine model (Orso, et al. 1997; 69 

Yoshida, et al. 1997). To date, no studies have been reported that include the study of a possible direct action of 70 

HA on pure adrenocortical cell lines, which would define the situation unequivocally. 71 

About human adrenocortical proliferation and HA, Szabó et al (Szabo, et al. 2009) have recently published that 72 

HDC expression and HA content were highest in normal tissues, lower in benign tumors, and significantly lower 73 

in Adrenocortical Carcinoma (ACC).  74 

Considering the information above and our previous findings about the ability of HA to regulate testicular 75 

steroidogenesis, the aim of this work was to study the direct effect of this amine on adrenal steroidogenesis and 76 

proliferation. To reach this goal, we used two well-characterized adrenocortical cell lines, human NCI-H295R and 77 

murine Y1, which serve as established models for studies of adrenal cortical neoplasia and human adrenal 78 

steroidogenesis (Gazdar, et al. 1990; Rainey, et al. 2004; Rodriguez, et al. 1997). 79 

80 
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4. Materials and Methods 81 

4.1. Materials 82 

Histamine dihydrochloride, HRH1 agonist 2-((3-Trifluoromethyl)phenyl)histamine dimaleate (FMPH), HRH1 83 

antagonist Pyrilamine, HRH2 agonist Amthamine (AMTH), HRH3 agonist Imetit (IMET), HRH4 agonist VUF 84 

8430 (VUF), TME-cAMP, BSA, MTT, transferrin, selenium, glutamine and NaHCO3, phospholipase C inhibitor 85 

(U-73122), PLC inactive analog inhibitor (U-73343), doxorubicin, epigallocatechin gallate (EGCG), mouse 86 

monoclonal anti-β tubulin and caspase-3 antibodies were purchased from Sigma Chemical Co. (St. Louis, MO). 87 

[3H]-Pyrilamine, Na[125I]-I, [3H]-Thymidine and Myo-[3H]-inositol were purchased from NEN (Boston, MA). 88 

Cell culture supplies were from Gibco-BRL (Gaithersburg, MD). Dowex AG-I-X8 resin was from Bio-Rad 89 

(Hercules, CA). TME-cAMP was radiolabeled with Na125I in our laboratory by the method of chloramine-T 90 

(specific action 600 Ci/mmol). Antibody for cAMP was provided by Dr. A.F. Parlow (NHPP). Specific antibodies 91 

for progesterone and StAR, were gifts from Dr Bussmann (IBYME-CONICET-Argentina) and Dr Miller 92 

(University of California, San Francisco), respectively. Anti HA antibody was from Alpha Diagnostic (San 93 

Antonio, USA). Rabbit anti-HDC antibody was from Santa Cruz Biotechnology (Santa Cruz, CA, USA). 94 

Secondary conjugated anti-rabbit antibody coupled with peroxidase  was from Vector Labs (Burlingame, USA). 95 

DMEM/F12 medium (GIBCO) and Hyclone supplemented calf serum (Thermo Scientific) were from Invitrogen. 96 

Insulin was a gift from Laboratorios Beta (Buenos Aires, Argentina). Other reagents used were of the best grade 97 

available and were obtained from commonly used suppliers. 98 

 99 

4.2. Cell line cultures 100 

Cell lines used in this study were obtained from the ATCC (Rockville, MD, USA) and were used with no more 101 

than 20 passages.  102 

1- Human adrenocortical cancer cell line NCI-H295R (ATCC, CRL-2128) was cultured as monolayer in 103 

DMEM/HAM’S F12 medium supplemented with 6.25 µg/ml transferrin, 6.25 µg/ml insulin, 6.25 ng/ml selenium, 104 

5.35 µg/ml linoleic acid, 5% FCS, 100 U/ml penicillin and 100 µg/ml streptomycin (complete medium). Cultures 105 

were maintained in a humidified atmosphere of 95% air and 5% CO2 at 37°C and harvested weekly. The mostly 106 
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secreted steroids are cortisol and dehydroepiandrosterone sulfate (DHEAS) (Rainey et al, 2004)  by stimulation 107 

with db-cAMP or forskolin or with ACTH at a lesser extent. For this reason, stimulation of steroidogenesis was 108 

done in the presence of db-cAMP. In addition, aldosterone was determined by stimulation with 10-7 M 109 

Angiotensin II, in the absence or presence of two different concentrations of HA (10-5 or 10-9 M). Cortisol and 110 

DHEAS were measured by RIA with commercial kits (Coat-a-Count, Siemmens Healthcare Diagnostic, LA, 111 

USA). Aldosterona was quantified as described (Mele, et al. 2012).  112 

2- Y1 cells (ATCC, CCL-79) are an ACTH- and cAMP-responsive subclone of the mouse adrenocortical tumor 113 

cell line (Yasumura 1968) and produce mainly progesterone. Cells were grown as monolayer in Ham’s F10 114 

medium containing heat-inactivated fetal bovine and horse serum (2.5% and 12.5% respectively), 200 U/ml 115 

penicillin G, and 270 µg/ml streptomycin sulphate, in a humidified atmosphere of 5% CO2 in air at 37°C. 116 

Progesterone was measured by RIA as previously described (Piotrkowski, et al. 2009). The intra and inter-assay 117 

variations were 8.0% and 14.2% respectively. 118 

 119 

4.3. Determination of intracellular cAMP production  120 

Cells were seeded in 24 well microplates (5 x 105 cell/well) in complete medium. After 24 h, media was replaced 121 

with the assay medium (DMEM/HAM’S F12 and 0.1 % BSA ). After 20 min incubation with the corresponding 122 

stimulus (10-5 M HA, 10-5 M FMPH or 5 x 10-3 M forskolin) cells extracted with 0.5 ml of cold ethanol. After 123 

centrifugation for 15 min at 9000 x g, supernatants were evaporated and pellets were resuspended using 50 mM 124 

sodium acetate buffer (pH 6.0). Unknown samples and standards were acetylated and assayed by RIA as 125 

described (Del Punta, et al. 1996). The inter and intra-assay variations of coefficients were lower than 10%. 126 

 127 

4.4. Determination of [3H]-Inositol Phosphates production 128 

Cells were incubated in a 6 well microplate (1 x 106 cell/well) with 2 µCi of myo-[3H]-inositol for 48 h before the 129 

experiment. At the end of the labeling period, cells were washed with assay medium (DMEM/HAM’S F12 and 130 

0.1 % BSA) and preincubated for 15 min with 20 mM LiCl. At the end of this period, 10-5 M HA, 10-5 M FMPH 131 
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or 10-3 M NaF (as positive control) was added. After 30 min incubation, total inositol phosphates (InsPn) were 132 

measured as previously described (Ascoli, et al. 1989) by using Dowex columns. 133 

Results were expressed as the ratio obtained when [3H]-InsPn activity was normalized to total [3H]-inositol 134 

recovered from the initial wash of the Dowex columns corresponding to the intracellular [3H]-inositol pool 135 

(Mondillo, et al. 2005). 136 

 137 

4.5. Ligand binding assays for HRH1 subtype histamine receptor  138 

Cells were seeded in 24 well microplates (5 x 105 cell/well) and cultured for 48 h in complete medium. The cells 139 

were rinsed twice with PBS and incubated for 40 min at 4ºC in 200 ml of 50 mM Tris/HCl pH 7.5 containing 140 

increasing concentrations of [3H]-Pyrilamine (1 to 1000 nM). Nonspecific binding was defined with 100 mM 141 

cold pyrilamine. After incubation, cells were washed with ice-cold Tris/HCl 50 mM at 4ºC and scraped to remove 142 

them from the wells; radioactivity was determined by liquid-scintillation counting. 143 

 144 

4.6. [
3
H]-Thymidine incorporation assay 145 

DNA synthesis was evaluated according to the amount of [3H]-Thymidine incorporated into the H295R cells. 146 

Cells were seeded in 96-well microplates (3 x 104 cells/well) in complete medium. After 18 h, media was replaced 147 

with DMEM/F12 with reduced serum (1%) and incubated with different concentrations of HA and the indicated 148 

compounds for 24 h, with a pulse of 0.25 µCi/ml [3H]-Thymidine for the last 12 h. At the end of the pulse period, 149 

cells were frozen at -20°C and harvested in glass fiber discs by filtration. Samples were washed with 95% ethanol, 150 

dried, and counted by liquid scintillation counting. 151 

 152 

4.7. MTT assay  153 

This assay is based on the transformation and colorimetric quantification of 3-(4,5-dimethylthiazol-2-yl)-2,5-154 

diphenyltetrazolium bromide (MTT). Herein a linear relationship between cell number and signal produced was 155 

established, thus allowing the quantification of cell proliferation. In brief, cells were plated in 96-well microplates 156 

(3 x 104 cells/ well), and 24 h later they were treated with the indicated compounds. After 24 h, MTT was added 157 
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(final concentration 0.5 mg/ml), and cells were incubated at 37°C for 2 h. To stop the coloring reaction and 158 

dissolve the formed formazan crystals, a solubilization solution (isopropanol with HCl) was added, and the 159 

mixture was incubated overnight at room temperature. The color intensity was measured at 570 nm using a 160 

multiplate ELISA reader. 161 

 162 

4.8. Cell cycle analysis 163 

H295R cells were seeded in 6-well microplates (1.5 x 106 cell/well) in complete culture medium.  After 18 h, 164 

culture medium was replaced with DMEM/ F12 with reduced serum (1%) and incubated with HA or FMPH, both 165 

at a concentration of 10-5 M for 24 h. After the incubation period, cells were harvested by trypsinization, 166 

centrifuged, washed twice in PBS and fixed in PBS ice-cold ethanol (1:3). After centrifugation at 4°C, cells were 167 

finally resuspended in 3.8 mM sodium citrate buffer, containing 40 µg/ml PI and 100 ug/ml DNase-free RNase A. 168 

After 30 min incubation, samples were measured with a FACsARIA Flow Cytometer. The percentage of cells in 169 

the G1, S, and G2/M phases of the cell cycle were determined with WinMDI 2.8 and Cylchred analytical 170 

software. 171 

 172 

4.9. Tunel assay 173 

H295R cells were cultured in 6-well microplates (1.5 x 106 cell/well) in complete media. After 18 h, culture 174 

medium was replaced with DMEM/F12 with reduced serum (1%) and cells were incubated with HA or FMPH, 175 

both at a concentration of 10-5 M for 24 h or 72 h. After incubation, nuclear DNA fragmentation was detected by 176 

Tunel method using the cell death detection kit (Roche Applied Science, Germany) according to the 177 

manufacturer’s instructions. Apoptosis was analyzed by flow cytometry and data were processed with WinMDI 178 

2.8 software.  179 

 180 

4.10. Western Blot analysis 181 

Total cellular protein was obtained by placing  cells in lysis buffer (10 mM Tris-HCl, 1% Tritón X-100, 0.5 mM 182 

EGTA , pH 7.4) containing a protease inhibitor cocktail (5 ug/ml leupeptin, 25 mM NaF, 25 mM sodium 183 
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orthovanadate, 400 µM PMSF,  5 µg/ml pepstatin and 5 µg/ml aprotinin), followed by 30 passages trough a 1ml 184 

syringe. Protein concentrations were measured using the Bradford assay for total protein. Equal amounts of 185 

protein per sample (50 µg) were loaded onto a 10% (w/v) SDS-polyacrylamide gel (Mini Protean III System; Bio-186 

Rad, Hercules, CA). Electrophoresis, transfer of proteins to PVDF membranes, and immunodetection of StAR, 187 

HDC, caspase-3 and β-tubulin were performed under optimized conditions. 188 

 189 

4.11. Immunocytochemistry of HA content 190 

Y1 and H295R cells were seeded onto a 12-mm diameter round glass coverslip, precoated with polylysine (3x104 191 

cell/coverslip) and after 3 days were washed and fixed with 4% formaldehyde for 15 min at room temperature. 192 

Cells were permeabilized for 10 min with 0.25 % TritonX-100 and 0.3 M glycine in PBS (PBST) and unspecific 193 

binding was blocked with 1% BSA in PBST for 30 min. Coverslips were incubated for 24 h with primary 194 

antibody against HA (1:100) or normal rabbit serum in PBS (negative control) overnight at 4ºC, followed by 195 

incubation with a secondary conjugated anti-rabbit antibody coupled with peroxidase (1:4000) for 1,5 h at room 196 

temperature. Immunoreactivity was detected with 2.7 mM 3,3-diaminobenzidine tetrahydrochloride in PBS with 197 

0.03% hydrogen peroxide (w/v). For quantification of HA immunocytochemical staining, representative cells 198 

were chosen and visualized by a 40 x 10 magnification through a Zeiss-Axiophot (Zeiss Oberkochen, Germany) 199 

with Olympus DP70 digital camera. Five hundred cells for each cell type of three independent experiments, were 200 

subjected to histogram analysis by using Photoshop CS 8.0.1. Mean gray values from negative controls were 201 

substracted from mean gray values determined from cells stained for HA to exclude background staining. 202 

 203 

4.12. Statistical Analysis 204 

All experiments reported herein were repeated at least three times. If heterogeneity of variance was detected by 205 

Bartlett’s test, this was reduced by logarithmic transformation of the data before analysis. These data were then 206 

subjected to Student test or one-way ANOVA followed by Bonferroni test for multiple range comparisons. P 207 

values < 0.05 were accepted as significant. 208 

 209 
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5. Results 210 

5.1. Effect of HA on steroid production and StAR expression in Y1 and H295R adrenocortical cells 211 

Y1 and H295R cells were incubated with increasing concentrations of HA (10-11 to 10-5 M) for 5 or 24 h, in the 212 

absence or in the presence of 1mUI/ml ACTH or 0.5 mM db-cAMP, for each cell line, respectively. Figure 1, A 213 

and B shows that HA treatment did not modify the steroid synthesis in any cell type, unstimulated or stimulated, 214 

at any HA concentration or incubation time. Figure only shows 24 h-treatment and cortisol quantification in 215 

H295R cells. At previously mentioned, DHEAS and aldosterone concentrations were also measured, but no 216 

differences were observed. Aldosterone production was increased after stimulation with Angiotensin II but 217 

different HA concentrations did not modify the steroidogenesis.   218 

To discard a possible simultaneous activation of different receptors with antagonistic effects, the steroid 219 

production was assessed for 24 h in the presence of different specific agonists for each receptor subtype in the 220 

absence or presence of stimulus (ACTH 1mUI/ml for Y1 cells or 0.5 mM dibutyryl cAMP for H295R cells). 221 

Compounds used were:  FMPH as agonist HRH1, AMTH as HRH2 agonist, IMET as HRH3 agonist and VUF as 222 

HRH4 agonist, all at a concentration 10-5 M, that we have previously used (Medina et al. 2011; Mondillo et al. 223 

2005; Pagotto et al. 2012). As can be seen in Figure 1, C and D, there were no differences in steroid production 224 

under any treatment condition with respect to control values. 225 

StAR is a protein that mediates the rate-limiting step in steroid hormone biosynthesis (Stocco and Clark 1996). As 226 

we already showed that HA diminishes the levels of StAR protein in Leydig cells (Mondillo et al, 2009), we 227 

studied the effect of HA on StAR expression in adrenocortical cells. 228 

Y1 and H295R cells were incubated for different times in the absence or presence of 10-5 M HA, and in the 229 

presence of 1mUI/ml ACTH or 0.5 mM db-cAMP, for each cell line, respectively. The HA concentration (10-5 M) 230 

was the same that we previously used for treatment of MA-10 Leydig cells, showing a marked reduction in db-231 

cAMP-stimulated StAR protein expression (Mondillo et al. 2009). In contrast with Leydig cells, but in 232 

concordance with results observed for adrenal steroidogenesis, HA did not modify the StAR protein expression at 233 

any time with respect to controls neither for Y1 cells (Figure 2A) nor for H295R (Figure 2B). The progressive 234 
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increase of StAR expression in both cell lines treated with their respective stimuli is coincident with previous 235 

reports from our group (Piotrkowski et al. 2009) and others (Manna, et al. 2009). 236 

 237 

5.2. Effect of HA on proliferation in Y1 and H295R adrenocortical cells 238 

In order to evaluate the effect of HA on cellular proliferation, we performed [3H]-Thymidine incorporation assay, 239 

Different results were obtained with both cell lines; HA did not modify Y1 cell proliferation (Figure 3A), but a 240 

concentration-dependent inhibition was observed on H295R cell proliferation (Figure 3B) with a maximal effect 241 

at 10-5 M HA (32.6 % inhibition respect to the control). Complete medium (5 % FCS) was used as positive 242 

control. 243 

To assess which HA receptor subtype/s could be involved, cell proliferation was studied in the presence of 244 

specific HA agonists, all at a concentration of 10-5 M. As previously described, in the presence of HA, the 245 

treatment with agonists did not modify [3H]-Thymidine incorporation in Y1 cells (Figure 3C). On the contrary, in 246 

H295R cells, the HRH1 agonist, FMPH, inhibited the proliferation in a similar extent to that observed in the 247 

presence of 10-5 M HA (35.7 %) (Figure 3D). 248 

To confirm the HA-mediated inhibitory effect through HRH1 receptor on cellular proliferation, H295R cells were 249 

preincubated for 30 minutes with 10-8 M pyrilamine (specific antagonist for HRH1 receptor). Cells were then 250 

incubated with HA or FMPH (10-5 M) and [3H]-Thymidine incorporation was determined. Figure 4A shows that 251 

the treatment with pyrilamine reversed the inhibitory effects of HA and FMPH on cellular proliferation, but had 252 

no effect when incubated alone. These results were corroborated using the MTT assay as an alternative method to 253 

measure proliferation (Figure 4B). 254 

To exclude a non-specific toxic effect of the tested compounds over H295R cells, cell viability was evaluated 255 

using PI staining for the detection of non-viable cells by flow cytometry. As no differences in cell viability were 256 

found between treatments at the evaluated time (data not shown) a toxic effect of HA was discarded. 257 

 258 

5.3. Characterization of HRH1 in H295R adrenocortical cells 259 
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Since HA inhibited H295R cells proliferation through HRH1 receptor, we considered to further characterize this 260 

receptor subtype in the cell line. A saturation binding assay was performed using [3H]-Pyrilamine as specific 261 

ligand (Figure 5B). The non linear regression fitted best a one-site model, suggesting the presence of a single 262 

class of sites for HRH1 receptor in H295R cells with a KD value of 124.4 ± 15.8 nM (95%  CI = 93.52 to 155.2)  263 

and a Bmax of 4.0 ±  0.2 fmol/mg protein (95% CI = 3.7 to 4.4). The same assay for Y1 cells was done for 264 

comparison (Figure 5A). The binding to intact Y1 cells also fitted best a one-site model and a single class of sites 265 

with a KD value of 21.8 ± 8.3 nM (95% CI = 4.8 to 38.8)  and a Bmax of 1.2 ±  0.2 fmol/mg protein (95% CI = 266 

0.8 to 1.5). 267 

 268 

5.4. Signaling pathway of HA anti-proliferative effect in H295R cell line 269 

In order to evaluate the signaling pathway activated by HRH1 receptor in H295R cells, cAMP an InsPn were 270 

measured in cells incubated with HA and FMPH, the specific HRH1 agonist. Forskolin and NaF were used as 271 

positive controls for each second messenger, respectively. 272 

Cyclic AMP levels were not modified by neither HA nor FMPH, while both of these compounds produced a two 273 

fold increase in the total InsPn content of H295R cells above the basal level (Figure 6, A and B, respectively). 274 

Furthermore, blockage of PLC by using the specific inhibitor U73122 in the presence of FMPH prevented the 275 

decrease in [3H]-Thymidine incorporation observed with HRH1 agonist alone, whereas the U-73343, a no- 276 

functional inhibitor analog of U73122, was not able to block FMPH-induced anti-proliferative effect (Figure 6 C). 277 

   278 

5.5. Effect of HA on apoptosis and cell cycle control of H295R adrenocortical cells   279 

In order to determine whether growth inhibitory effect of HA on H295R cells affected apoptosis, cells were 280 

cultured with HA or FMPH (10-5 M) for 24 and 72 h and apoptosis was evaluated by Tunel assay using flow 281 

cytometry. As shown in Figure 7A, apoptotic levels were not different between treatments and control, whereas 282 

cells treated with Doxorubucin (an apoptosis inducer) significantly increased the proportion of apoptotic cells in a 283 

concentration-dependent manner. For simplicity, Figure 7 only shows 24 h-treatment. Similar results were 284 

obtained for 72 h incubation. 285 
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In order to confirm the above results, presence of activated caspase-3 (an apoptosis marker) was evaluated by 286 

Western Blot using protein extracts from H295R cells incubated with HA or FMPH (10-5 M) at different times (0, 287 

6,18 ,24 ,48 and 72 h). Bands corresponding to cleaved forms of caspase-3 (corresponding to 17 and 11 molecular 288 

weight) were not detected by immunoblot at any time analyzed (Figure 7B). 289 

The effect of HA on cell cycle progression was next examined.  H295R cells were treated with 10-5 M HA or 10-5 290 

M FMPH for 24 h and cell cycle distribution was analyzed using flow cytometry and PI staining (Figure 8A). 291 

Figure 8B shows a significant increase in the percentage of cells in G2/M phase when treated with both HA and 292 

FMPH (in % of cells: C = 4.6 ± 0.8; HA = 8.75 ± 0.9; FMPH = 10.9 ± 1.5), with a concomitant decrease in the 293 

proportion of cells in S phase (in % of cells: C = 43.0 ± 4.9; HA = 28.6 ± 1.6; FMPH = 31.2 ± 2.11). 294 

 295 

5.6. Expression of HDC enzyme and endogenous content of HA in the H295R cell line 296 

In an attempt to find a possible explanation for the differential effects of HA on the proliferation of H295R versus 297 

Y1 cells, and considering the well documented correlation between HDC expression and cell proliferation in 298 

several experimental models (Falus et al. 2011), we aimed at comparing the expression levels of HDC enzyme in 299 

both cell lines by Western blot analysis. As depicted in Figure 9A, the active form of HDC enzyme (53-55 300 

molecular weight) is expressed at significantly higher levels in Y1 compared to H295R cells. Stomach was used 301 

as positive control. Coinciding, the endogenous content of HA revealed by immunocytochemistry and quantified 302 

as described in Materials and Methods, was higher in Y1 cells (Figure 9B, upper and lower panel). 303 

As an approach to demonstrating more directly the role of HDC and HA content on Y1 and H295R cell 304 

proliferation, we evaluated the effect of the catechin EGCG, known to potently inhibit HDC activity, as was 305 

recently shown by us (Pagotto et al. 2012) and others (Nitta, et al. 2007; Ruiz-Perez, et al. 2012), on the 306 

proliferation of Y1 cells. As can be seen in Figure 10, EGCG inhibited Y1 cell proliferation in a concentration 307 

dependent manner. EGCG concentrations higher than 4 x 10-5 M were toxic. 308 

309 
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6. Discussion  310 

The existence of a functional histaminergic system in the testis of different species has been previously 311 

demonstrated by us (Mondillo et al., 2005, 2007, 2009; Pagotto et al., 2012)  and others (Albrecht, et al. 2005; 312 

Khan and Rai 2007; Mayerhofer et al. 1989; Pap, et al. 2002). Particularly, we have reported that low 313 

concentrations of HA (10-9 M) stimulate Leydig cell steroidogenesis and higher concentrations (10-5 M) inhibit 314 

(Mondillo et al. 2005). In order to assess whether the effects of HA on the steroids synthesis could be extrapolated 315 

to other steroidogenic tissues, we studied the direct action of the amine and its agonists on steroidogenesis in Y1 316 

and H295R adrenocortical cells, two well-documented cell lines for the study of adrenal cortex function. 317 

Considering that adrenal steroids and regulation of steroidogenesis vary among species, as H295R cells come 318 

from human origin and Y1 is a murine cell line, we evaluated the production of  major steroids for each 319 

cell line and the biosynthetic rate-limiting step enzyme StAR. On this respect, no significant effect was 320 

found on steroid production or enzyme associated expression in any of the evaluated conditions. 321 

These results agree with previous works in bovine co-cultures of adrenal medulla and cortex cells, in which it is 322 

suggested an indirect effect of HA through the HRH1 present in adrenal medulla, so inducing release of 323 

neuropeptides that would act on adrenocortical cells, regulating the secretion of cortisol (Ehrhart-Bornstein, et al. 324 

2000; Ehrhart-Bornstein, et al. 1998; Yoshida et al. 1997). In our study, we have used adrenocortical cell lines 325 

excluding contamination with chromaffin cells. Then, according to our observations in Y1 and H295R cells, HA 326 

would not be able to directly regulate steroid synthesis of adrenocortical cells, showing that the modulatory effect 327 

observed in Leydig cells can not be extrapolated to all steroidogenic systems. 328 

Regarding the ability of HA to regulate adrenocortical cell proliferation, results were different between tumor cell 329 

lines evaluated.  Y1 murine line did not respond to treatment with HA, whereas the H295R human cells reduced 330 

growth to about 60% of control with 10-5 M HA. This effect was reproduced by FMPH, specific agonist for 331 

HRH1 subtype receptor. 332 
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In bovine adrenal gland, expression of HRH1 has been reported in medulla and cortex with different expression 333 

level and affinity, both being higher in medulla (Chang, et al. 1979; Yamashita, et al. 1991). Herein, the presence 334 

of a functional HRH1 was reported in the human adrenocortical carcinoma cell line H295R.  335 

The differential effect of HA on H295R and Y1 cells proliferation could be explained, at least in part, if 336 

considering that Y1 cells showed higher expression levels of HDC enzyme and endogenous HA content than 337 

H295R cells. To test this hypothesis, HDC enzyme from Y1 cells was inhibited and proliferation was measured. 338 

In fact, inhibition of proliferation was observed suggesting that higher HA content in Y1 cells avoids the 339 

inhibition observed in H295R cells in the presence on exogenous HA. The endogenous HA content sustained over 340 

time could have triggered the internalization of its receptors, as reported in other systems, canceling 341 

responsiveness to HA (Hishinuma, et al. 2010; Miyoshi, et al. 2006). The lower number of HRH1 in Y1 compared 342 

to H295R cells, calculated by Scatchard analysis (1.2 vs 4.0 fmol/mg protein, respectively), supports this 343 

hypothesis. 344 

There is growing evidence that HA can negatively modulate cell proliferation in diverse systems through the 345 

activation of different subtype receptors, for example, HRH1 (Valencia, et al. 2001), HRH2 (Cricco et al. 2006), 346 

HRH3 (Francis et al. 2009)  and by HRH4 (Meng et al. 2011).  347 

Particularly in humans, the influence of HA on adrenocortical cells had already been suggested by Szabó et al 348 

(Szabo et al. 2009), who compared histamine-related gene expression in normal and tumoral adrenal cortex 349 

tissues. They found not only differential expression patterns for HA receptor subtypes in ACC but also a 350 

reduction in HDC expression level and HA content, compared with normal tissues. These observations are in 351 

agreement with the results presented here in which the addition of HA was able to inhibit proliferation in H295R 352 

cells.  353 

As it was previously mentioned, HA-mediated growth inhibition in H295R cells was carried out by the activation 354 

of HRH1, with an increase in InsPn, suggesting that in adrenocarcinoma cells, activation of HRH1 would be 355 

associated to the classic signaling pathway involving a phospholipase C (PLC). The reversion of the HA-356 

antiproliferative effect in the presence of specific PLC- inhibitor U-73122 confirmed these results.   357 
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A similar HA-anti-proliferative signaling mechanism was described for prostate cancer cell line DU-145 358 

(Valencia et al. 2001) as well as CHO cells stably transfected with HRH1, where HA activated a PLC, leading to 359 

an inhibition of proliferation through a mechanism mediated by GTPasa, Rac and c-Jun-kinase (Notcovich, et al. 360 

2010). It is known that Angiotensin II stimulates aldosterone production in H295R cells through AT1 receptor 361 

coupled to PLC increasing the production of InsPn (Rainey et al. 2004). Although HA inhibited H295R cell 362 

proliferation by increasing InsPn without activating aldosterone production, it would be possible that HA 363 

stimulates NOS enzyme activity (via Ca2+) blocking steroidogenesis as we have previously described in MA-10 364 

Leydig cells (Mondillo et al. 2009) and it has been observed in other steroidogenic systems (Ducsay and Myers 365 

2011). Regarding this, it has been demonstrated that NOS can inhibit L-type calcium channel (Wang et al. 2008), 366 

which is necessary for AII mediated steroidogenesis. Supposing HA induced NOS in H295R cells, the entry 367 

of calcium through the L-channel would be blocked thus preventing aldosterone synthesis, without affecting 368 

proliferation pathway. Nevertheless, an activation of other kinase signaling pathways by other HA receptors, with 369 

an antagonizing effect, can not be discarded. 370 

The present work demonstrates that treatment with HA or FMPH, the HRH1 agonist, is capable of inhibiting 371 

cellular proliferation of human adrenocortical tumor cells in vitro without inducing apoptosis, as the Tunel and 372 

caspase-3 immunoblot assays confirmed. In addition, treatment with HA or FMPH, induced a cell cycle arrest of 373 

H295R cell line in G2/M phase. Transition between cell cycle phases is a process that relays on the formation of 374 

cyclin- cyclin dependent kinase complexes as well as their interaction with specific inhibitors.  375 

Several proteins have been associated with the entry control to G2/M phase (Smits and Medema 2001). In this 376 

regard, in H295R cells it has been described a G2/M phase arrest induced by combinatory treatment with mitotane 377 

and ionizing radiations. These agents act by attenuating the DNA repair mechanisms and keeping high levels of 378 

cyclin B1/cdc2 complexes (Cerquetti, et al. 2010).  It is likely that at least some of these events participate in the 379 

G2/M phase arrest induced by HA. Further studies must be conducted in order to confirm this hypothesis. 380 

Currently, non-surgical treatments for human ACC are scarce and based on ionizing radiation in association with 381 

high doses of adrenalytic drugs, bringing about toxic side effects that limit its usefulness (Maluf, et al. 2011).  Our 382 

results suggest that HA would exert a cytostatic effect on H295R cells, arresting cell growth in a DNA damaging 383 
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sensitive phase (G2/M), without inducing death. Future studies must be done in order to evaluate if these features 384 

could make HA a good candidate for new ACC therapies. 385 

386 
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13. Figure legends 535 

Figure 1: Effect of HA and its specific agonists on adrenocortical steroidogenesis. The murine cell line Y1  536 

and the human cell line H295R, were incubated with increasing concentration of HA (A, B) or  specific agonists 537 

for each HA subtype receptors, known as FMPH (HRH1), AMTH (HRH2), IMET (HRH3) and VUF (HRH4) at a 538 

concentration 10-5 M (C, D), for 24 h under basal and stimulated steroidogenesis. After incubation period, media 539 

were recovered and the main steroidogenic product for each cell line was quantified. (A, C) Progesterone 540 

produced by Y1 cells. (B, D) Cortisol produced by H295R cells. Bars represent the mean ± SEM of at least three 541 

independent experiments. 542 

 543 

Figure 2: Effect of HA on StAR protein expression. Y1 and H295R adrenocortical cells were incubated in the 544 

presence or absence of 10-5 M HA under stimulated steroidogenesis, for different times, as described in Materials 545 

and Methods. After incubation, proteins were extracted and the expression of StAR protein was analyzed by 546 

Western Blot. Data were normalized to internal control β-tubulin. (A, B) Representative Western Blot of StAR 547 

protein in Y1 and H295R cells, respectively. (C, D) Quantitation of StAR protein levels by scanning densitometry 548 

in Y1 and H295R cells, respectively. Each bar shows the mean ± SEM of three independent experiments 549 

performed with triplicate samples. Different letters above the bars indicate that the groups differ significantly at 550 

least at P < 0.05. 551 

 552 

Figure 3: Effects of HA and its specific agonists on adrenocortical cell proliferation. The murine cell line Y1 553 

and the human cell line H295R, were incubated with increasing concentration of HA (A, B respectively) or  554 

specific agonists for each HA subtype receptors: FMPH (H1), AMTH (H2), IMET (H3) and VUF (H4) (C,D 555 

respectively), at a concentration of 10-5M, for 24 h. Cells were labeled with a pulse of [3H]-Thymidine during the 556 

last 12 h of incubation and the radioactivity incorporated into DNA was measured as described in Materials and 557 

Methods. Data are expressed as proliferation percentage respect to the control (cells incubated without HA; 558 

dashed line). Bars represent the mean ± SEM of at least three independent experiments. *, P < 0.1 vs control, **, 559 

P < 0.01 vs control; ***, P < 0.001 vs control. 560 
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Figure 4: Effects of HRH1 antagonist Pyrilamine on HA-mediated H295R cell proliferation. H295R cells 561 

were preincubated with 10-8 M Pyrilamine and after 30 minutes HA, FMPH or medium were added to the culture 562 

and incubated for 24 h. (A) Cell proliferation was measured by [3H]-Thymidine incorporation into DNA as 563 

described in Materials and Methods. (B) Cell proliferation was measured by MTT assay. Cells were incubated 564 

with 0.5mg/ml MTT and OD was recorded at 570 nm. Cell number was calculated using a linear relation between 565 

OD values and cell number. Data are expressed as proliferation percentage respect to the control (cells incubated 566 

without HA; dashed line). Bars represent the mean ± SEM of at least three independent experiments. *, P < 0.05 567 

vs control; **, P < 0.01 vs control. 568 

 569 

Figure 5: Binding assay for HRH1 receptor in adrenocortical cell lines. Saturation binding assays were done 570 

in intact Y1 cells (A) and H295R cells (B) using [3H]-Pyrilamine as specific HRH1 ligand. Saturation analysis 571 

revealed a single and saturable binding site in both cell lines. Insets shows Scatchard plot of [3H]-Pyrilamine 572 

specific binding. Shown is a typical result of experiment replicated three times, with data representing mean of 573 

duplicate determinations for each cell line. Bars = SEM. 574 

 575 

Figure 6: Signaling pathway of HA anti-proliferative effect in H295R. (A) Intracellular cAMP production. 576 

Cells were incubated for 20 minutes with 10-5 M HA, 10-5 M FMPH or 5 x 10-4 M forskolin (Forsk), used as 577 

positive control. cAMP levels were measured by radioimmunoassay. (B) Total [3H]-Inositol phosphates 578 

accumulation. Cells preincubated with [3H]-Myo-inositol were treated with 10-5 M HA, 10-5 M FMPH or 10-3 M 579 

NaF, used as positive control. Total [3H]-Inositol phosphates were quantified by recovered radioactivity, as 580 

described in Material and Methods. Bars represent mean ± SEM of at least three independent experiments. 581 

Different letters above the bars indicate that the groups differ significantly at least at P < 0.01. (C) Involvement of 582 

phospholipase C on H295R cell proliferation. H295R cells were incubated with the specific PLC inhibitor U-583 

73122 or its no functional analog U-73343 in presence of FMPH for 24 h and proliferation was determined by 584 

DNA incorporation of [3H]-Thymidine during the last 12 h of incubation, as described in Materials and Methods. 585 
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Data are expressed as proliferation percentage respect to the control (cells incubated without HA; dashed line). 586 

Bars represent the mean ± SEM of at least three independent experiments. *, P < 0.05 vs control. 587 

 588 

Figure 7: Effect of HA and FMPH on H295R cell apoptosis. (A) Evaluation of apoptosis by Tunel assay. 589 

H295R cells were incubated with HA or FMPH, both at a concentration of 10-5 M for 24 h, processed by Tunel 590 

reaction and analyzed by flow cytometry as described in Material and Methods. Doxorubicin was used as positive 591 

control for apoptosis. Bars represent the mean ± SEM of three independent experiments. **, P < 0.01 vs control; 592 

***, P < 0.001 vs control (B) Evaluation of caspase-3 activation by Western blot. H295R cells were incubated 593 

with HA or FMPH (both at a concentration 10-5 M) at 0, 6, 18, 24, 48, and 72 h. Proteins were extracted and 594 

subjected to SDS-PAGE electrophoresis. Caspase-3 was detected using specific antibody in both forms, inactive 595 

precursor (molecular weight 32) and active subunits (molecular weight 17 and 11). Active subunits of caspase-3 596 

were not detected even at 72 h of treatment with HA nor FMPH in H295R cells. EDS- treated MA-10 cells were 597 

used as control for anti caspase-3 antibody.  598 

 599 

Figure 8: Effect of HA and FMPH on H295R cell cycle progression. H295R cells were incubated with HA or 600 

FMPH, both at 10-5 M for 24 h. After incubation cells were fixed, permeabilized and stained with propidum 601 

iodide as described in Material and Methods. DNA content was analyzed by flow cytometry. (A) Histogram of 602 

DNA content for each treatment, from representative experiments. (B) H295R cell percentage distribution in 603 

G1/G0, G2/M and S cell cycle phases from all experiments. Bars represent the mean ± SEM of three independent 604 

experiments. *, P < 0.05 vs control. 605 

 606 

Figure 9: HDC protein expression and endogenous HA content in adrenocortical cell lines. Y1 and H295R 607 

cells were lysed and subjected to Western blot analysis for the detection of HDC protein, as described in Materials 608 

and Methods. Data were normalized to internal control β-tubulin. (A, upper panel) Representative Western blot of 609 

HDC protein. Rat stomach was used as positive control. (A, lower panel) Quantitation of protein levels by 610 

scanning densitometry. Each bar shows the mean ± SEM of three independent experiments performed with 611 
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triplicate samples. Different letters above the bars indicate that the groups differ significantly at least at P < 0.05.  612 

(B, upper panel) Immunocytochemical staining of endogenous HA content in Y1 and H295R cell lines. As a 613 

negative control, the primary antibody was replaced with normal rabbit serum in PBS. Scale bar = 50 µm. (B, 614 

lower panel) Quantitation of HA content by scanning densitometry in arbitrary units (AR). Each bar shows the 615 

mean ± SEM of three independent experiments, five hundred cells for each cell line were analyzed. Different 616 

letters above bars indicate that the groups differ significantly at least at P< 0.05. 617 

 618 

Figure 10: Effect of inhibition of endogenous HDC on Y1 cell proliferation. The murine cell line Y1 was 619 

incubated with increasing concentration of EGCE, an inhibitor of HDC for 24 h. Cells were labeled with a pulse 620 

of [3H]-Thymidine during the last 12 h of incubation and the radioactivity incorporated into DNA was measured 621 

as described in Materials and Methods. Data are expressed as proliferation percentage respect to the control (cells 622 

incubated without EGCE; dashed line). Bars represent the mean ± SEM of at least three independent experiments. 623 

*, P < 0.1 vs control; ***, P < 0.001 vs control. 624 

   625 
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Figure 1-Y1 and H295R cell steroidogenesis  
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Figure 2-HA and Y1 and H295R cell StAR expression  
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Figure 3-HA and Y1 and H295R cell proliferation  
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Fig 4-Pyrilamine and H295R cell proliferation  
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Figure 5-Y1 and H295R cell binding  
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Figure 6-cAMP and IPs in H295R cells  
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Fig 7-H295R cell apoptosis  
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Figure 8-H295R cell cycle  
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HDC activity and HA content in Y1 and H295R cells  
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Proliferation of Y1 cells in presence of HDC inhibitor  
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