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The RcsCDB (Rcs) phosphorelay system is involved in the regulation of many 

envelop genes like those responsible for capsule synthesis, flagella production and 

O-antigen chain length, as well as in other cellular activities of several enteric 

bacteria. This system is composed of three proteins: the sensor RcsC, the response 

regulator RcsB and the phospho-transfer intermediary protein, RcsD. Previously, 

we reported two important issues about this system: a) the rcsB gene expression is 

under the control of PrcsDB and PrcsB promoters, and b) the rcsD gene transcription 

decreased when the bacteria reach high levels of RcsB regulator. In the present 

work, we demonstrate that RcsB protein represses the rcsD gene expression by 

binding directly to the PrcsDB promoter, negatively autoregulating the Rcs system. 

Furthermore, we report the physiological role of the RcsB regulator which was 

able to modify the bacterial swarming behavior, when it is expressed under the 

control of the PrcsB promoter.  
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The Rcs phosphorelay is an uncommon adaptive response system, composed of 

three proteins: the sensor RcsC, the cognate response regulator RcsB; and the 

intermediary in the phosphoryl transfer RcsD (Majdalani & Gottesman, 2005). It has 

been described, that the flow of phosphoryl groups through the Rcs phosphorelay 

components occur in the following way: RcsC→RcsD→RcsB (Takeda et al., 2001). 

The Rcs system appears to be conserved in the Enterobacteriaceae family (Huang et al., 

2006; Pescaretti et al., 2009) and it is involved in the modulation of many genes 

expression, such as those controlling the colanic acid biosynthesis (Stout & Gottesman, 

1990); the regulator of flagellum synthesis (Francez-Charlot et al., 2003); the cell 

division (Carballes et al., 1999); the O-antigen chain length determinant (Delgado et al., 

2006); the motility (Cano et al., 2002), and Vi antigen synthesis (Virlogeux et al., 

1996). The signals leading to induction of the Rcs system remain unknown, even though 

a wide range of activation conditions has been described, such as the bacteria growth at 

low temperature or on solid surface (Ferrieres & Clarke, 2003), the exposition to 

polymyxin B (Bader et al., 2003; Erickson & Detweiler, 2006), the overproduction of 

DjlA (Clarke et al., 1997; Chen et al., 2001; Kelley & Georgopoulos, 1997), the rcsC11 

constitutive mutation (Costa & Anton, 2001; Mouslim et al., 2004), igaA (Cano et al., 

2002) and mucM mutants (Costa & Anton, 2001), and the tolB and pmrA mutants 

affecting the cell envelope (Mouslim & Groisman, 2003).  

Previously, we reported that the rcsB gene is transcribed from two promoters: i) 

PrcsDB located upstream of rcsD, and ii) PrcsB located within the rcsD coding region, and 

that the overexpression of rcsB gene decreases the rcsD transcription (Pescaretti et al., 

2009). The finding of the rcsD repression led us to investigate the potential role of RcsB 
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on the Rcs system regulation mechanism. In the present study, we demonstrated that 

high levels of RcsB regulator control the rcsD expression by direct binding to the P

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

rcsDB 

promoter, negatively autoregulating the Rcs system. The Rcs negative autoregulation 

was observed in rcsC11 mutant or after polymyxin B treatment, indicating their 

importance in different physiological states. In addition, we also showed a physiological 

role on swarming behavior repression for the PrcsB, controlling rcsB expression. 

METHODS  

Bacterial strains, molecular techniques and growth conditions  

Bacterial strains and plasmids used in this study are listed in Table 1. Phage P22-

mediated transductions were used to introduce mutations into different genetic 

backgrounds as described (Davis, 1980). Recombinant DNA techniques and bacteria 

growth at 37 °C in Luria–Bertani (LB) were performed according to standard protocols 

(Sambrook, 1989). Kanamycin, ampicillin and chloramphenicol were used at a final 

concentration of 50 μg ml-1, 50 μg ml-1 and 25 μg ml-1, respectively. 

Mutations of chromosomal promoters 

The promoters PrcsDB or PrcsB were deleted from the chromosome of wild-type 

Salmonella enterica serovar Typhimurium (S. typimurium) 14028s strain using the one-

step gene-inactivation method (Datsenko & Wanner, 2000). Briefly, a chloramphenicol 

resistance cassette (Cm) was amplified from pKD3 plasmid, using primers 4894 (5´-

CACGGTTATTCACTACACTCCCCTGCTCGACCGTGTAGGCTGGAGCTGCTTC

G-3´) and 4504 (5´-CGTTTCACATAACTGCTTGCCGGGTACCAGATTAAGCATG 

GCCATATGAATATCCTCCTTAG-3´) for PrcsDB deletion; and 2385 (5´-GCGTTGCT 
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TTTACAGGTCGTAAACATAATGTAGGCTGGAGCTGCTTC-3´) and 2386 (5´-

GGCAATAATTACGTTCATATTGTTCATATGAATATCCTCCTTAG-3´) for P
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deletion. For PrcsDB deletion, the resulting PCR product was introduced into the region 

from nucleotide -219 upstream of rcsD to nucleotide 2541 of rcsD coding sequences, 

leaving intact the PrcsB promoter. On the other hand, for PrcsB deletion, the resulting PCR 

product was introduced into the complete rcsD coding sequence, leaving undamaged 

PrcsDB promoter (Fig. 2a). These mutations were introduced into strain EG14932 

containing an ΔrcsB::lacZY fusion, by P22-mediated transduction. To eliminate some 

chloramphenicol polar effect the resistance cassette was removed using the plasmid 

pCP20 as described previously (Datsenko & Wanner, 2000). The proper Cm removal 

was confirmed by direct nucleotide sequencing. The resulting strains, MDs1032 and 

MDs1034 respectively, were then transformed with prcsB plasmid. 

β-galactosidase assays  

The bacteria were grown to an OD600= 0.2 (approximately 2 h) and then supplemented 

with IPTG (0.35 mM), to overexpress rcsB from the Plac promoter of prcsB plasmid, or 

with polymyxin B (1 µg ml-1) to induce the system. After growing 5 h more, the β-

galactosidase activity was measured as previously described (Miller, 1972). Control 

cultures were grown for 7 h in LB medium at 37 ºC in the absence of IPTG or 

polymyxin B.  

DNase I Footprinting assay  

DNase I protection assays were carried out using appropriately labeled primers as 

described (Delgado et al., 2006). Fragments of DNA used for DNase I footprinting were 

amplified by PCR using chromosomal DNA from wild-type S. typhimurium strain 
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(14028s) as template. Previously, the primers 4136 (5´-TGCTTCGCATTCGGTTTTTT 

TTAC-3´) and 4137 (5´-TGATCAGCAATAAGAAGAAACGGGT-3´), which anneal 

to the coding and non-coding strand of rcsD respectively, were labeled with T4 

polynucleotide kinase and [γ-32P]-ATP. The rcsD promoter region was amplified with 

the labeled primers 4136 and 4137 for the coding strand or with the labeled primers 

4137 and 4136 for the non-coding strand. The histidine-tagged RcsB protein used in this 

work was purified as previously described (Delgado et al., 2006). 

Determination of promoter activity by GFP production  

As previously described (Pescaretti et al., 2009), wild-type S. typhimurium (14028s) 

were transformed with the plasmid pMS201containing a promoterless gfpmut2 gene in 

which the PrcsDB or PrcsB promoter region were cloned. In this assay, promoter activity 

was measured as the rate of GFP production divided by the OD600 of culture at each 

time point (Kalir et al., 2005; Ronen et al., 2002; Rosenfeld et al., 2002).  

Swarming motility assay 

Swarming assays were carried out as described (Kim & Surette, 2004). Briefly, the 

overnight LB cultures of tested strains were adjusted to OD600=1.0. Then, 5 μl of these 

normalized cultures were deposited onto the surface of 0.4 % LB agar plates; which 

were incubated for 12 h at 37 °C. To estimate the average speed of migration (mm 

min−1), the diameter of migrating colonies (mm) were plotted against the incubation 

times (min). The images in Fig. 4 represent one of three independent experiments; while 

the data correspond to mean values of these independent experiments. 

RESULTS 

RcsB overproduction represses the rcsD transcription   
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We previously demonstrated that the rcsB overexpression, from prcsB plasmid, 

results in strong repression of rcsD gene expression, while its own expression is not 

affected (Pescaretti et al., 2009). The differential expression of rcsD and rcsB was due 

to the presence of a second promoter, P
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rcsB, which activated rcsB expression 

independent of rcsD (Pescaretti et al., 2009). To determine whether the RcsB repressor 

effect is also produced in other Rcs-induction condition, the rcsC11 constitutive allele 

mutant was used. The rcsD expression levels measured as the β-galactosidase activity of 

the chromosomal ΔrcsD::lacZY fusion from wild-type S. typhimurium (14028s) and 

rcsC11 mutant, was determined after 7 h of the growth on LB medium. As shown in 

Fig. 1(a), the transcription level of rcsD in the rcsC11 mutant was 2-fold lower than the 

values observed in the wild-type strain. Interestingly, a remarkable decrease (4-fold) 

was also observed in the mutant containing prcsD plasmid (Fig. 1). This result suggests 

that the phosphorylated RcsB is more effective than non-phosphorylated form, due to 

the presence of the intermediary RcsD completing the Rcs phosphorelay pathway 

(Takeda et al., 2001). In a second approach, polymyxin B was used to induce the Rcs 

system. The data indicate that the wild-type strain after 5 hours of exposure to 

polymyxin B also showed two-fold decreased levels of the rscD expression (Fig. 1). 

These results suggest that the rcsD expression is repressed when the bacteria reach high 

levels of RcsB regulator, under different Rcs system induction conditions. 

The rcsB overexpression represses the PrcsDB activity  

To determine whether high levels of RcsB affect the PrcsDB or PrcsB promoter 

activity, we studied the rcsB expression in mutants with deletion in each corresponding 

promoter region, PrcsDB and PrcsB, transformed with prcsB plasmid. As shown in Fig. 

2(b), the β-galactosidase activity decrease 1.6-fold when rcsB was overexpressed in the 
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wild-type background compared to their corresponding control without rcsB 

overexpression. Similarly, 1.9-fold decrease was obtained with the P
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Additionally, no essential changes were observed when the overexpression was induced 

in the PrcsDB mutant. These results clearly suggested that the PrcsDB but not PrcsB promoter 

is repressed by high levels of RcsB. 

On the other hand, we expected that the PrcsB promoter activity was off and that the 

rcsB expression was completely abolished by PrcsDB deletion, in the used experimental 

conditions (Fig. 2b). However, only a 60 % of the rcsB expression levels were 

decreased. This was an unexpected result and could be explained assuming that in the 

absence (PrcsDB mutant) or repression (wild-type strain overexpressing rcsB) of rcsD, the 

PrcsB promoter activity is induced through an unknown mechanism, in order to maintain 

basal levels of the rcsB expression. We investigated this possibility and the decreased 

levels of rcsB expression, obtained when PrcsDB mutant was complemented with the 

prcsD plasmid, confirmed our assumption (Data not shown). 

To confirm that only PrcsDB is repressed by high levels of RcsB and simultaneously 

discard some polar effect, the PrcsDB and PrcsB activities were determined as GFP 

production. As shown in Fig. 2(c), the rcsB overexpression in the wild-type strain 

decreased the level of GFP when it is under the control of P
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 promoter. It is 

interesting to note that the repressive effect was observed only after four hours of 

incubation. On the contrary, no effect was detected when the PrcsB controls the 

expression of GFP (Fig. 2c). The similarity of results obtained with β-galactosidase 

activity and GFP protein expression assays, let as to conclude that high levels of rcsB 

repress the PrcsDB activity, resulting in lower levels of rcsD expression. The PrcsDB 

promoter activity determined as GFP levels was also measured after polymyxin B 

treatment. The exposition to polymyxin B of wild-type strain transformed with the 
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plasmid pMS201 containing the PrcsDB promoter region (Pescaretti et al., 2009), 

decreased the GFP production compared with control without antibiotic (Fig. 3a). This 

effect was not observed in rcsB mutant background (Fig. 3b),  the role of 

RcsB regulator. These results confirm our supposition that rcsD repression effect occurs 

at the physiological Rcs system induction levels. 
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highlighting

The RcsB protein binds to the PrcsDB promoter 

With the aim to demonstrate a direct repression effect of RcsB, we searched by 

bioinformatics analysis a putative RcsB-binding site on the PrcsDB promoter region 

sequence. This analysis revealed the presence of a DNA sequence that exhibit 

homology with the previously predicted RcsB-binding box (Fig. 4a) (Carballes et al., 

1999; Mouslim et al., 2003; Wehland & Bernhard, 2000). DNase I footprinting assay of 

the 248-bp region upstream of rcsD coding sequence established that the RcsB protein 

binds to the characterized PrcsDB promoter (Pescaretti et al., 2009). Specifically, the 

region from position -50 to -37 on the coding strand and -53 to -29 on the non-coding 

strand relative to the transcription start site was protected by the RcsB regulator (Fig. 

4b). The protected sequences include the predicted RcsB binding box and overlaps with 

the PrcsDB promoter -35 box (Fig. 4c). 

Swarming is controlled by rcsB gene expressed under PrcsB promoter  

The swarming modulation of E. coli and S. typhimurium has been previously 

associated to the Rcs phosphorelay system (Harshey, 2003; Takeda et al., 2001; 

Toguchi et al., 2000). Here, we studied the motility phenotype of the wild-type S. 

typhimurium strain, and rcsB, PrcsDB and PrcsB mutants. The absence of chromosomal 

rcsD gene in the PrcsDB and PrcsB mutants was complemented with the prcsD plasmid, in 

order to complete the phosphorylate pathway and produce the RcsB more active form 
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(phospho-RcsB) (Mariscotti & Garcia-del Portillo, 2009). In order to unify the genetic 

background, the wild-type S. typhimurium strain and rcsB mutant were also transformed 

with prcsD. It is important to remark that this assay was carried out in strains harboring 

the chromosomal rcsB gene and under different growth conditions that those used in 

Fig. 2(b). In agreement with previous observations (Delgado et al., 2006), the wild-type 

strain and rcsB mutant containing prcsD plasmid displayed a very different swarming 

behavior, migrating at 1.7 x 10
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−2 and 2.3 x 10−2 mm min−1, respectively (Fig. 5). 

Interestingly, the PrcsB mutant migrate appreciably faster (2.1 x 10−2 mm min−1) than 

wild-type strain (1.7 x 10−2 mm min−1) and PrcsDB mutant (1.5 x 10−2 mm min−1) (Fig. 5). 

This result could be possible assuming that in the PrcsB mutant the produced RcsB levels 

exert a negative autoregulation on PrcsDB promoter activity, resulting in a less motility 

repression. In contrast, the negative autoregulation effect on the PrcsDB promoter was not 

observed in the results obtained in Fig. 2(b) due to the absence of the rcsB gene. 

Taken together, the main conclusion of these results is that the presence of PrcsB was 

able to keep the swarming repression at similar levels of the wild-type strain; while the 

PrcsDB promoter did not and its role is under investigation. 

DISCUSSION 

We previously reported that a high level of RcsB regulator inhibits rcsD gene 

transcription, showing a weak effect on rcsB expression due to presence of PrcsB 

promoter (Pescaretti et al., 2009). The goal of the present work was go further into the 

study of the RcsB regulator effect on the control of rcsD expression. In addition to the 

RcsB overproduction reported, the rcsD repression occurs also in the rcsC11 mutant 

and even more under physiological condition such as polymyxin B treatment. We 

demonstrated with the β-galactosidase activity and GFP production assays that the rcsD 
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repression induced by high RcsB level is due to a specific effect on the PrcsDB promoter. 

The P
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rcsDB promoter activity was repressed only by RcsB protein since no effect was 

observed in the rcsB mutant indicating the RcsB-dependence of this effect. 

Additionally, the identification of a conserved RcsB binding site on the PrcsDB promoter 

confirmed a direct action of the regulator on the mentioned promoter as established by 

footprinting assay. No RcsB binding site was found on PrcsB promoter region. 

Furthermore, the repression effect was strongly supported by the localization of RcsB 

binding site overlapping the PrcsDB -35 box described previously (Pescaretti et al., 2009). 

Cumulatively, these results suggest that Rcs system would have a mechanism of 

negative autoregulation. Autoregulation has been observed in others two-component 

regulatory systems, including the phoPQ operon of Salmonella (Soncini et al., 1995), 

the phoBR operon of Escherichia coli (Guan et al., 1983), the virA and virG genes of 

Agrobacterium tumefaciens (Winans et al., 1994), and the bvgAS operon in Bordetella 

pertussis (Stibitz & Miller, 1994). It is important to remark that all of the above cited 

systems are under a positive autoregulation mechanism. We are describing for the first 

time that the Rcs system could be negatively autoregulated.  

On the basis of our results, a negative autoregulation model for the S. typhimurium 

Rcs regulatory system is proposed (Fig. 6). In the presence of the signal, the Rcs 

phosphorelay system is full activated due to the phosphate transfer from RcsC to RcsB, 

mediated by RcsD. The rcsB gene is expressed from both promoters, PrcsDB and PrcsB, 

producing high levels of RcsB which is phosphorylated and can modulate the 

expression of those genes that are required for adaptation (Fig. 6 Activation state). After 

reaching a threshold concentration, RcsB protein represses the rcsD transcription by 

binding to the PrcsDB promoter. This repression breaks off the Rcs phosphorelay 

pathway, with the consequent dephosphorylation of RcsB by the RcsC phosphatase 
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activity (Fig. 6 Autoregulation state). At this point, the rcsB expression begins to be 

controlled only by P
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rcsB promoter and RcsB protein return to the basal levels, which are 

required to maintain the motility repression. 

It was previously established that activation of the Salmonella Rcs regulatory 

system interferes with the ability of Salmonella to cause a lethal infection in mice 

(Mouslim et al., 2004). Furthermore, accurate correlation between virulence and 

flagellar regulation has been reported (Ikeda et al., 2001). In this paper we demonstrate 

that even when the PrcsDB is quantitatively more active than PB261 
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rcsB promoter the last one is 

required to maintain the repression of the RcsB-dependent motility phenotype. The 

presence of two promoters, PrcsDB and PrcsB, acquire an important physiological 

relevance since allows maintain the bacterial mobility repression even in the negative 

autoregulation state. On-going experiments are being directed toward identifying the 

physiological signals capable to activate the Rcs system and determine how the 

virulence and swarming motility could be influenced. 
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Table 1: Bacterial strains and plasmids used in this study. 

 
Strain or plasmid     Descriptiona                             Reference or source 
 
S. enterica serovar Typhimurium 

14028s           wild-type                   Fields et al. (1986)  
EG12711 ∆rcsB::Cm  This work 
EG14873  rcsC11 Mouslim et al. (2004) 
EG14539 ∆rcsD::lacZY Pescaretti et al. (2009) 

EG14932 ∆rcsB::lacZY Pescaretti et al. (2009) 

MDs1077 ∆rcsD::lacZY rcsC11 This work 
MDs1017 ∆PrcsDB::Cm This work 
MDs1018 ∆PrcsB::Cm This work 
MDs1026 ∆rcsB::lacZY ∆PrcsDB::Cm This work 
MDs1032 ∆rcsB::lacZY ∆PrcsDB::FRT This work 
MDs1027 ∆rcsB::lacZY ∆PrcsB::Cm This work 
MDs1034 ∆rcsB::lacZY ∆PrcsB::FRT This work 

 
Plasmids 

pUHE2-2lacIq reppMB1 Apr lacIq Soncini et al. (1995) 
prcsB pUHE2-21 lacIq containing rcsB gene Pescaretti et al. (2009) 
prcsD pUHE2-21 lacIq containing rcsD gene  This work 
pMS201 low copy vector for cloning promoters,  Beeston & Surette (2002)  
 pLtet01, derived of pZS21-luc, gfpmut2,  
pPrcsDB  Kmr pMS201 containing 122 pb of Pescaretti et al. (2009) 

 PrcsDB fused to gfpmut2 gene  
pPrcsB pMS201 containing 131 pb of PrcsB fused  Pescaretti et al. (2009) 

 to gfpmut2 gene  
 
Gene designations are summarized by Sanderson et al (1995). 
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Fig. 1 465 
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Fig. 1. rcsB overexpression represses rcsD transcription: The transcriptional activity of 

ΔrcsD::lacZY fusion, measured as β-galactosidase activity (Miller units), was 

investigated in the following genetic backgrounds: wild-type (EG14539) and rcsC11 

(MDs1077) harboring or not the prcsD plasmid, and wild-type (EG14539) strain in the 

presence of polymyxin B as described in Material and Methods. All data correspond to 

mean values of three independent experiments done in duplicate. Error bars correspond 

to the standard deviation. 
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Fig. 2 487 
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Fig. 2. Contribution of PrcsDB and PrcsB promoters to the rcsB expression: (a) Graphic 

representation of the genetic backgrounds used to determine the transcriptional activity 

of rcsB gene. Spaces between brackets correspond to the deleted promoter regions. (b) 

The transcriptional activity of ΔrcsB::lacZY fusion, measured as β-galactosidase activity 

(Miller units), was investigated in the following genetic backgrounds: wild-type 

(EG14932), and PrcsDB (MDs1032) and PrcsB (MDs1034) mutants, all carrying prcsB 

plasmid and grown in the presence (black bars) or in the absence (grey bars) of IPTG. 

(c) The PrcsDB (squares symbols) and PrcsB (circles symbols) promoters activities, 

measured as GFP production at each time point, was monitored in the wild-type 14028s 

strain co-transformed with prcsB and pPrcsDB or pPrcsB plasmids, respectively. Black 
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symbols correspond to the cultures grown in the presence of IPTG and grey symbols in 

the absence. All data correspond to mean values of three independent experiments done 

in duplicate. Error bars correspond to the standard deviation. 
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Fig. 3 534 
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Fig. 3. The PrcsDB activity is repressed by polymyxin B treatment. The PrcsDB promoter 

activity, measured as GFP production at each time point, was monitored in the: (a) wild-

type 14028s strain and (b) rcsB mutant (EG12711). Black symbols correspond to the 

cultures grown in the presence of polymyxin B and grey symbols in the absence. All 

data correspond to mean values of three independent experiments done in duplicate. 

Error bars correspond to the standard deviation. 
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Fig. 4 561 
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(c) 

 -248 gttattcactacactcccctgctcgaccgttcgtaagacattagcaaataatttc
-193 ttgatatttagtgctaaacatttataagtagtctttatatttgtaccgttctgcg

-138 aaggttgtacgcttttcccgtcccgccgacggagcgcgtgttaagttgcccggca

-83 tgacgtaagagtctggaaattcattcattaccctttatactgcccttcaccttca

-28 gcgttgcttttacaggtcgtaaacataaATGagtcagtctgacacaacggtc
-35                                                   -10                               +1

-248 gttattcactacactcccctgctcgaccgttcgtaagacattagcaaataatttc
-193 ttgatatttagtgctaaacatttataagtagtctttatatttgtaccgttctgcg

-138 aaggttgtacgcttttcccgtcccgccgacggagcgcgtgttaagttgcccggca

-83 tgacgtaagagtctggaaattcattcattaccctttatactgcccttcaccttca

-28 gcgttgcttttacaggtcgtaaacataaATGagtcagtctgacacaacggtc
-35                                                   -10                               +1

 

 

 
 
 
Fig. 4. Interaction of RcsB regulator with PrcsDB promoter region: (a) Alignment of the 

RscB boxes conserved in the PrcsDB promoter in comparison with the reported RcsB-

binding sequences of S. enterica serovar Typhimurium (Se) ugd, Erwinia amylovora 
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(Ea) ams, and E. coli (Ec) fts genes. The box indicates conserved sequence of RcsB-

binding motif. (b) DNase footprinting analysis of the RcsB-His6 binding to the P
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rcsDB 

promoter region. DNA footprinting analysis performed on end-labeled fragments 

corresponding to the upstream rcsD coding and non-coding strands. The RcsB-His6 

protein was added at a final concentration of 0, 10, 40, and 80 nM. Solid and dotted 

black bars represent the RcsB-protected regions. Lanes: A+G and T+C correspond to 

Maxam and Gilbert sequencing reaction of the labeled fragments. (c) DNA sequence 

corresponding to the 248-bp region upstream of rcsD open reading frame. The 

sequences underlined by solid and dotted black lines represent the DNA regions 

footprinted by the RcsB-His6 protein. The conserved sequences corresponding to the 

putative RcsB -binding motif are boxed. 
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Fig. 5 612 
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Fig. 5. The rcsB gene expression by PrcsB activity controls the swarming phenotype. 

Swarming behavior of the wild-type (14028s), rcsB (EG12711), PrcsDB (MDs1017) and 

PrcsB (MDs1018) strains carrying the prcsD plasmid was assayed on LB plates 

containing 0.4 % agar and IPTG. All images were captured after 12 h of incubation at 

37 °C. The images represent one of three independent experiments; while the data 

correspond to mean values of these independent experiments. 
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Fig. 6 637 
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Fig. 6. Negative autoregulation model proposed for the Rcs system: The signal is sensed 

by RcsC producing full Rcs system activation, which controls the modulation of the 

indicated genes (Activation state). After reach the threshold concentration of RcsB, the 

PrcsDB promoter activity is repressed and the rcsB expression is maintained at low levels 

by the PrcsB promoter activity (Autoregulation state).  
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