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Land degradation caused by deforestation, overgrazing, and 
inappropriate irrigation practices aff ects about 16% of Latin 
America and the Caribbean (LAC). Th is paper addresses issues 
related to the application of remote sensing technologies for 
the identifi cation and mapping of land degradation features, 
with special attention to the LAC region. Th e contribution of 
remote sensing to mapping land degradation is analyzed from 
the compilation of a large set of research papers published 
between the 1980s and 2009, dealing with water and wind 
erosion, salinization, and changes of vegetation cover. Th e 
analysis undertaken found that Landsat series (MSS, TM, 
ETM+) are the most commonly used data source (49% of the 
papers report their use), followed by aerial photographs (39%), 
and microwave sensing (ERS, JERS-1, Radarsat) (27%). About 
43% of the works analyzed use multi-scale, multi-sensor, 
multi-spectral approaches for mapping degraded areas, with 
a combination of visual interpretation and advanced image 
processing techniques. Th e use of more expensive hyperspectral 
and/or very high spatial resolution sensors like AVIRIS, 
Hyperion, SPOT-5, and IKONOS tends to be limited to small 
surface areas. Th e key issue of indicators that can directly or 
indirectly help recognize land degradation features in the 
visible, infrared, and microwave regions of the electromagnetic 
spectrum are discussed. Factors considered when selecting 
indicators for establishing land degradation baselines include, 
among others, the mapping scale, the spectral characteristics of 
the sensors, and the time of image acquisition. Th e validation 
methods used to assess the accuracy of maps produced with 
satellite data are discussed as well.
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Land Degradation Defi ned

Land degradation is a long-term loss of ecosystem function 

and services, caused by disturbances from which the system 

cannot recover unaided (UNEP, 2007). Direct eff ects include 

losses of soil organic carbon, nutrients, soil water storage and 

regulation, and belowground biodiversity. Indirectly, it means a 

loss of the land’s productive capacity and wildlife habitat. Soil 

deterioration is one critical aspect of land degradation, particularly 

of irreversible land degradation leading to desertifi cation. Soil 

degradation is a consequence of depletive human activities and 

their interaction with natural environments, resulting in soil 

quality decline. Lal and Stewart (1990) distinguish three types of 

soil degradation, namely physical (e.g., soil erosion by wind and 

water), chemical (e.g., salinization, acidifi cation), and biological 

(e.g., decline in soil organic matter). Although there is consensus 

that soil degradation is often a severe issue, there are few systematic 

measurements of its extent and severity (UNEP, 2007).

Land degradation caused by deforestation, overgrazing, and in-

appropriate irrigation practices aff ects about 16% of LAC (UNEP, 

2007). Th e problem is more severe in Meso-America where it af-

fects 26% of the territory, while 14% of South America is aff ected 

(UNEP, 2004). About 22% of the arid regions of South America 

are aff ected by severe or very severe desertifi cation resulting from 

the combination of soil and climate constraints, excessive grazing, 

bush clearing, forest and grassland fi res, fi rewood gathering, and 

other extractive activities (Dregne, 1986). Water erosion is the 

main cause of land degradation, while wind erosion is signifi cant 

in some locations such as the area bordering Bolivia, Chile, and 

Argentina (WRI, 1995). Salinization of agricultural soils due to 

irrigation is particularly signifi cant in Argentina, Cuba, Mexico, 

and Peru, which have extensive dryland areas that are often sub-
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jected to inappropriate use or protracted droughts (UNEP, 

2004). Furthermore, the Global Environmental Outlook pro-

duced by UNEP (2007) identifi es agricultural intensifi cation 

to satisfy increasing demands in food, raw materials, and bio-

energy as a cause of soil nutrient depletion.

Assessment Techniques
Common methods for assessing land degradation as iden-

tifi ed in the LADA-FAO approach (Koohafkan et al., 2003) 

include: expert judgment, remote sensing, productivity chang-

es, fi eld monitoring, pilot studies at farm level based on fi eld 

criteria and expert opinion, and modeling. Table 1 shows the 

relationship between methods and survey scales. In practice, 

synergistic uses combining several of these approaches are more 

common than the implementation of individual methods.

Early land degradation assessments were essentially based 

on expert judgment, as in the case of the Global Assessment 

of Human-induced Soil Degradation (GLASOD). In spite of 

the assessment drawbacks highlighted by Sonneveld and Dent 

(2009), the GLASOD approach is still used for estimating land 

degradation at global, regional, and national scales. However, 

over the last two decades, scientists and international agencies 

such as FAO, UNEP, and GEF have joined eff orts to develop 

standardized, operational methods and tools to map and moni-

tor land degradation at diff erent scales. Signifi cant advances 

occurred especially in the last decade with the wide applica-

tion of geospatial technologies to study the causes, impacts, 

and trends of land degradation. Good examples of such ap-

plications are the FAO-WOCAT (World Overview on Con-

servation Approaches and Technologies) (FAO, 2003) and the 

GLADA (Global Assessment of Land Degradation and Im-

provement) (Bai et al., 2008a) approaches.

Th e benefi t of remotely sensed data in the form of aerial 

photographs and satellite imagery has been well recognized 

for (i) assessing the spatial and temporal distribution of land 

degradation features and (ii) collecting input data for process 

simulation models to produce land cover maps, vegetation 

cover maps, bare soil fraction maps, and net primary produc-

tion maps, among others. Land degradation results in adverse 

eff ects of which the spatial and temporal variations must be 

assessed. Knowledge of the processes of land degradation, pro-

cess-controlling variables, and eff ects of degradation is a pre-

requisite to determine what information can be derived from 

remotely sensed images.

Th e processes leading to land degradation can be detected 

and assessed through indicators, which are measurable charac-

teristics providing information about a condition, change of 

quality, or change in state of something valued (Dumanski and 

Pieri, 1996). Th e main challenge is to select indicators that are 

suffi  ciently representative and, at the same time, easy to under-

stand and measure on a routine basis (Ponce Hernandez, 2002). 

Furthermore, the indicators should be SMART, that is, specifi c, 

measurable, achievable, and time-bound (Schomaker, 1997). In-

dicators can be collected using a variety of techniques, including 

geo-referenced fi eld observations (GPS), laboratory determina-

tions, remotely sensed data, or a combination thereof.

Surveys assessing the current status of the land in terms of on-

going degradation processes aim at determining the spatial vari-

ability and condition of the natural vegetation (coverage, struc-

ture), agricultural crops (performance, coverage), soil surface 

(sealing, crusting), and soil erosion surface features (gully, rill, and 

sheet erosion). Monitoring changes over time involves character-

izing surface dynamics such as the development of crop canopy 

over a growing season as an indirect indicator of erosion, or the 

long-term formation of rills and gullies in an area. Likewise, 

process-controlling variables such as rainfall interception, canopy 

water storage, and changing agricultural land use through seasons 

can be derived from air- or satellite-borne images that can be used 

as information in process simulation models of land degradation.

Th is paper reviews a large set of publications that report on 

remote sensing research undertaken in Latin America and the 

Caribbean since the early 1980s for mapping land degradation 

caused by water (including debris fl ows and landslides) and 

wind erosion, salinization, and disturbance of the vegetation 

cover. Emphasis is put on the selection and remote identifi -

cation of indicators for mapping and monitoring land degra-

dation features and processes. We fi rst provide a summary on 

sensors and mapping scales used for assessing land degrada-

tion. Th en we analyze experiences of mapping land degrada-

tion caused by soil erosion, salinization, and alteration of the 

vegetation cover, and we highlight the approaches used for data 

capture, transformation, and display.

Sensors, Mapping Scales, and Extent 
of Mapped Areas

A variety of remote sensors have become available to the 

scientifi c community during the past 30 yr, with the potential 

to provide useful information for assessing land degradation. 

Such sensors are usually classifi ed according to the source of en-

ergy (passive or active sensors), the type of platform (ground-, 

air-, or space-borne), the region of the spectrum used to image 

the earth’s surface (optical, infrared, microwave), the platform 

trajectory (sun-synchronic or geo-stationary satellites), the 

number and width of spectral bands (panchromatic, multi-

spectral, hyperspectral), the spatial resolution (high, medium 

also known as Landsat-like, low), the spatial coverage (point or 

image view), the temporal resolution (hourly, daily, weekly re-

visiting frequency), and the radiometric resolution (8, 12, 16, 

32 bits) (Metternicht, 2007).

Th is work compiled and analyzed over 60 research papers to 

determine remote sensors usage vs. land degradation type and 

scale of the studies undertaken in Latin America and the Carib-

bean. Tables 2, 3, 4, and 5 synthesize this eff ort, showing that 

the Landsat series (MSS, TM, ETM+) is nowadays the most 

commonly used data source (49%), followed by aerial photo-

graphs (39%), and microwave sensing (ERS, JERS-1, Radar-

sat) (27%). About 43% of the works analyzed use multi-scale, 

multi-sensor, multi-spectral approaches to the cartography of 

degraded areas, with a combination of visual interpretation 

and advanced image processing techniques. Th e use of more 

expensive hyperspectral and/or very high spatial resolution 
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sensors like AVIRIS, Hyperion (hyperspectral), SPOT-5, and 

IKONOS is limited to areas of 15 to 150 km2.

Research of subregional extent (i.e., above 400,000 km2), 

for outputs at scales between 1:250,000 to 1:1,000,000 and 

Table 1. Common methods for assessing land degradation.

Method Scale Comments Application examples

Expert judgment Global, small 
scale

·  Subjective, particularly in the 
defi nition of degradation classes: 
not degraded; slight, moderate, 
severe, very severe degradation

· Hardly reproducible
· Relatively low cost

Global: GLASOD†
Regional: A co-evolutionary approach is used to explain the fate of African 
soils, focusing especially on the interaction between short-term local and 
long-term global processes (Koning and Smaling, 2005).
National: The mapping approach is based on the time series analysis of 
satellite data. Vegetation dynamics is characterized using NDVI estimates 
from the coarse scale, hyper-temporal 1-km MEDOKADS archive, which is 
based on calibrated NOAA–AVHRR images (Hill et al., 2008).
National: Use of expert judgments to conduct a water erosion hazard 
assessment in Ethiopia (Sonneveld, 2003).
Local: Evaluation of the soil erosion process using expert decision trees 
and artifi cial neural networks in traditional crops, Andalucia, southern 
Spain (De La Rosa et al., 1999).

Remote sensing Global, regional, 
subregional and 
local

·  Acquisition on a repetitive basis 
enables monitoring

·  Clear identifi cation of indicators 
(direct or indirect) is needed

·  Indicator must carry direct 
spectral absorption features or be 
correlated to a soil chromophera

·  Cost varies with platform and 
sensor used

Global: GLADA
Regional: Application of remote sensing to soil surface characterization 
by diff erent wavelengths, temporal changes of surface states, incision 
and geometry of possible water pathways on the surface in Normandy 
(France) (King et al., 2005).
Subregional: Mapping of wind erosion-related features in Patagonia 
(Argentina) (Blanco et al., 2009).
Local: Hyperspectral data are used to derive soil chemical properties, 
organic matter, mineralogical content, infi ltration capacity, aggregation 
capacity, and runoff  coeffi  cient in a catchment area, Brandenburg region 
(north-eastern Germany) (Chabrillat et al., 2003).

Field monitoring Subnational, 
large scale

·  Costly, depending on the intensity 
of fi eldwork

·  Stratifi ed sampling recommended
·  Enables monitoring over time

National: Evaluation of the Local NPP Scaling (LNS) method, where the 
NDVI sum (ΣNDVI) of the growing season, a surrogate for productivity, of 
each pixel was expressed relative to the highest values (90th percentile) 
of ΣNDVI observed in all pixels falling within the same land capability unit 
(LCU) (Wessels et al., 2007).
Subnational: Comparison of historical and current soil salinity maps, using 
historical fi eld and laboratory data in the Gorgan Region, Northeast Iran 
(Naseri, 1998).
Local: Soil loss and runoff  were assessed in fi ve land units (LUs) of a closed 
basin by means of 18 experimental plots within a 42-mo period (Rostagno 
et al., 1999). 

Productivity 
changes

National, local ·  Uses crop performance indicators, 
biomass production related to 
land degradation as an expression 
of lowered productivity

·  Productivity decline could be 
caused by factors other than land 
degradation

·  Reliable data sources are required 
(e.g., national yield statistics, yield 
monitoring, etc.)

National: Potential areas of severe land degradation are identifi ed with net 
primary productivity and rain-use effi  ciency in Kenya (Bai and Dent, 2006).
Local: Reduction in crop yield, New Mexico (Madrigal et al., 2003; Lobell et 
al., 2007).

Pilot studies at 
farm level

Local ·  Enables a grass roots view on the 
severity of degradation and its 
causes

·  Relying on fi eld indicators of 
degradation can be subjective

·  Can be costly depending on area 
coverage

Dendrogeomorphological analysis using exposed shrub roots to estimate 
soil erosion rates in rangelands (Chartier et al., 2009).
Quantifi cation of visual soil erosion indicators (splash pedestals, 
sheetwash, rills, sedimentation, red color and stoniness) to evaluate soil 
loss in the Gikuuri catchment, Kenya (Okoba and Sterk, 2006).

Modeling Global to
local

·  Uses established models for soil 
erosion by wind and water

·  Enables the integration of 
biophysical with socio-economic 
factors

·  Prediction of degradation hazard

IMAGE: land degradation model developed for describing current and 
future global water erosion. Sensitivity to water erosion computed from 
terrain erodibility, rainfall erosivity and land cover (Hootsmans et al., 2001).
PESERA, WATEM-SEDEM, SPADS: comparison of these three spatially-
distributed models for the prediction of soil erosion and/or sediment yield 
at regional scales in Spain. (Vente et al., 2008).
MIRSED: methodology for modeling regional and national patterns of 
hillslope-scale soil erosion rates in the UK using a minimum information 
requirement (MIR) version of Water Erosion Prediction Project (WEPP) 
(Brazier et al., 2001).
FuDSEM: fuzzy-based dynamic soil erosion model to produce potential 
erosion maps at catchment scale (Cohen et al., 2008).

†  GLASOD = Global Assessment of Human-induced Soil Degradation; NDVI, Normalized Diff erence Vegetation Index; GLADA, Global Assessment of Land 

Degradation and Improvement; NPP, net primary production.
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Table 3. Water erosion surveys using remote sensing.

Type of soil 

degradation Indicators Location

Survey 

area 

size Sensors Spatial scale 

Acquisition 

year Method/techniques

Accuracy 

assessment 

techniques Authors

km2 m

Water 

erosion

Gullies Mexican 

Volcanic Belt

492 Aerial 

photographs

1:25,000–

1:50,000

1970–1983 Georeferencing, 

enhancements of image 

data. Supervised maximum 

likelihood classifi cation of 

Landsat data integrated 

with TMU and slope data.

Error matrixes. Bocco (1990)

Landsat TM 30 1984

Water 

erosion

Gullies Transmexican 

volcanic belt

80 Aerial 

photographs

1:50,000 _ Photo interpretation and 

detailed fi eld survey. Gully 

modelling

Field 

measurements

Vázquez-

Selem and 

Zinck (1994)

Water 

erosion

Landslides Coello valley 

Colombian 

Andes

1,250 Aerial 

photographs

1:50,000 _ Photo interpretation and 

detailed fi eld survey. 

Landslide modelling

Laboratory 

and fi eld data

Lopez and 

Zinck (1991)

Water 

erosion

Landslides Colombian 

Cordillera

300 Aerial 

photographs

1:25,000–

1:50,000

_ Geometric corrections 

and co-registration. 

Compare morfodinamic 

maps obtained from 

stereoscope pair of SPOT-

Landsat and stereoscope 

pair or ERS-1 images.

Field work 

based 

upon aerial 

photographs.

Vargas 

Cuervo (1997)

SPOT-XS 20 1989

Landsat TM 30 1988

SAR ERS-1 30 1992

Water 

erosion

Debris fl ows, 

shallow soil slips, 

slumps

Puerto Rico 300  Aerial 

photographs

1:20,000 Multi-

temporal

Photo interpretation 

integrated with fi eld 

surveys, topographic and 

land use maps into GIS to 

evaluate frequency and 

distribution of landslides.

_ Larsen 

and Torres 

Sánchez 

(1998)

Water 

erosion

Flooding Brazilian 

Amazon River

2,000,000 SMMR Nimbus-7 

satellite (37GHz)

27,000 multi-

temporal 

1979–1987

Calculation of the 

diff erence between 

vertically and horizontally 

polarized brightness 

temperatures, estimation 

of fl ooded area at monthly 

intervals using a linear 

mixing model with three 

end-members (water, 

nonfl ooded land, and 

inundated fl oodplain).

River level 

estimations 

are compared 

by Pearson 

product-

moment 

correlations.

Sippel et al. 

(1998)

Water 

erosion

Drainage density, 

water infi ltration, 

declivity, 

ruptibility-plasticity

Taquari River 

Basin, Brazil

5,830 Landsat TM 30 _ Landsat visual 

interpretation integrated 

with geomorphology, 

topographic and geologic 

maps.

_ Veneziani et 

al. (1998)

Water 

erosion

Surface erosion 

features 

(pavements, 

gullies, rills, rock 

fragments, color, 

vegetation cover)

Sacaba Valley, 

Bolivia

100 Landsat TM 30 1994 SAR despeckle. Co-

registration and resample 

to 15 m. Data fusion. 

Supervised maximum 

likelihood classifi cation 

and signature separability 

evaluation. 

Error matrixes 

with ground 

data.

Metternicht 

and Zinck 

(1998)

JERS-1 SAR 18 1994

Water 

erosion

Surface erosion 

features 

(pavements, 

gullies, rills, 

topsoil color, 

rock fragments, 

vegetation cover)

Sacaba Valley, 

Bolivia

100 Aerial 

photographs

1:25,000 _ Geometric corrections. 

Extraction of end-

members by principal 

components method, 

integrated with visual 

interpretation of aerial 

photos and fi eld surveys. 

Lineal spectral unmixing 

of Landsat data.

Analysis of 

the RMS error 

image.

Metternicht 

and Fermont 

(1998)Landsat TM 30 1994

Water 

erosion

Flooding Bolivian 

Amazon

250,000 Landsat TM 30 1997 Visual interpretation of 

TM color composite and 

radar color multitemporal 

composites.

_ Bourrel et al. 

(1999)
Radarsat 50 1997, 1998

ERS 2 12,5 1996, 1997

Water 

erosion

Erosion features 

(gully, rill, sheet 

erosion, badlands)

Trujillo, 

Venezuela

226 Aerial 

photographs

1:25,000. 

Output 

products: 

1:50,000

_ Photo interpretation 

integrated with fi eld 

surveys, geologic and 

vegetation maps.

Field surveys. Diaz et al. 

(1999)

(cont’d)
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Type of soil 

degradation Indicators Location

Survey 

area 

size Sensors Spatial scale 

Acquisition 

year Method/techniques

Accuracy 

assessment 

techniques Authors

km2 m

Water 

erosion

Flooding Parana river, 

Argentina

375 Landsat TM to 

simulate SAC-C 

images.

180 (simulated 

SAC-C)

1994, 1998 Co-registration and 

calibration, visual 

interpretation of 

Normalized Diff erence 

Vegetation Index (NDVI) to 

discriminate susceptibility 

to fl ooding.

_ Giraut et al. 

(2000)

Water 

erosion

Flooding Paraná Delta, 

Argentina

2,700 Radarsat/SAR 28,5 multi-

temporal 

1997-1998

Conversion digital number 

to backscatter coeffi  cients, 

despeckle, co-registration 

and geometric correction, 

image segmentation. 

Comparison between 

supervised decision 

classifi er and 

unsupervised ISODATA.

Error matrixes Parmuchi et 

al. (2000)

Landsat TM 28,5 1997

Water 

erosion

Topsoil loss, 

accumulation 

zones

Central-Western 

Argentina

2,500 ERS-1 30 1998 Visual interpretation 

of Landsat. SAR 

Interferometry. Co-

registration of outputs 

and visual interpretation 

of color composite image.

_ Maldonado et 

al. (2001)ERS-2 30 1998

Landsat TM 30 _

Water 

erosion

 Landslides scars, 

debris fl ows, 

natural dam and 

rock falls

Vargas State, 

Venezuela

40 Aerial 

photographs

3,513,888,889 1991 Photo interpretation. 

Geometric rectifi cation, 

tone enhancements, 

and visual interpretation 

of IKONOS. Outputs 

are combined into GIS 

with planimetric data, 

contour lines, hydrology 

and vegetation types to 

evaluate the distribution 

of the scars.

_ De La Ville et 

al. (2002)

IKONOS 4 1999

Water 

erosion

Gullies Maranhão 

State, Brazil

831 Aerial 

photographs 

_ _ Photo-interpretation 

integrated with fi eld surveys 

and laboratory analysis.

_ Guerra et al. 

(2002)

Water 

erosion

Landslides Northern 

Argentina

15,000 Landsat TM 30 1986–2001 Co-registration, 

supervised maximum 

likelihood classifi cation.

Confusion 

matrixes and 

Kappa index.

Paolini et al. 

(2002)

Water 

erosion

Flooding Central Brazilian 

Amazon

17,000 JERS-1 SAR 12.5 multi-

temporal 

1995–1997

Resample to 100 m by 

wavelet decomposition, 

mosaic generation, co-

registration, conversion 

digital number to radar 

backscatter, supervised 

classifi cation.

_ Rosenqvist et 

al. (2002)

Water 

erosion

Laminar erosion 

features, gullies

São Paulo, Brazil 460 Aerial 

photographs

1:25,000 1962 Photo-interpretation, 

principal component 

analysis of Landsat image, 

DTM, topographical maps 

and fi eld information 

are integrated in a GIS 

environment to produce 

the fi nal cartography.

_ Carneiro and 

Souza (2003)

Landsat TM 30 1992

Water 

erosion

Flooding Western Brazil, 

Eastern Bolivia 

and Northern 

Paraguay.

484,970 NOAA-

AVHRR NDVI 

maximum value 

composites

8,000 _ Combined use of 

monthly precipitation 

and monthly maximum 

value composite NDVI 

to predict monthly river 

water level by stepwise 

multiple linear regression 

technique.

Data 1981-

1994 for model 

construction 

and data 

1994-2000 for 

validation.

Liu et al. 

(2003)

(cont’d)

Table 3. Continued.
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smaller, tends to use satellite imagery provided by sensors 

of low spatial resolution such as MODIS, SAC-C, NOAA-

AVHRR, SMMR Nimbus-7, and Wide Field Imager of the 

CBERS-2B. For instance, del Valle et al. (1998) mapped about 

700,000 km2 of degraded areas in the Argentinean Patagonia 

using NOAA-AVHRR-Large Area Coverage (LAC) data to-

gether with validation data from Landsat MSS.

Sensors of moderate spatial resolution, covering the optical and 

infrared regions of the electromagnetic spectrum, such as Landsat 

(TM, ETM+, MSS), SPOT (HVR, Xs, HRG), ASTER, and C-

BERS, have been applied to map areas of 30 to 250,000 km2. Th e 

output scales of such studies range from local, catchment, country 

Type of soil 

degradation Indicators Location

Survey 

area 

size Sensors Spatial scale 

Acquisition 

year Method/techniques

Accuracy 

assessment 

techniques Authors

km2 m

Water 

erosion

Landslide scars Santa Catarina, 

Brazil

105 Landsat TM 30 _ Radiometric correction. 

Transformation from 

RGB to IHS, Principal 

Component analysis and 

Wavelet Transform fusion. 

Comparison between 

these techniques using 

visual interpretation, 

statistical analysis and 

automatic classifi cation

_ Marcelino et 

al. (2003) SPOT HRV 20 _

Water 

erosion

Shallow mass 

movements

La Trinidad, 

Nicaragua

25 Aerial 

photographs

1:25,000 _ Photo interpretation 

integrated with fi eld 

surveys. The output 

shallow landslide map 

is integrated in a logistic 

regression model with 

geomorphology, slope 

and accumulated fl ow 

variables to generate 

susceptibility maps.

Field surveys. Menendez 

Duarte et al. 

(2003)

Water 

erosion

Flooding Pampean 

Region, 

Argentina

3,600 Terra-ASTER/VNIR 15 _ Geometric and 

radiometric correction of 

Terra-ASTER. Generation 

of DEM 30 m from SRTM 

by interpolating and 

resampling, to estimate 

drainage pattern 

and inundation area, 

comparison with spectral 

indices from Terra-ASTER 

(NDVI, NDWI, VSW).

_ Azcurra et al. 

(2004)

DEM SRTM 30 _

Water 

erosion

Landslide scars Southern Brazil 4 Aerial 

photographs

1:20,000 _ Photo interpretation to 

landslide and vegetation 

cover mapping. High 

resolution DEM (2 m) 

derived from aerial photos 

is used to generate 

topographic attributes. 

By comparing the output 

results a landslide 

potential index is defi ned. 

Implementation of 

SHALSTAB model using 

fi eld experiments.

_ Fernandes et 

al. (2004)

Water 

erosion

Flooding La Pampa 

Province, 

Argentina

30,000 Landsat TM 30 _ Geometric corrections, 

comparison between 

unsupervised ISODATA 

classifi cations of Landsat 

vs. SAC-C images.

Use photo-

interpretation 

as ground 

truth.

Mieza et al. 

(2004)SAC-C 175 multi-

temporal 

2001–2003

Water 

erosion

Debris fl ows Northwestern 

Nicaragua

20 Aerial 

photographs

1:40,000-

1:60,000. 

Output results: 

1:10,000

1996–1998 Photo interpretation 

integrated with fi eld 

surveys. Data concerning 

regolith, landslides, slope 

and land use are integrated 

in a qualitative debris fl ow 

hazard assessment.

Field surveys. Pallàs et al. 

(2004)

(cont’d)

Table 3. Continued.
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to regional levels (1:50,000–1:250,000). A study example at re-

gional scale is the cartography of 250,000 km2 of fl ooded areas in 

the Bolivian Amazon, using visual interpretation of Landsat and 

microwave data (Bourrel et al., 1999). Riedel et al. (2007) present 

Type of soil 

degradation Indicators Location

Survey 

area 

size Sensors Spatial scale 

Acquisition 

year Method/techniques

Accuracy 

assessment 

techniques Authors

km2 m

Water 

erosion

Landslides Southern 

Honduras

108 Aerial 

photographs

1:50,000 _ Registration. Photo and 

visual interpretation 

integrated with 

topographic maps to 

produce slope, aspect, 

land cover, and stream 

proximity maps. Outputs 

maps are combined 

following a hierarchical 

scheme to produce 

landslide hazard maps.

The model is 

validated in 

an adjacent 

watershed.

Perotto 

Baldiviezo et 

al. (2004)SPOT Pan 10 1998

Water 

erosion

Landslides São Pablo, Brazil 200 Landsat TM 30 1996 Geometric and 

atmospheric corrections, 

contrast enhancement, 

image ratio TM5/TM7, 

TM4/TM3 and TM4/TM1. 

Principal component 

transformation. Visual 

interpretation of output 

results integrated with 

fi eld surveys.

Aerial 

photographs 

and fi eld 

surveys.

Sestini and 

Florenzano 

(2004)

Water 

erosion

Gullies Texcoco, Mexico  0.08 Color aerial 

photograph

1,5 1997 Photo-interpretation 

integrated with fi eld 

surveys. Neural network 

classifi cation, trained with 

the pixel values derived 

from RGB.

Confusion 

matrixes and 

Kappa index.

Trueba 

Espinosa et al. 

(2004)

Water 

erosion

Shallow landslides Venezuelan 

Andes

110 Landsat TM 30 1992 Lineal spectral unmixing 

of Landsat data to 

produce land cover map. 

Output is integrated with 

topographic, precipitation 

and geologic data using 

Artifi cial Neural Networks 

to assessment the 

landslide risk potential.

Use a part of 

the data set 

to accuracy 

assessment.

Gómez and 

Kavzoglu 

(2005)

Water 

erosion

Landslides Northwestern 

Nicaragua

473 Aerial 

photographs 

1:40,000. 

Output results: 

1:10,000

2000 Photo interpretation 

integrated with fi eld surveys 

for generation of TMU 

and landslide inventory 

map. Outputs results are 

combined into GIS to 

development a landslide 

susceptibility map.

The model is 

validated in a 

test zone.

Guinau et al. 

(2005)

Water 

erosion

 Landslides, debris 

fl ows and rock 

falls

Rio Mendoza 

Valley, 

Argentina

1,600 Aerial 

photographs

1:50,000, 

output map: 

1:100,000.

1963 Photo and visual 

interpretation with fi eld 

surveys to landslide 

zonifi cation mapping. 

Output is integrated into a 

GIS with ranked lithology 

and slope angle maps to 

landslide susceptibility 

assessment.

Use landslides 

historical data.

Moreiras 

(2005)

Landsat TM 30 1985, 1986, 

1997, 2000

Water 

erosion

Gullies, rills, sheet 

erosion

Brazilian 

Cerrados

100 ERS-1 30 1997 Calibration to obtain 

backscattering values, 

despeckle, co-registration. 

Interferometric 

decorrelation for detecting 

sheet and rill erosion, 

visual interpretation to 

locate gullies.

_ Vrieling and 

Rodrigues 

(2005)
ERS-2 30 1997–1999

(cont’d)

Table 3. Continued.
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Type of soil 

degradation Indicators Location

Survey 

area 

size Sensors Spatial scale 

Acquisition 

year Method/techniques

Accuracy 

assessment 

techniques Authors

km2 m

Water 

erosion

Landslides Sierra Norte de 

Puebla, Mexico

15 IKONOS 1 1999 Visual interpretation. 

NDVI generation 

and application of a 

fragmentation algorithm. 

Output results are 

integrated with a socio-

economic vulnerability 

index, geologic and 

geomorphologic maps to 

produce a risk map.

Field data 

using a GPS.

Borja Baeza et 

al. (2006)

Water 

erosion

Flooding Paraná Delta, 

Argentina

2,700 Envisat ASAR 30 2003–2004 Image calibration using 

BEST, co-registration and 

geometric correction, 

temporal fi ltered of 

backscattering images, 

vegetation-dependent 

fl ooding prediction 

based on the comparison 

between radiative transfer 

model simulations and 

ENVISAT backscattering of 

diff erent fl ood conditions 

in two types of marshes.

Estimated 

water levels 

are compared 

with measured 

water levels.

Grings et al. 

(2006)

Water 

erosion

Landslides Metropolitan 

Zone of Mexico 

City.

7,800 SRTM DEM 90, output 

map: 30 m.

_ Filling of voids and 

reconstruction of 

a DEM 30 m using 

TIN method, from 

SRTM. Morphometrics 

parameters are derived 

from the output and are 

integrated with soils, land 

use, precipitation data 

throughout a heuristic 

model in decision tree 

to defi ne landslide 

susceptibility areas.

_ Lopez and 

Nuñez (2006)

Water 

erosion

Landslides, 

fl ooding

Baja California, 

Mexico

23,725 Landsat 30–60 Multitemporal 

1973–1999

Radiometric correction 

and co-registration. 

Supervised classifi cation 

and change detection 

analysis into GIS to defi ne 

hazards areas for fl ooding 

and landslides.

_ Martínez 

Gutiérrez 

(2006)Terra-ASTER 15 2001

Water 

erosion

Soil compaction, 

impeded 

drainage, sheet 

and rill erosion

Tucuman, NW 

Argentina

1,060 Air photos, 

Landsat, SPOT

Variable 1971–1991 Photo interpretation and 

detailed fi eld survey

Laboratory 

and fi eld data

Zinck (2006)

Water 

erosion

Gullies, rills, sheet 

erosion

Delta of the 

Paraná River

17,500 Landsat TM 30 1992–2002 Visual interpretation. 

Radiometric correction 

and co-registration. 

Supervised classifi cation 

and change detection 

analysis into GIS. 

NDVI generation 

and application of a 

fragmentation algorithm.

Error matrixes 

and Kappa 

index

Kandus et al. 

(2006)

Water 

erosion

Flooding Monte Alegre, 

Brazilian 

Amazon 

14,400 CBERS-2/CCD 20 _ Geometric and 

radiometric correction, 

extraction of fl ood 

areas by application 

of mathematical 

morphologic operators 

to describe geometric 

structures.

_ Ishikawa and 

Silva (2007)

(cont’d)
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a local-scale application of moderate to high spatial resolution sen-

sors (i.e., SPOT-5) for mapping water erosion indicators over an 

area of 30 km2. Likewise, moderate spatial resolution microwave 

data from ERS, Radarsat, JERS, Envisat satellites, and orbital 

Shuttle SIR-A have been used for mapping degraded areas of 100 

to 17,000 km2 (see Tables 3 and 4, and Fig. 1).

Type of soil 

degradation Indicators Location

Survey 

area 

size Sensors Spatial scale 

Acquisition 

year Method/techniques

Accuracy 

assessment 

techniques Authors

km2 m

Water 

erosion

Flooding Western 

Brazilian 

Amazon

400 R99SAR 6 _ Geometric co-

registration, mosaic 

generation, resample to 

10 m, application of a 

speckle noise reduction 

algorithm, unsupervised 

semivariogram textural 

classifi cation of diff erent

Confusion 

matrixes are 

related to 

each multi-

frequency (HH, 

HV and VV) 

L-band image 

mosaic.

Miranda et al. 

(2007)

Water 

erosion

Landslide traces Sierra Norte de 

Puebla, Mexico

135 IKONOS 1 2000 Normalization of IKONOS 

images is followed by 

spectral indexes (NDVI, 

SBI ) generation. Output 

results are integrated with 

DTM slopes in an algorithm 

to extract automatically 

landslide traces.

_ Ochoa Tejeda 

and Parrot 

(2007)

Water 

erosion

Landslide scars São Pablo, Brazil 30 SPOT 5 20 _ Segmentation and 

classifi cation based 

in Bhattacharya 

algorithm. Output 

results are associated 

to NDVI, followed by 

intersect operator 

regarding geologic and 

geomorphologic variables, 

to automatic recognition 

of landslide scars.

_ Riedel et al. 

(2007)

Water 

erosion

Landslides Matagalpa, 

Nicaragua

700 Landsat TM 30 _ NDVI, land cover, and land 

use classes are derived 

from Landsat. Output 

results are integrated with 

slope and lithology maps, 

using a GIS-based fuzzy 

logic method to landslide 

susceptibility mapping.

_ Schernthanner 

(2007)

Water 

erosion

Gullies Sacaba Valley, 

Bolivia

100 SPOT HRV 20 _ Spot imagery for 

generation of vegetation 

map. Application of 

Vazquez-Selem and Zinck 

model to map gully spatial 

distribution.

Error matrixes. Sotomonte 

(2007)

Water 

erosion

Gullies Brazilian 

Cerrados

100 Terra-ASTER 15–30 Two dates: 

March wet 

season, 

August dry 

season

Geometric and 

radiometric correction, 

comparison between 

maximum likelihood 

classifi er (gullies and 

nongullies) applied to 

images of each season vs. 

a bitemporal classifi cation.

Use a gully 

map obtained 

from a 

panchromatic 

QuickBird 

image and 

fi eld data.

Vrieling et al. 

(2007)

Water 

erosion

Surface color 

(redness), coarse 

fragments

Coastal 

Cordillera of 

central Chile

800 SPOT-HRV 20 1998 Georeferencing, 

conversion of digital 

numbers to exo-

atmospheric refl ectance, 

radiometric corrections. 

Computation of Redness 

Index and Brightness 

Index. Statistical analysis 

to determine relations 

between indexes, fi eld and 

ground radiometric data. 

Error matrixes 

with ground 

data.

Mathieu et al. 

(2007)

(cont’d)
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Figure 1 shows the dominance of aerial photographs and 

very high spatial resolution sensors (2.5-m spatial resolution or 

better) to map land degradation over small areas, with a mode 

around 300 km2. Th is concerns surveys at local scale, or as sup-

port for fi eld verifi cation in research performed at smaller scales 

(generally in areas larger than 10,000 km2).

Water-Induced Erosion
Shallow mass movements, gullies, rills, sheet erosion, bad-

lands, debris fl ows, soil slips, and slumps are the indicators most 

commonly used to assess soil degradation induced by water 

(Table 3). Visual interpretation of aerial photographs, either 

black and white (Movia, 1980; Díaz et al., 1999; Guerra et al., 

2002) or color (Trueba Espinosa et al., 2004), continues being 

a popular technique regardless of the size of the surveyed area 

(1–160,000 km2). Time series of images taken by a video-camera 

attached to a balloon at 100-m elevation have also been used 

to monitor changes taking place at gully heads, and to estimate 

the speed of gully head retreat (Palacio-Prieto and López-Blanco, 

1994). Additionally, Table 3 shows several studies making use of 

multi-sensor approaches covering the optical-infrared regions of 

the spectrum (e.g., aerial photographs and Landsat TM) (Bocco, 

1990; Metternicht and Fermont, 1998; Carneiro and Souza, 

2003), though relatively few studies investigated the possibil-

ity of merging optical and microwave data to discriminate land 

degradation features. Works by Metternicht and Zinck (1998), 

investigating a synergistic use of JERS-1 and Landsat TM for 

mapping water-induced surface erosion features, and Navone et 

al. (2002) integrating Radarsat-1 and Landsat TM to assess land 

degradation are examples of the latter.

In regards to classifi cation techniques, Table 3 shows super-

vised approaches incorporating maximum likelihood classifi ers 

to be the most common (del Valle et al., 1998; Kandus et al., 

2006; Vrieling et al., 2007), although alternative techniques 

have been increasingly used. For instance, Metternicht and 

Fermont (1998) applied linear spectral unmixing of surface 

erosion features such as pavements, rills, topsoil color, and 

rock fragments from a Landsat TM image; Trueba Espinosa 

et al. (2004) used backpropagation artifi cial neural networks 

to discriminate gullies from color aerial photographs; and 

Vrieling and Rodrigues (2005) used interferometric decorrela-

tion of ERS-1/2 (C-band SAR data) for detecting sheet and 

rill erosion, while applying visual interpretation to map gul-

lies. Frequently, image data are advantageously combined in a 

GIS with ancillary data (relevant properties of slope, terrain, 

rock, soil, and land use units) for mapping gully, rill, and sheet 

erosion, and predict their potential occurrence (Bocco, 1990; 

Vázquez-Selem and Zinck, 1994; Carneiro and Souza, 2003).

Historical time series of aerial photographs and satellite im-

ages, frequently at diff erent scales, and thus needing harmoniza-

tion, have been used for retrospective monitoring of land degra-

dation. For instance, in a study performed in Tucuman province, 

northwest Argentina, fi elds put into farming at diff erent periods 

of time were selected from an image series to detect subsequently, 

from fi eld and laboratory data, trends in soil compaction, drain-

age impediment, and sheet erosion resulting from mechanized 

soya cultivation (Zinck, 2006; Recatalá-Boix and Zinck, 2008).

Th e mapping of fl ooded areas, a highly dynamic land deg-

radation phenomenon, has been undertaken with a variety of 

sensors and image processing techniques. Usually, fl ood studies 

use multi-temporal imagery for seasonal, annual, or inter-annual 

monitoring of the fl ooding processes and mapping aff ected ar-

eas. Often, data from high temporal (daily) resolution and low 

spatial resolution sensors are combined. Table 3 indicates how 

Liu et al. (2003) combined NOAA-AVHRR NDVI maximum 

value composites with monthly rainfall data for predicting 

monthly water levels, while Sippel et al. (1998) processed data 

from the SMMR Nimbus-7 to map 2,000,000 km2 of fl ooded 

areas, using the derivates of the imagery as input to a linear mix-

ing model that could diff erentiate water bodies, fl ooded plains, 

and nonfl ooded areas. Other approaches summarized in Table 

3 include merging multi-temporal optical, infrared, and micro-

wave C-band data to map fl ooded areas using visual interpreta-

tion of enhanced imagery (Bourrel et al. (1999), and Parmuchi 

et al., 2000), and the use of image segmentation and ISODATA 

classifi ers (Parmuchi et al., 2000). Th e spatial resolution of the 

sensors used in the latter studies was 30 m on average.

Multi-temporal microwave imagery of the JERS-1 (L-band) 

and Envisat ASAR (C-band) has been tested by Rosenqvist et 

al. (2002) and Grings et al. (2006), respectively, for mapping 

Type of soil 

degradation Indicators Location

Survey 

area 

size Sensors Spatial scale 

Acquisition 

year Method/techniques

Accuracy 

assessment 

techniques Authors

km2 m

Water 

erosion

Landslides Guantánamo, 

Cuba

6,200 Aerial 

photographs

1:25,000 2000 Photo interpretation. 

Output result is integrated 

with causative factors 

(geomorphology, geology, 

soil, land use, relief, 

drainage density, road 

and fault distance, rainfall) 

using neural networks 

and spatial multi-criteria 

techniques to landslide 

susceptibility modeling.

Field surveys. Castellanos 

Abella (2008)

Landsat ETM+ 30 2001

†  TMU = terrain mapping unit; DTM = digital terrain model; DEM, digital elevation model; SAR = synthetic-aperture radar; SAVI = Soil Adjusted Vegetation Index; NDVI= 

Normalized Diff erence Vegetation Index; NDWI= Normalized Diff erence Water Index; VSW = Vegetation-Soil-Water Index; SBI = Soil Brightness Index; TM= thematic mapper; 

TIN = triangulated irregular network; SRTM= Shuttle Radar Topography Mission.

Table 3. Continued.
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fl ooded areas (2700–17,000 km2), with prior co-registration 

of the imagery and conversion to backscattering values. Tex-

tural classifi cation of multi-frequency L-band SAR imagery to 

identify fl ooded forests and other fl ooded vegetation types has 

Table 4. Multi-purpose soil degradation surveys using remote sensing.

Type of soil 

degradation Indicators Location

Survey 

area size Sensors

Spatial 

scale

Acquisition 

year Method/techniques

Accuracy 

assessment 

techniques Authors

km2 m

Wind/water 

erosion

Surface erosion features 

(lineal dunes, gullies, 

rills, sheet, landslides)

Patagonia 

Argentina

60,000 Aerial 

photographs.

1:40,000–

1:100,000

_ Photo and visual 

interpretation with fi eld 

surveys.

Field surveys. Movia (1980)

Landsat MSS 80 _

Wind/water 

erosion

Soil erosion features, 

salinity/alcalinity

Mendoza 

Province, 

Argentina

150,000 Aerial 

photographs.

1:40,000–

1:60,000

1982–1986 Photo and visual 

interpretation with fi eld 

surveys.

– Roig et al. 

(1991)

Landsat MSS 80 1982–1986

Wind/water 

erosion

Erosion features (gully, 

rill, sheet erosion, 

blowouts, pavements, 

degraded vegetation)

Catamarca 

Province, 

Argentina

1,100 Aerial 

photographs

1:35,000 _ NDVI†, PCA and IHS are 

derived from Landsat. 

Geo-referencing, despeckle 

and visual interpretation 

of radar image. Output 

results are integrated with 

fi eld information and socio-

economic factors into GIS to 

desertifi cation assessment 

using knowledge-base 

driven models. 

_ Navone et al. 

(2002)

Radarsat-1 25 1997

Landsat TM 30 1993, 1997, 

1998

Wind/water 

erosion, 

Vegetation 

degradation

Wind, runoff , and 

vegetation spatial 

patterns

Northeastern 

Brazil

300 Aerial 

photographs

0.09–0.72 2002 Fourier signature (signal/

noise ratio) of aerial 

photos to characterize 

the vegetation spatial 

arrangements. DEM 25 

m derived from SAR 

interferometry, calculation 

of the potential runoff . 

Statistical analysis to 

determine relations between 

wind regime, runoff  and 

vegetation patterns. 

Field surveys. Ares et al. 

(2003)

ERS/SAR 1–2 30 _

Wind/water 

erosion

Erosion features 

(blowouts, dunes, 

gullies, rills, sheet 

erosion, desert 

pavements)

Catamarca 

Province, 

Argentina

2,000 Radarsat/SAR 25 Wet and 

dry season

Calibration, enhancements 

and fi lters (Flee, Fmode, 

Fsharp y Fgamma) are 

applied in SAR images. Pre-

processed images are visually 

and statistically compared 

with ground truth.

_ Navone 

and Palacín 

(2004)

Wind/water 

erosion

Wind streaks, dunes, 

gullies, erosion 

pavements

Northeastern 

Patagonia 

Argentina

1,231 ERS/SAR 25 1992–2002 Geometric and radiometric 

corrections, despeckle, visual 

interpretation.

_ Del Valle 

and Blanco 

(2006)
SIR-C XSAR 25 1994

Radarsat-1 8 2005

Vegetation 

degradation

Woody plant 

encroachment, 

nonphotosynthetic 

vegetation pattern, 

bare soil

Central 

Argentina

763 AVIRIS 4 _ Monte Carlo spectral 

mixture analysis of AVIRIS 

data to estimate bare 

soil, photosynthetic 

and nonphotosynthetic 

fractional covers.

Field 

measurements 

to correlate 

with the 

estimate data.

Asner et al. 

(2003)

Wind/water 

erosion, 

Vegetation 

degradation

Surface erosion features 

(blowouts, compaction, 

gullies, rills, rock 

fragments, vegetation 

cover)

Patagonia 

Argentina

780, 000 NOAA-AVHRR 1000 1986–1992 Radiometric and Geometric 

corrections, enhancements, 

rectifi cation, mosaic 

generation. Unsupervised 

and supervised maximum 

likelihood classifi cation.

Field work 

based on 

Landsat MSS 

image. Error 

matrixes

Del Valle et 

al. (1998)

Wind/water 

erosion, 

Vegetation 

degradation

Bare soil, sand dunes, 

shrub encroachment

Mendoza 

Province, 

Argentina

123 AVIRIS 4 _ AVIRIS atmospheric 

corrections, conversion 

to refl ectance values. 

Co-registration with 

IKONOS image (1m). Linear 

spectral mixture analyses 

integrated with fi eld surveys 

and ground radiometric 

measures.

_ Huete et al. 

(2002)

(cont’d)
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been another approach trialed by Miranda et al. (2007), while 

Grings et al. (2009) applied multitemporal analysis of AMSR-

E signatures covering three ecosystems in the La Plata Basin 

to produce maps based on the normalized polarization index 

(PI) at C band and the normalized frequency index (FI) at C 

and Ka bands. Th eir study found wide regions characterized 

by higher PI values to be related to fl ooding along the Paraná 

River, while increased PI and FI values refl ected the eff ect of a 

strong rainstorm in the Chaco forest.

Optical-IR imagery from moderate resolution sensors (e.g., 

Landsat TM, CBERS-2 CCD, Terra ASTER) have been used 

to identify fl ooded areas (3000–30,000 km2) using techniques 

as mathematical morphology (Ishikawa and Silva, 2007), un-

supervised ISODATA classifi cation (Mieza et al., 2004), and 

spectral indices like the NDVI, Normalized Diff erence Water 

Index (NDWI), and Vegetation Soil and Water (VSW) (Azcur-

ra et al., 2004). Th e latter study also incorporated terrain infor-

mation in the mapping process, by means of a DTM generated 

from Shuttle Radar Topographic Mission (SRTM) imagery 

with 30-m spatial resolution.

Landslide detection is the subject of a large number of re-

search papers (15), as shown in Table 3. Th e mapping of land-

slides is primarily based on aerial photographs and optical-IR 

imagery from Landsat TM, ETM+, SPOT-5, and IKONOS 

satellites to cover areas ranging from 4 to 15,000 km2. Th is 

type of imagery enables data outputs at scales of 1:10,000–

1:100,000, which are often combined in a GIS with ancillary 

data (slope, aspect, land cover, land use, soils, geology, seismic-

ity, proximity to streams) to produce landslide hazard maps 

(López and Zinck, 1991; de la Ville et al., 2002; Carvalho and 

Riedel, 2004; Perotto Baldiviezo et al., 2004; Guinau et al., 

2005; Castellanos Abella, 2008; Castellanos Abella and Van 

Westen, 2008; Van Westen et al., 2008).

Photo-interpretation, geometric and radiometric correc-

tions of satellite imagery, and contrast enhancement for visual 

interpretation are techniques commonly implemented, as evi-

denced in the works of Sestini and Florenzano (2004), who 

applied image transforms like Landsat TM band ratios and 

principal component analysis before visual interpretation of 

landslides; Marcelino et al. (2003) working with image trans-

formations (e.g., RGB to IHS, principal components analysis 

and wavelet fusion) of Landsat TM data to discriminate land-

slide scars; and Ochoa Tejeda and Parrot (2007) using spectral 

indices from IKONOS imagery and a DTM for automated 

detection of landslide traces.

On the other hand, supervised maximum likelihood classifi -

cations have been applied to Landsat TM and Terra-ASTER im-

agery for mapping landslides (e.g., Paolini et al., 2002; Martínez 

Gutiérrez, 2006), whereas advanced classifi ers like decision trees 

and neural networks were used by López and Nuñez (2006) and 

Castellanos Abella (2008), respectively, for landslide susceptibil-

ity modeling. Other studies to map landslide susceptibility have 

integrated thematic layers derived from Landsat TM imagery 

(NDVI, land cover and land use classes) with slope and lithology 

maps, using a GIS-based fuzzy logic classifi er (Schernthanner, 

2007), and image segmentation and classifi cation of SPOT-5 

imagery for mapping landslide scars (Riedel et al., 2007).

Spatial distribution analysis and hazard assessment of mass 

movements cannot be derived from remote sensing data alone. 

Image data must be combined with information on the en-

Type of soil 

degradation Indicators Location

Survey 

area size Sensors

Spatial 

scale

Acquisition 

year Method/techniques

Accuracy 

assessment 

techniques Authors

km2 m

Wind/water 

erosion, 

Vegetation 

degradation

Bare soil, sand dunes, 

shrub encroachment

Mendoza 

Province, 

Argentina

123 EO-1 Hyperion 30 _ Hyperion destriping, 

atmospheric corrections, 

conversion to surface 

refl ectance. Co-registration 

with IKONOS image (1m). 

Spectral indexes calculation 

(NDVI, SAVI, First Derivative 

Vegetation Index). Linear 

spectral mixture analyses 

integrated with fi eld surveys 

and ground radiometric 

measures.

_ Huete et al. 

(2003)

Wind/water 

erosion, 

vegetation 

degradation

Wind, runoff , and 

vegetation spatial 

patterns

Patagonia 

Austral

240,000 Landsat TM 30 1992–2002 Mixed classifi cation: 

Supervised and 

unsupervised. 

Field surveys. 

Error matrixes

Mazzoni 

and Vazquez 

(2004)

Wind 

erosion, 

vegetation 

degradation

Active and stabilized 

dunes, desert 

pavements, shrub 

encroachment

Northeastern 

Patagonia 

Argentina

300 Terra-ASTER 15 2004 Georeferencing, conversion 

to radiance values, PCA 

and SAVI calculations of 

optical data. Despeckle 

and extraction of textural 

measures from radar 

data. Data fusion. Multi-

segmentation and object-

oriented classifi cation. Fuzzy 

comparison of output results.

Confusion 

matrixes and 

Kappa index.

Blanco et al. 

(2009)Radarsat-1 Fine 8 2005

† NDVI, Normalized Diff erence Vegetation Index;  DEM, digital elevation model; SAR, synthetic-aperture radar; SAVI, Soil Adjusted Vegetation Index.

Table 4. Continued.
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vironmental factors that trigger and control landslides (e.g., 

rainfall, topography, soil properties, geologic setting, among 

others). In this sense, GIS plays a fundamental role as a plat-

form to integrate multi-scale remote sensing, fi eld survey, and 

ancillary data for detecting shallow landslides, debris fl ows, soil 

slips, and slumps, and for modeling landslide hazards (Tables 

3 and 4). Geographic Information Systems (GIS) is also used 

in combination with artifi cial neural networks (Gómez and 

Kavzoglu, 2005), logistic regression (Menéndez-Duarte et al., 

2003), and other advanced modeling techniques.

Table 5. Soil salinity surveys using remote sensing.

Type of soil 

degradation Indicators Location

Survey 

area size Sensors

Spatial 

scale 

Acquisition 

year Method/techniques

Accuracy 

assessment 

techniques Authors

km2 m

Soil salinity-

alkalinity

Proportion of 

chloride and 

sulfates present on 

the topsoil

Punata-Cliza 

Valley

(Eastern 

Bolivian 

Andes)

90 Landsat TM 30 1996 Fuzzy set theory to defi ne 

soil salinity classes; chloride, 

sulfate and carbonate 

anion ratios present in soil 

saturation extract are used to 

defi ne classes. Georeferenced 

fi eld samples are collected for 

laboratory determinations. 

Supervised maximum 

likelihood classifi cation is 

applied to a Landsat TM†, 

whereby membership 

grades of saline fuzzy classes 

are incorporated as prior 

probabilities.

Error matrix, 

fi eld samples 

collected for 

classifi cation 

validation

Metternicht 

(2003)

Soil salinity pH and EC; soil 

roughness

Punata-Cliza 

Valley

(Eastern 

Bolivian 

Andes)

90 JERS-1 SAR L-band 12.5 1994 Fuzzy supervised 

classifi cation; classes 

adopt transitional ‘fuzzy’ 

boundaries; fi eld and 

laboratory determinations 

allow correlation of radar 

backscattering to soil surface 

roughness, the type and 

degree of soil surface salinity.

Error matrix 

and fi eld 

survey

Metternicht 

(1998)

Soil salinity Playa features

Salt effl  orescence 

and crusts

Halophytic 

vegetation and 

salt-tolerant crops

Punata-Cliza 

Valley

(Eastern 

Bolivian 

Andes)

90 Landsat TM 30 1996 Georeferenced fi eld 

sampling and lab analyses.

Determination of 

information classes based on 

EC, pH, and SAR data.

Discrimination of salinity-

alkalinity classes using 

transformed divergence 

analysis.

Contextual analysis based 

on the relationship between 

landscape positions and 

salinity-alkalinity.

Error matrix 

and detection 

of spectral 

confusions

Metternicht 

and Zinck 

(1996, 

1997)

Soil salinization Salt effl  orescence 

and crusts 

Halophytic 

vegetation

Former Lake 

Texcoco 

(Central 

Mexico)

60 Landsat ETM

Air photos

Ground-based 

spectroradiometer

30

2.6

2000

1999

EC maps using ordinary 

kriging, ground radiance 

measurements, and NDVI 

determinations.

Data integration via a 

combined spectral response 

index (COSRI)

Field samples.

Pearson 

correlation 

coeffi  cient

Fernández 

Buces et al. 

(2009)

Soil salinity Salinity and 

Sodicity classes

Chubut 

Valley, 

Argentina

413 SIR-C XSAR 25 1994 Radiometric and geometric 

corrections. Extraction of 

derived textural measures 

(mean euclidean distance, 

variance and skewness). 

Object-oriented image 

classifi cation.

Field surveys. 

Error matrixes.

del Valle et 

al. (2009b)Radarsat-1 8 2005

Soil salinity Salinity and 

sodicity classes

Chubut 

Valley, 

Argentina

64 ALOS AVNIR-2 10 2007 Geometric and atmospheric 

corrections, optical 

enhancement (Tasseled 

Cap). Radar-optical images 

fusión. Comparison between 

maximum likelihood 

classifi cation vs. object-

oriented classifi cation.

Confusion 

matrixes and 

Kappa index.

del Valle et 

al. (2009a)

† TM, thematic mapper; SAR = sodium adsorption ratio; NDVI, Normalized Diff erence Vegetation Index.
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Wind Erosion
Sand dunes, wind streaks, paleo-aeolian features, desert 

pavements, sand encroachments, blowouts, and changes in the 

vegetation cover are indicators commonly applied for mapping 

wind-induced soil degradation. Land degradation is often as-

sessed from a combination of wind and water erosion processes, 

a fact that may refl ect the one-to-many relationship between 

indicators and processes, one indicator representing several pro-

cesses, as highlighted by Metternicht (1996). Wind erosion is 

mapped alone in only 7 of the 14 works summarized in Table 2.

Traditionally, aerial photographs and Landsat imagery are 

combined to map wind erosion features over areas ranging from 

1000 to 25,000 km2, that is, at local and subregional levels 

(Winjnhoud and Monteith, 1982; Greesley et al., 1989). Visual 

interpretation of enhanced imagery (Navone et al., 2000), image 

transformation techniques (Carneiro Filho and Zinck, 1994), 

digital image classifi cation using neural networks (Collado, 

2000), spectral mixture analysis (Collado et al., 2000), and su-

pervised maximum likelihood classifi cation (Carneiro Filho and 

Zinck, 1994; del Valle et al., 2008) are some of the techniques 

applied for extracting data on wind erosion indicators. Th ese 

data are subsequently used as input for GIS-based erosion risk 

assessment (Navone et al., 2000), temporal change detection of 

sand dune confi guration (Collado, 1999), estimating sand mo-

bilization rates, and statistical analysis of wind patterns related to 

dune migration (del Valle et al., 2008).

Multi-sensor (e.g., optical, infrared, and microwave), multi-

scale approaches are applied for combined mapping of water- 

and wind-induced land degradation. For instance, Navone 

et al. (2002) combined various sorts of data such as fi eld ob-

servations, aerial photographs, and Landsat/Radarsat satellite 

images to map erosion features; del Valle and Blanco (2006) 

identifi ed wind erosion and deposition features (wind streaks, 

dunes, gullies, erosion pavements) using multi-temporal and 

multi-polarization microwave imagery of the ERS/SAR, Sir-

C/X SAR, and Radarsat-1; and Blanco et al. (2009) applied 

image segmentation and object-oriented classifi cations of 

Terra-ASTER, and textural measures derived from Radarsat to 

discriminate desert pavements, active and stabilized dunes, and 

shrub encroachment.

Soil Salinization
Surface salinity is a highly dynamic property. Th is constrains 

the identifi cation of salt-aff ected soils and the monitoring of the 

salinization process, because it infl uences the spectral, spatial, 

and temporal behavior of the salt features. Ground observations 

and radiometric measurements show that the main factors af-

fecting the refl ectance of salt-aff ected soils are quantity and min-

eralogy of salts, together with soil moisture, color, and surface 

roughness. Soil surface salinity can be detected from remotely 

sensed data, obtained by ground-based, airborne, or space-borne 

sensors, through direct indicators that refer to salt features visible 

at the soil surface and indirect indicators that refer to contex-

tual features, such as the presence of native halophytic vegeta-

tion or the performance level of salt-tolerant crops (Metternicht 

and Zinck, 2003; Farifteh, 2007). Remote sensing-based ap-

proaches to map and monitor salinized landscapes should take 

into consideration (i) the discontinuous way in which salts tend 

to distribute on the landscape, so that appropriate classifi cation 

schemes can be developed and (ii) the mineralogy of salt types, 

as this controls the occurrence of spectral absorption features in 

specifi c regions of the electromagnetic spectrum and infl uences 

the appearance of salinity indicators (e.g., salt crust types) at the 

soil surface (Metternicht and Zinck, 2009).

Metternicht and Zinck (2003, 2009) provide an extensive 

overview of the indicators and kinds of remotely sensed imag-

ery commonly used for mapping soil and terrain salinization, 

whereas Ben Dor et al. (2009) review the use of airborne and 

satellite-borne sensors that have been used for mapping salt-

aff ected areas.

In Latin America, the mapping of salt-aff ected areas began 

with the use of aerial photographs, and photo-interpretation is 

still a conventional technique for cartographies of medium to 

large scales. Fernández Buces et al. (2009) describe a synergistic 

approach that combines fi eld and remote sensing data (Land-

sat ETM and color photographs) for mapping saline areas in 

Mexico, whereby a spectral response index using NDVI is used 

for image enhancement, before a combination with spectral 

responses of bare soil and vegetation (see Table 5).

Metternicht (1998) and del Valle et al. (2009b) provide 

examples of using microwave data for mapping soil saliniza-

tion. Metternicht (1998) distinguishes saline from nonsaline 

surfaces in the Cochabamba Valley, Bolivia, using microtopo-

graphic terrain variations as an indirect indicator of salinity oc-

currence, when applying fuzzy classifi cation to a set of JERS-1 

data. Changes in soil surface roughness due to diff erent salt 

crust types, the presence of halophytic vegetation, and soil ag-

gregation due to cultivation practices facilitated the mapping 

process. Likewise, del Valle et al. (2009b) evaluated the use-

Fig. 1.  Sensors used vs. surface areas covered by land degradation 
studies (Data source: Tables 2, 3, 4, and 5).
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fulness of radar-derived parameters for detecting and mapping 

salt-aff ected soils under irrigation in Chubut (Argentina). Mi-

crowave imagery of the Radarsat-1 (C-band, HH polarization, 

acquired in 2005 with a spatial resolution of 8 m) and SIR-C 

(C- and L-bands, multi-polarization, acquired in 1994 with 

a pixel resolution of 25 m) were used to this end. Variables 

related to the radar system design (mainly wavelength, number 

of looks and polarization mode) and to the environmental set-

ting of the area were analyzed to better understand the behav-

ior of the radar backscattering. Four factors were signifi cant 

when analyzing the variations of the backscattering coeffi  cients 

in the environmental setting considered, namely soil type (soil 

texture), tillage conditions or soil surface aspect, soil moisture 

or surface water, and the presence of salts. Th e average back-

scattering values for all salt-aff ected soil classes were higher in 

the L-band than in the C-band of the SIR-C, when the same 

polarization modes were compared.

Vegetation Cover Degradation
Vegetation indices are a measure of greenness that has been 

successfully related to vegetation types and cover, biological 

changes of vegetation, leaf-area index, biomass, the fraction 

of photosynthetically active radiation absorbed by vegetation, 

crop production, net primary production, and vegetation 

changes, among others. In areas of closed vegetation canopy, 

the NDVI can be saturated. In sparsely vegetated areas typical 

of semiarid environments, retrieving quantitative information 

on vegetation type, cover, and biomass is more diffi  cult because 

of the dominance of soil background refl ectance and lack of the 

strong red edge that characterizes vegetation in humid regions 

(Paruelo et al., 2001; Okin and Roberts, 2004).

Th e Global Assessment of Land Degradation and Improve-

ment (Bai et al., 2008b) proposes using the NDVI as a proxy 

of net primary production (NPP) for land degradation assess-

ment at global and national levels. In South America, the ap-

proach has been tested in Argentina and Cuba (Bai and Dent, 

2007a, 2007b). Changes in net primary production over 25 yr 

are computed using the GIMMS radiometer of the NOAA-

AVHRR-Global Area Coverage (GAC) that has a spatial reso-

lution of 8 km. Deviation from the norm is taken as an indica-

tor of land degradation or improvement. Th e Global Inventory 

Modeling and Mapping Studies (GIMMS) data are combined 

with ancillary data indicative of rain use effi  ciency and energy 

use effi  ciency, and translated into NPP using MODIS NPP 

data at 1-km resolution. Th e MODIS NPP measures the frac-

tion of the photosynthetically active radiation absorbed by the 

vegetation (Bai et al., 2008a). Th e authors highlight that long-

term trends of NDVI derivates are unsophisticated indicators 

of land degradation, although the NDVI/NPP trend can pro-

vide a globally consistent baseline showing the places where 

signifi cant biological change is happening (Bai et al., 2008b). 

Multi-scale, synergistic approaches are further needed to fi eld-

validate the results and determine the relationship between 

changes in NDVI/NPP and kinds of degradation. Further-

more, the coarse resolution of the GIMMS data is a limitation 

for accurate mapping, as an 8-km pixel is likely to integrate the 

signals from several landscape components. Many symptoms 

of severe degradation such as gullies and rills rarely cover large 

areas, thus degradation must be severe indeed to be seen against 

the signal of surrounding unaff ected areas (Bai et al., 2008a).

Airborne hyperspectral imagery, with advanced image clas-

sifi cation techniques (e.g., linear mixture modeling), has been 

used for mapping vegetation degradation and other indicators 

related to soil degradation over areas in the range of 100 to 

1,200 km2. Satellite hyperspectral Hyperion data have been 

processed using spectral indices (NDVI, SAVI, First Deriva-

tive Vegetation Index) and linear spectral mixture analysis in-

tegrated with fi eld surveys and ground radiometric measures 

(Huete et al., 2003). Furthermore, Monte Carlo spectral mix-

ture analysis of hyperspectral AVIRIS data has been applied 

to estimate photosynthetic and nonphotosynthetic fractional 

covers (Huete et al., 2002; Asner et al., 2003).

Validation
Assessing the accuracy of a particular method to map land 

degradation features and its prediction capability requires the 

validation of the resulting maps with independent data. Al-

though the importance of accuracy assessment is widely rec-

ognized, this is, however, a diffi  cult task mainly because of the 

signifi cant investment in time and money needed to gather 

ground-truth information. It is thus not surprising that most 

of the reviewed studies have not or only slightly addressed the 

issue of validation (see Tables 2, 3,4, 5).

Tables 3 to 5 show that for those studies concerned with 

accuracy assessment of results, fi eld data were the main source 

of ground-truth (e.g., Díaz et al., 1999; Menéndez-Duarte et 

al., 2003; Pallàs et al., 2004). Also, the interpretation of high 

resolution remote sensing imagery was used for validation, 

including aerial photographs (Mieza et al., 2004; Sestini and 

Florenzano, 2004) and high-resolution images such as pan-

chromatic Quick-Bird (Vrieling et al., 2007).

Th e assessment of classifi cation accuracy has generally been 

based on nonspatial statistics that are summarized in a confu-

sion or error matrix, including overall accuracy, Kappa coeffi  -

cient, variance, and Z statistics (Bocco, 1990; Metternicht and 

Zinck, 1998; Trueba Espinosa et al., 2004). However, none 

of these statistics explicitly considers the spatial distribution 

of misclassifi ed pixels. Only a few studies provide information 

on the spatial distribution of classifi cation errors (e.g., Metter-

nicht and Fermont 1998; Blanco et al., 2009).

Conclusions
Early land degradation assessments were essentially based 

on expert judgment. Over the last decades, eff orts have been 

made to develop standardized, operational methods and tools 

to map and monitor land degradation at diff erent scales, with 

the wide application of geospatial technologies, in particular 

remote sensing. Th ere is still a basic need to formalize degrada-

tion classes and select indicators that are unequivocally related 

to specifi c classes.
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Th e problems faced in remote discrimination and mapping 

of surface features related to land degradation are: (i) the one-

to-many relationships between surface features and land degra-

dation processes, one feature being able to characterize several 

degradation processes; (ii) the spectral similarity among surface 

components associated with land degradation; and (iii) the dif-

ferences in spatial resolution of the various data sources used 

for mapping purposes, including remotely sensed data, fi eld 

observations, and laboratory determinations.

Th e constraints on remote sensing can be overcome by us-

ing indicators that directly or indirectly help recognize land 

degradation features in the optical, infrared, and microwave 

regions of the electromagnetic spectrum. Indicators must be se-

lected taking into account the mapping scale, the spectral char-

acteristics of the sensors, and the time of image acquisition. To 

support the performance of the selected indicators for pattern 

recognition, raw remotely sensed data are usually enhanced or 

transformed to improve the discrimination between degraded 

and nondegraded areas.

Th e contribution of remote sensing to mapping land deg-

radation in LAC was summarized from the compilation of a 

large set of published research papers dealing with water ero-

sion, wind erosion, salinization, and alteration of the veg-

etation cover (see Tables 3–5). Th e Landsat series (MSS, TM, 

ETM+) has shown as the most commonly used data source 

(49%), followed by aerial photographs (39%) and microwave 

sensing (ERS, JERS-1, Radarsat) (27%). About 43% of the 

works analyzed use multi-scale, multi-sensor, multi-spectral 

approaches to map degraded areas, with a combination of vi-

sual interpretation and advanced image processing techniques. 

Th e use of more expensive hyperspectral and/or very high spa-

tial resolution sensors like AVIRIS, Hyperion, SPOT-5, and 

IKONOS tends to be limited to small areas.

Although Landsat-like digital data are nowadays common 

to land degradation studies, there is a rich experience in using 

analogical methods based on aerial photographs for identify-

ing and mapping land degradation features. Some pioneering 

works, with their richness of details and accuracy of the obser-

vations, have not yet been beaten by automated or semi-auto-

mated techniques. Unfortunately, current scientifi c production 

tends to quote only the most recent papers, disregarding often 

earlier relevant works simply because of the time elapsed since 

their publication.

Shallow mass movements, gullies, rills, sheet erosion, badlands, 

debris fl ows, soil slips, and slumps are the indicators frequently 

used to assess soil degradation induced by water. Sand dunes, wind 

streaks, paleo-aeolian features, desert pavements, sand encroach-

ments, blowouts, and changes in the vegetation cover are indica-

tors commonly applied for mapping wind-induced soil degrada-

tion. Soil surface salinity is detected through direct indicators that 

refer to salt features visible at the soil surface, such as salt crusts 

and effl  orescence, and indirect indicators that refer to contextual 

features, such as the presence of native halophytic vegetation or the 

performance level of salt-tolerant crops.

Visual interpretation of aerial photographs remains a popu-

lar technique for mapping land degradation features. Much 

progress has been made in the last decades thanks to synergis-

tic multi-sensor approaches that combine visible, infrared, and 

microwave image data with ancillary data about environmental 

factors for mapping, modeling, and predicting land degrada-

tion. Likewise, a variety of transforms of remote sensing data 

has been used, including best band selection, principal compo-

nents analysis, intensity-hue-saturation transformation, image 

ratioing, and image diff erencing. Band selection techniques 

such as the optimum index factor and transformed divergence 

analysis have been used for data preprocessing. Techniques 

used to recognize patterns or indicators related to land degra-

dation range from visual interpretation of enhanced images to 

supervised and unsupervised approaches incorporating maxi-

mum likelihood classifi ers, neural networks, decision trees, 

unmixing of surface features, fuzzy classifi cation, and SAR in-

terferometry techniques. Validation using ground-truth to as-

sess the accuracy of remotely-sensed land degradation maps is 

still lagging behind. Detailed fi eld surveys, although costly and 

time-consuming, are indispensable for this purpose. Alterna-

tive validation data provided by aerial photographs and high-

resolution satellite imagery are increasingly used.

Acknowledgments
Th e authors are grateful to two anonymous reviewers, and 

David Lobell, whose thoughtful remarks and constructive 

comments have considerably improved this manuscript.

References
Ares, J., H.F. del Valle, and A.J. Bisigato. 2003. Detection of process related 

changes in plant patterns at extended spatial scales during early dryland 
desertifi cation. Glob. Change Biol. 9:1643–1659.

Asner, G.P., C.E. Borghi, and R.A. Ojeda. 2003. Desertifi cation in Central 
Argentina: Changes in ecosystem carbon and nitrogen from imaging 
spectroscopy. Ecol. Appl. 13:629–648.

Azcurra, D., P. Tchilinguirian, K. Hirose, T. Sanga, C.G. Asato, M. Kaku, 
and G.N. Candaosa. 2004. Análisis de inundación con datos ASTER 
y SRTM en la región de la laguna de La Picasa, Argentina. In Proc. 
Simposio Latinoamericano de Percepción Remota, 11th, Santiago, 
Chile. 22–26 Nov. 2004. SELPER, Bogotá, Colombia.

Bai, Z.G., and D.L. Dent. 2006. Global assessment of land degradation and 
improvement: Pilot study in Kenya. Rep. 2006/01. ISRIC-World Soil 
Information, Wageningen, the Netherlands.

Bai, Z.G., and D.L. Dent. 2007a. Land degradation and improvement in 
Argentina 1: Identifi cation by remote sensing. Rep. 2007/05. ISRIC- 
World Soil Information, Wageningen, the Netherlands.

Bai, Z.G., and D.L. Dent. 2007b. Land degradation and improvement in 
Cuba. 1. Identifi cation by remote sensing. Rep. 2007/04. ISRIC- World 
Soil Information, Wageningen, the Netherlands.

Bai, Z.G., D.L. Dent, L. Olsson, and M.E. Schaepman. 2008a. Global assessment 
of land degradation and improvement 1: Identifi cation by remote sensing. 
Rep. 2008/1. FAO/ISRIC, Rome/Wageningen, the Netherlands.

Bai, Z.G., D.L. Dent, L. Olsson, and M.E. Schaepman. 2008b. Proxy global 
assessment of land degradation. Soil Use Manage. 24:223–234.

Ben Dor, E., G. Metternicht, N. Goldshleger, E. Mor, V. Mirlas, and U. Basson. 
2009. Review of remote sensing-based methods to assess soil salinity. p. 
39–60. In G. Metternicht and J.A. Zinck (ed.) Remote sensing of soil 
salinization: Impact on land management. CRC Press, Boca Raton, FL.

Blanco, P.D., G.I. Metternicht, and H.F. del Valle. 2009. Improving the 
discrimination of vegetation and landforms patterns in sandy rangelands: 
A synergistic approach. Int. J. Remote Sens. 30:2579–2605.

Bocco, G. 1990. Gully erosion analysis using remote sensing and geographic 
information systems. PhD diss. University of Amsterdam, Amsterdam, 
the Netherlands.



Metternicht et al.: Remote Sensing of Land Degradation in Latin America and the Caribbean 59

Borja Baeza, R.C., O. Esteban Chávez, J. Marcos López, R.J. Peña Garnica, 
and I. Alcántara Ayala. 2006. Slope instability on pyroclastic deposits: 
Landslide distribution and risk mapping in Zacapoaxtla, Sierra Norte De 
Puebla, Mexico. J. Mountain Sci. 3:1–19.

Bourrel, L., L. Philipps, and S. Moreau. 1999. Estudio de la dinámica de 
las inundaciones en la cuenca Amazónica Boliviana con un enfoque 
conjunto de la hidrología y de la percepción remota. In J-L Guyot (ed.) 
Hydrological and Geochemical Processes in Large Scale River Basins, 
Manaus, Brasil. 16–19 Nov. 1999. HIBam, en CDRom.

Brazier, R.E., J.S. Rowan, S.G. Anthony, and P.F. Quinn. 2001. MIRSED 
towards an MIR approach to modelling hillslope soil erosion at the 
national scale. Catena 42:59–79.

Carneiro, C.D.R., and J.J. Souza. 2003. Mapeamento geomorfológico em 
escala de semidetalhe da região de Jundiaí-Atibaia. Revista Brasileira de 
Geomorfol. 4:17–30.

Carneiro Filho, A., and J.A. Zinck. 1994. Mapping paleo-aeolian sand cover 
formations in the northern Amazon basin from TM images. ITC J. 
3:270–282.

Carvalho, C.M., and P.S. Riedel. 2004. Análise da suscetibilidade a 
esgorregamentos nos entornos dos polidutos de Cubatão-SP, através de 
técnicas de informação geográfi ca. HOLOS Environ. 4:157–173.

Castellanos Abella, E.A. 2008. Multi-scale landslide risk assessment in Cuba. 
PhD diss. Utrecht University, Utrecht, the Netherlands.

Castellanos Abella, E.A., and C.J. Van Westen. 2008. Qualitative landslide 
susceptibility assessment by multicriteria analysis: A case study from San 
Antonio del Sur, Guantánamo, Cuba. Geomorphology 94:453–466.

Chabrillat, S., H. Kaufmann, B. Merz, J. Hill, and A.A. Mueller. 2003. Land 
degradation studies using spectroscopic techniques. Geophys. Res. Abstr. 
5:12660.

Chartier, M.P., C.M. Rostagno, and F.A. Roig. 2009. Soil erosion rates in 
rangelands of northeastern Patagonia: A dendrogeomorphological 
analysis using exposed shrub roots. Geomorphology (in press).

Cohen, S., T. Svoray, J.B. Laronne, and Y. Alexandrov. 2008. Fuzzy-based 
dynamic soil erosion model (FuDSEM): Modelling approach and 
preliminary evaluation. J. Hydrol. 356:185–198.

Collado, A.D. 1999. Desertifi cación y dinámica espacio-temporal del paisaje 
dunar en la región central de San Luis, Argentina. p. 59–69. In Proc. 
Seminario Internacional sobre SIG y Teledetección Espacial aplicadas a 
la Ordenación del Territorio y el Medio Ambiente, Talca, Chile. 18–20 
Nov. 1999. Departamento de Gestión Forestal y Ambiental, Universidad 
de Talca, Talca, Chile.

Collado, A.D. 2000. Spatio-temporal dynamics of dune patterns in semiarid 
Argentina: A neural network analysis. Edaphomatics Bull. no. 20. 
AICET-INTA, Buenos Aires, Argentina.

Collado, A.D., E. Chuvieco, and A. Camarasa. 2000. Satellite remote sensing 
analysis to monitor desertifi cation processes in the crop-rangeland 
boundary of Argentina. J. Arid Environ. 52:121–133.

De La Rosa, D., F. Mayol, J.A. Moreno, T. Bonson, and S. Lozano. 1999. 
An expert system/neural network model (ImpelERO) for evaluating 
agricultural soil erosion in Andalucía region, southern Spain. Agric. 
Ecosyst. Environ. 73:211–226.

De La Ville, N., A. Chumaceiro Diaz, and D. Ramirez. 2002. Remote sensing 
and gis technologies as tools to support sustainable management of areas 
devastated by landslides. Environ. Dev. Sustain. 4:221–229.

del Valle, H.F., and P.D. Blanco. 2006. Indicadores espectrales del rango de 
las microondas para la evaluación y monitoreo de la erosión eólica. p. 
65–84. In M. E. Abraham and G. Beekman (ed.) Indicadores de la 
desertifi cación para América del Sur. IICA-BID, Mendoza, Argentina.

del Valle, H.F., P.D. Blanco, and W. Sione. 2009a. Evaluación y monitoreo de 
la salinización de los suelos en la agricultura de regadío del noreste de 
Patagonia (Argentina). In D. Ponvert and D. Batista (ed.) La tecnología 
satelital de observación de la tierra en la evaluación, monitoreo y manejo 
de desastres naturales en la agricultura. Retos y perspectivas. INTA, 
Buenos Aires, Argentina.

del Valle, H.F., P.D. Blanco, W. Sione, C.M. Rostagno, and N. Elissalde. 
2009b. Assessment of SALT-aff ected soils using multisensor radar data. 
A case study from Northeastern Patagonia (Argentina). p. 155–173. In 
G. Metternicht and J.A. Zinck (ed.) Remote sensing of soil salinization: 
Impact on land management. CRC Press, Boca Raton, FL.

del Valle, H.F., N.O. Elissalde, D.A. Gagliardini, and J. Milovich. 1998. Status 
of desertifi cation in the Patagonian Region: Assessment and mapping 
from satellite imagery. Arid Soil Res. Rehabil. 12:95–122.

del Valle, H.F., C.M. Rostagno, F.R. Coronato, P.J. Bouza, and P.D. Blanco. 2008. 
Sand dune activity in north-eastern Patagonia. J. Arid Environ. 72:411–422.

Díaz, J., G. Royero, and G. Materano. 1999. Estado actual de erosión hídrica 
en la cuenca del río Motatán Sector Monay-Torococo–Mitón. Revista 
de la Facultad de Agronomía de la Universidad del Zulia, Maracaibo, 
Venezuela. 16:161–170.

Dregne, H.E. 1986. Desertifi cation of arid lands. p. 4–34. In F. El-Baz and 
M.H.A. Hassan (ed.) Physics of desertifi cation. Martinus Nijhoff  Publ., 
Dordrecht, the Netherlands.

Dumanski, J., and C. Pieri. 1996. Application of the pressure-state-response 
framework for the land quality indicators (LQI) programme. In Land 
Quality Indicators and their Use in Sustainable Agriculture and Rural 
Development, Proc. of a Workshop, Rome. 25–26 Jan. 1996. Available 
at http://www.fao.org/docrep/w4745e/w4745e08.htm (verifi ed 24 Nov. 
2009). FAO, Rome.

FAO. 2003. Data sets, indicators and methods to assess land degradation in 
drylands. Rep. of the LADA e-mail Conf. FAO, Rome.

Farifteh, J. 2007. Imaging spectroscopy of salt-aff ected soils: Model-based 
integrated method. PhD Diss. No. 143. ITC, Enschede, the Netherlands.

Fernandes, N.F., R.F. Guimarães, R.A.T. Gomes, B.C. Vieira, D.R. Montgomery, 
and H. Greenberg. 2004. Topographic controls of landslides in Rio de 
Janeiro: Field evidence and modeling. Catena 55:163–181.

Fernández Buces, N., C. Siebe, J.L. Palacio-Prieto, and R. Webster. 2009. 
Mapping soil salinity from sample data and remote sensing in the 
former Lake Texcoco, central Mexico. p. 291–304. In G. Metternicht 
and J.A. Zinck (ed.) Remote sensing of soil salinization: Impact on land 
management. CRC Press, Boca Raton, FL.

Giraut, M., P. Minotti, and S. Ludueña. 2000. Determinación de áreas de 
susceptibilidad hídrica a partir de imágenes Landsat TM y SAC-C sintético. 
In Proc. Simposio Latinoamericano de Percepción remota, 9th, Puerto 
Iguazú, Misiones, Argentina. 6–10 Nov. 2000. SELPER, Bogotá, Colombia.

Gómez, H., and T. Kavzoglu. 2005. Assessment of shallow landslide 
susceptibility using artifi cial neural networks in Jabonosa River Basin, 
Venezuela. Eng. Geol. 78:11–27.

Greesley, R., Ph. Christensen, and R. Carrasco. 1989. Shuttle radar images of 
wind streaks in the Altiplano, Bolivia. Geology 17:665–668.

Grings, F., M. Salvia, M. Barber, H. Karszenbaum, P. Ferrazzoli, F. Moccia, 
A. Soldano, D. Goniaski, G. Parmuchi, C. Montenegro, P. Kandus, and 
M. Borro. 2009. Monitoring soil condition in la Plata basin ecosystems 
using AMSR-E data. p. 1–9. In Aquarius/SAC-D Science Workshop, 
4th, Puerto Madryn, Chubut, Argentina. 3–5 Dec. 2008. CONAE, 
Buenos Aires, Argentina.

Grings, F.M., P. Ferrazzoli, J.C. Jacobo-Berlles, H. Karszenbaum, J. Tiff enberg, 
P. Pratolongo, and P. Kandus. 2006. Monitoring fl ood condition in 
marshes using EM models and Envisat ASAR observations. IEEE Trans. 
Geosci. Rem. Sens. 44:936–942.

Guerra, A.J.T., J.K.S. Mendonça, M. Rêgo, and I.S. Alves. 2002. Gully erosion 
monitoring in São Luís City, Maranhão State, Brazil. In Proc. World 
Congress of Soil Science, 17th, Bangkok, Th ailand. 14–21 Aug. 2002. 
IUSS, in CDRom.

Guinau, M., R. Pallas, and J.M. Vilaplana. 2005. A feasible methodology for 
landslide susceptibility assessment in developing countries: A case-study 
of NW Nicaragua after Hurricane Mitch. Eng. Geol. 80:316–327.

Hill, J., M. Stellmes, Th . Udelhoven, A. Roder, and S. Sommer. 2008. 
Mediterranean desertifi cation and land degradation. Global Planet. 
Change 64:146–157.

Hoostsmans, R.M., A.F. Bouwman, R. Leemans, and G.J.J. Kreileman. 2001. 
Modelling land degradation in IMAGE 2. Rep. 481508009. National 
Institute of Public Health and the Environment, RIVM, the Netherlands.

Huete, A.R., X. Gao, H.H. Kim, T. Miura, C. Borghi, and R. Ojeda. 
2002. Characterization of land degradation in central Argentina with 
hyperspectral AVIRIS and EO-1 data. In 17th World Congress of Soil 
Sci. CD-ROM Proc.: Confronting new realities in the 21st century, 
Bangkok, Th ailand. 14–21 Aug. 2002. Paper no. 987. Kasetsart Univ., 
Bangkok.

Huete, A.R., T. Miura, and X. Gao. 2003. Land cover conversion and 
degradation analyses through coupled soil-plant biophysical parameters 
derived from hyperspectral EO-1 Hyperion. IEEE Trans. Geosci. Rem. 
Sens. 41:1268–1276.

Ishikawa, A.S., and E.A.D. Silva. 2007. Detecção de áreas inundadas utilizando 
imagens CBERS-2/CCD através de técnicas de morfología matemática. 
p. 1273–1280. In Anais Simpósio Brasileiro de Sensoramiento Remoto, 



60 Journal of Environmental Quality • Volume 39 • January–February 2010

13th, Florianópolis, Brasil. INPE, São Paulo, Brasil.

Kandus, P., R.D. Quintana, and R.F. Bó. 2006. Landscape patterns 
and biodiversity of the lower delta of the Paraná river. Grupo de 
Investigaciones en Ecología de Humedales (GIEH), Departamento de 
Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, 
Universidad nacional de Buenos Aires, Buenos Aires, Argentina.

King, C., N. Baghdadi, V. Lecomte, and O. Cerdan. 2005. Th e application of 
remote-sensing data to monitoring and modelling of soil erosion. Catena 
62:79–93.

Koning, N., and E. Smaling. 2005. Environmental crisis or ‘lie of the land’? 
Th e debate on soil degradation in Africa. Land use policy 22:3–11.

Koohafkan, P., D. Lantieri, and F. Nachtergaele. 2003. Land Degradation 
Assessment in Drylands (LADA): Guidelines for a methodological 
approach. Land and Water Development Div., FAO, Rome.

Lal, R., and B. Stewart. 1990. Soil degradation: A global threat. Springer-
Verlag, New York.

Larsen, M.C., and A.J. Torres Sánchez. 1998. Th e frequency and distribution 
of recent landslides in three montane tropical regions of Puerto Rico. 
Geomorphology 24:309–331.

Liu, W.T.H., F.M. Ayres, E.L. Santiami, and P.J. Kanazawa. 2003. Pantanal 
inundation area prediction from space. p. 2523–2530. Anais Simpósio 
Brasileiro de Sensoramiento Remoto, 11th, Belo Horizonte, Brasil. 
INPE, São Paulo, Brasil.

Lobell, D., J. Ortiz-Monasterio, F. Cajigas-Gurrola, and L. Valenzuela. 2007. 
Identifi cation of saline soils with multiyear remote sensing of crop yields. 
Soil Sci. Soc. Am. J. 71:777–783.

López, D., and J.M. Nuñez. 2006. Análisis de susceptibilidad a deslizamientos 
mediante el procesamiento de datos del programa de mapeo de radar 
topográfi co SRTM. In Proc. Int. Symp. Sociedad Latinoamericana de 
Percepción Remota y Sistemas de Información Espacial, 12th, Cartagena, 
Colombia. 24–29 Sept. 2006. SELPER, Bogotá, Colombia.

López, H.J., and J.A. Zinck. 1991. GIS-assisted modelling of soil-induced 
mass movement hazards: A case study of the upper Coello river basin, 
Tolima, Colombia. ITC J. 4:202–220.

Madrigal, L.P., C.L. Wiegand, J.G. Merz, B.D. Rubio, X.C. Estrada, and O.L. 
Ramirez. 2003. Soil salinity and its eff ect on crop yield: A study using 
satellite imagery in three irrigation districts. Ingeniería Hidráulica en 
México 18:83–97.

Maldonado, F.D., G.S. de Salmuni, and E.D. Graffi  gna. 2001. Identifi cação e 
Caracterização da degradação na planicie aluvial do Semi-árido utilizando 
a combinação de imagens de interferometria ERS com imagens Ópticas 
Landsat TM. In Proc. Simposio Brasileiro de Sensoriamento Remoto, 
10th, Foz do Iguazú, Brasil. INPE, São Paulo, Brasil.

Marcelino, E.V., L.M.G. Fonseca, F. Ventura, and A.N.C.S. Rosa. 2003. 
Evaluation of IHS, PCA and wavelet transform fusion techniques for the 
identifi cation of landslide scars using satellite data. p. 487–494. In Anais 
Simpósio Brasileiro de Sensoriamento Remoto, 11th, Belo Horizonte, 
Brasil. 5–10 Apr. 2003. INPE, São Paulo, Brasil.

Martínez Gutiérrez, G. 2006. Aplicación de Sistemas de Información 
Geográfi ca e imágenes satelitales en la delineación de áreas propensas 
a inundaciones en Baja California Sur, México. p. 1–6. In C. Serafi ni 
(ed.) Proc. Int. Symp. Sociedad Latinoamericana de Percepción Remota 
y Sistemas de Información Espacial, 12th, Cartagena, Colombia. 24–29 
Sept. 2006. SELPER, Bogotá, Colombia.

Mathieu, R., B. Cervelle, D. Rémy, and M. Pouget. 2007. Field-based and 
spectral indicators for soil erosion mapping in semi-arid mediterranean 
environments (Coastal Cordillera of central Chile). Earth Surf. Processes 
Landforms 32:13–31.

Mazzoni, E., and M. Vazquez. 2004. Ecosistemas de mallines y paisajes de la 
Patagonia Austral (provincia de Santa Cruz). INTA, Santa Cruz, Argentina.

Menéndez-Duarte, R., J. Marquínez, and G. Devoli. 2003. Slope instability in 
Nicaragua triggered by Hurricane Mitch: Distribution of shallow mass 
movements. Environ. Geol. 44:290–300.

Metternicht, G. 1998. Fuzzy classifi cation of JERS-1 SAR data: An evaluation 
of its performance for Soil Salinity mapping. Int. J. Ecol. Modell. 
111:61–74.

Metternicht, G. 2007. Remote sensing. p. 365–368 In K. Kemp (ed.) 
Encyclopedia of geographic information science. Sage Publ., New York.

Metternicht, G. 2003. Categorical fuzziness: A comparison between crisp and fuzzy 
class boundary modelling for mapping salt-aff ected soils using Landsat TM 
data and a classifi cation based on anion ratios. Ecol. Modell. 168:371–389.

Metternicht, G., and J.A. Zinck. 2009. Spectral behavior of salt types. p. 

21–37. In G. Metternicht and J.A. Zinck (ed.) Remote Sensing of Soil 
Salinization: Impact on Land Management. CRC Press, Boca Raton, FL.

Metternicht, G.I. 1996. Detecting and Monitoring Land Degradation 
Features and Processes in the Cochabamba Valleys, Bolivia: A Synergistic 
Approach. PhD Diss. No. 36. ITC, Enschede, the Netherlands.

Metternicht, G.I., and A. Fermont. 1998. Estimating Erosion Surface Features 
by Linear Mixture Modeling. Remote Sens. Environ. 64:254–265.

Metternicht, G.I., and J.A. Zinck. 1996. Modelling salinity-alkalinity classes 
for mapping salt-aff ected topsoils in the semiarid valleys of Cochabamba 
(Bolivia). ITC J. 2:125–135.

Metternicht, G.I., and J.A. Zinck. 1997. Spatial discrimination of salt- and 
sodium-aff ected soil surfaces. Int. J. Remote Sens. 18:2571–2586.

Metternicht, G.I., and J.A. Zinck. 1998. Evaluating de information content 
of JERS-1 SAR and Landsat TM data for discrimination of soil erosion 
features. ISPRS J. Photogramm. Remote Sens. 53:143–153.

Metternicht, G.I., and J.A. Zinck. 2003. Remote sensing of soil salinity: 
Potentials and constraints. Remote Sens. Environ. 85:1–20.

Mieza, M.S., F. Kovac, and R. Harán. 2004. Estimación de superfi cies inundadas 
mediante imágenes. SAC-C. In Proc. Simposio Latinoamericano de 
Percepción Remota, 11th, Santiago, Chile. 22–26 Nov. 2004. SELPER, 
Bogotá, Colombia.

Miranda, F.P.D., C.H. Beisl, and E.C.G. Camargo. 2007. Textural classifi cation 
of R99SAR data as an aid to fl ood mapping in Coari City, Western 
Amazon Region, Brasil. p. 4935–4942. In Anais Simpósio Brasileiro de 
Sensoramiento Remoto, 13th, Florianópolis, Brasil. INPE, São Paulo, Brasil.

Moreiras, S.M. 2005. Landslide susceptibility zonation in the Rio Mendoza 
Valley, Argentina. Geomorphology 66:345–357.

Movia, C. 1980. Inventario de la erosión en la Patagonia Argentina basado en 
imágenes Landsat y fotografía aérea. p. 359–365. In Proc. Symposium 
Arid Land Resource Inventories: Cost-effi  cient methods, La Paz, México. 
30 Nov.-6 Dec. 1980. Gen. Tech. Rep. WO-28, Washington, DC.

Naseri, M.Y. 1998. Characterization of salt-aff ected soils for modelling 
sustainable land management in semi-arid environment: A case study in 
the Gorgan region, Northeast Iran. PhD diss. Ghent University, Belgium.

Navone, S.M., C. Espoz-Alsina, A.E. Maggi, and R.M. Introcaso. 2002. 
Monitoreo de la desertifi cación en los valles semiáridos del noroeste 
argentino: Desarrollo de un Sistema de Información Geográfi ca 
empleando indicadores biofísicos y socioeconómicos. Revista de 
Teledetección 18:5–19.

Navone, S., E. Ezcurra, R. Introcaso, and I. Puentes. 2000. Sistema de 
información geográfi ca para el diagnostico de la erosión eólica en la 
laguna de pozuelos. In Proc. Simposio Latinoamericano de Percepción 
remota, 9th, Puerto Iguazú, Misiones, Argentina. 6–10 Nov. 2000. 
SELPER, Bogotá, Colombia.

Navone, S.M., and E. Palacín. 2004. Identifi cacion de la degradacion/
desertifi cacion de las tierras en Santa Maria (Catamarca) a traves del 
procesamiento de imagenes Radarsat. Terra 18:289–297.

Ochoa-Tejeda, V., and J.F. Parrot. 2007. Extracción automática de trazas 
de deslizamientos utilizando un modelo digital de terreno e imágenes 
de satélite de alta resolución IKONOS. Ejemplo en la Sierra Norte de 
Puebla, México. Revista Mexicana de Ciencias Geológicas 24:354–367.

Okin, G.S., and D.A. Roberts. 2004. Remote Sensing in Arid Regions: 
Challenges and Opportunities. p. 111–146. In S. Ustin (ed.) Manual of 
remote sensing. John Wiley & Sons, New York.

Okoba, B.O., and G. Sterk. 2006. Quantifi cation of visual soil erosion 
indicators in Gikuuri catchment in the central highlands of Kenya. 
Geoderma 134:34–47.

Palacio-Prieto, J.L., and J. López-Blanco. 1994. Videography: An alternative 
remote sensing tool for monitoring gully erosion. ITC J. 3:233–237.

Pallàs, R., J.M. Vilaplana, M. Guinau, E. Falgas, X. Alemany, and A. Munoz. 
2004. A pragmatic approach to debris fl ow hazard mapping in areas aff ected 
by Hurricane Mitch: Example from NW Nicaragua. Eng. Geol. 72:57–72.

Paolini, L., J.A. Sobrino, and J.C. Jiménez-Muñoz. 2002. Detección de 
deslizamientos de ladera mediante imágenes Landsat TM: El impacto 
de estos disturbios sobre los bosques subtropicales del noroeste de 
Argentina. Revista de Teledetección 18:21–27.

Parmuchi, M.G., H. Karszenbaum, P. Kandus, and J. Tiff enberg. 2000. 
Clasifi cación de ambientes y alcance de inundación en el Bajo Delta 
del Río Paraná mediante imágenes multitemporales Radarsat-SAR. p. 
1144–1153. In C. Serafi ni (ed.) Proc. Simposio Latinoamericano de 
Percepción remota, 9th, Puerto Iguazú, Misiones, Argentina. 6–10 Nov. 
2000. SELPER, Bogotá, Colombia.



Metternicht et al.: Remote Sensing of Land Degradation in Latin America and the Caribbean 61

Paruelo, J.M., E. Jobbagy, and O. Sala. 2001. Current distribution of ecosystem 
functional types in temperate South America. Ecosystems 4:683–698.

Perotto-Baldiviezo, H.L., T.L. Th urow, C.T. Smith, R.F. Fisher, and X.B. Wu. 2004. 
GIS-based spatial analysis and modeling for landslide hazard assessment in 
steeplands, southern Honduras. Agric. Ecosyst. Environ. 103:165–176.

Ponce-Hernandez, R. 2002. Land degradation assessment in drylands. 
Approach and development of a methodological framework. Consultancy 
Report. AGLL, FAO. Rome.

Recatalá-Boix, L., and J.A. Zinck. 2008. Land-use planning in the Chaco Plain 
(Burruyacú, Argentina): Part 2: Generating a consensus plan to mitigate 
land-use confl icts and minimize land degradation. Environ. Manage. 
42:200–209.

Riedel, P.S., A.R. Gomes, C.M. Bentz, M.F. Vidotti, and V. Liesemberg. 2007. 
Integração de técnicas de processamento digital de imagens e análise 
espacial na identifi cação de cicatrizes de escorregamento na região de 
Cubatão– Serra do Mar Paulista. p. 4393–4400. In Anais Simpósio 
Brasileiro de Sensoramiento Remoto, 13th, Florianópolis, Brasil. INPE, 
São Paulo, Brasil.

Roig, F.A., M.M. Gonzalez Loyarte, E.M. Abraham, E. Mendez, V.G. Roig, and 
E. Martinez Carretero. 1991. Maps of desertifi cation hazards of Central 
Western Argentina, (Mendoza Province). Study case. In E. Arnold (ed.) 
World atlas of thematic indicators of desertifi cation. UNEP, Londres.

Rosenqvist, A., B.R. Forsberg, T. Pimentel, Y.A. Rauste, and J.E. Richey. 2002. 
Th e use of spaceborne radar data to model inundation patterns and trace 
gas emissions in the central Amazon fl oodplain. Int. J. Remote Sens. 
23:1303–1328.

Rostagno, C.M., F.R. Coronato, H.F. del Valle, and D.N. Puebla. 1999. 
Runoff  and erosion in fi ve land units of a closed basin of northeastern 
Patagonia. Arid Soil Res. Rehabil. 13:281–292.

Schernthanner, H. 2007. Application of the fuzzy logic method for landslide 
susceptibility mapping, as feasible-ready to use approach, in the context 
of development, Rio Blanco, Nicaragua. p. 114–122. In P. Zeil and S. 
Kienberger (ed.) Geoinformation for development: Bridging the divide 
through partnerships. Hüthig GmbH & Co. KG, Heidelberg, Germany.

Schomaker, M. 1997. Development of environmental indicators in UNEP. 
Land qQuality indicators and their use in sustainable agriculture and 
rural development. p. 35–56. In Proc. Workshop FAO, Rome. 25–26 
Jan. 1996. FAO, Rome.

Sestini, M.F., and T.G. Florenzano. 2004. Caracterização de cicatrizes de 
deslizamentos por processamento de dados TM Landsat em Caraguatatuba- 
SP. Geologia USP Série Cientifi ca, São Paulo, Brasil. 4:57–69.

Sippel, S.J., S.K. Hamilton, J.M. Melack, and E.M.M. Novo. 1998. Passive 
microwave observations of inundation area and the area/stage relation 
in the Amazon River fl oodplain. Int. J. Remote Sens. 19:3055–3074.

Sonneveld, B.G.J.S. 2003. Formalizing expert judgments in land degradation 
assessment: A case study for Ethiopia. Land Degrad. Dev. 14:347–361.

Sonneveld, B.G.J.S., and D.L. Dent. 2009. How good is GLASOD? J. 
Environ. Manage. 90:274–283.

Sotomonte, S. 2007. Aplicación y ajuste del modelo de distribucion de carcavas 

de Vasquez-Selem y Zinck, caracterizando la susceptibilidad de erosion 
en el piedemonte de la zona sur, Sacaba (Cochabamba-Bolivia). MSc. 
diss. Centro de Levantamientos Aeroespaciales y aplicaciones SIG para 
el Desarrollo Sostenible de los Recursos Naturales (CLAS), Universidad 
Mayor de San Simón, Cochabamba, Bolivia.

Trueba Espinosa, A., J.L. Oropeza Mota, C.A. Ortiz Solorio, A. Martínez 
Alcántara, and G. Ruelas Ángeles. 2004. Identifi cación de zonas 
erosionadas mediante el tratamiento de imágenes digitales con una red 
neuronal. Agrociencia 38:573–581.

UNEP. 2004. GEO Latin America and the Caribbean Environment Outlook 
2003. United Nations Environment Programme, Nairobi.

UNEP. 2007. GEO-4: Global environmental outlook. Environment for 
development. United Nations Environ. Programme, Nairobi.

Van Westen, C.J., E. Castellanos, and S.L. Kuriakose. 2008. Spatial data 
for landslide susceptibility, hazard, and vulnerability assessment: An 
overview. Eng. Geol. 102:112–131.

Vargas Cuervo, G. 1997. Evaluación de imágenes de satélite SAR ERS-1 y SPOT-
Landsat en la cartografía de movimientos en masa. p. 109–118. In T.D. 
Guyenne (ed.) Proc. Int. Seminar Use and Applications of ERS in Latin 
America, Viñas del Mar, Chile. 25–29 Nov. 1997. ESA SP-405, Paris.

Vázquez-Selem, L., and J.A. Zinck. 1994. Modelling gully distribution on 
volcanic terrains in the Huasca area, central Mexico. ITC J. 3:238–251.

Veneziani, P., A.R. Santos, E. Crepani, C.E. Anjos, and R. Okida. 1998. Mapa 
de classes de erodibilidade de parte da região do Rio Taquari baseado em 
imagens TM-Landsat. Pesquisa Agropecuária Brasileira, Brasília, Brasil. 
33:1747–1754.

Vente, J.D., J. Poesen, G. Verstraeten, A.V. Rompaey, and G. Govers. 2008. 
Spatially distributed modelling of soil erosion and sediment yield at 
regional scales in Spain. Global Planet. Change 60:393–415.

Vrieling, A., and S.C. Rodrigues. 2005. Erosion assessment in the Brazilian 
Cerrados using multi-temporal SAR imagery. In Proc. Envisat & ERS 
Symposium, Salzburg, Austria, 6–10 Sept. 2004. ESA SP-572, Paris.

Vrieling, A., S.C. Rodrigues, H. Bartholomeus, and G. Sterk. 2007. Automatic 
identifi cation of erosion gullies with ASTER imagery in the Brazilian 
Cerrados. Int. J. Remote Sens. 28:2723–2738.

Wessels, K.J., S.D. Prince, and I. Reshef. 2007. Mapping land degradation by 
comparison of vegetation production to spatially derived estimates of 
potential production. J. Arid Environ. 72:1940–1949.

Winjnhoud, S., and N.H. Monteith. 1982. Suelos de la zona Ingeniero 
Jacobacci-Maquinchao. p. 129–156. In Instituto Nacional de Tecnología 
Agropecuaria (ed.) Sistemas Fisiográfi cos de la Zona Ingeniero Jacobacci-
Maquinchao. FAO-INTA, Río Negro, Argentina.

WRI. 1995. World Resources 1994–1995: People and the environment, resource 
consumption, population growth and women. World Resources Institute, 
in collaboration with United Nations Environment Programme and United 
Nations Development Programme. Oxford Univ. Press, New York.

Zinck, J.A. (ed.). 2006. Land use change and land degradation in the western 
Chaco, Tucuman province, northwest Argentina. ITC Publ. 84. ITC, 
Enschede, the Netherlands.


