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1. INTRODUCTION

In the bioprocess industry is very common to find the ne-
cessity of performing a given conversion at the highest rate
possible, i.e. with the highest productivity. For example,
if it is desired to produce a large amount of biomass, the
growth rate should be high. If the objective is to generate
a given product, the production rate should be maximized.
Fed-batch reactors (FBR) allow to obtain large amounts
of biomass or products in short times, however its con-
trol is difficult when the microorganism being used gets
inhibited by the excess of a substrate, giving place to
optimal substrate concentrations where the reaction rate
of interest is maximized. One of the most common methods
to feed a FBR is with an open-loop exponential feeding
of the substrate, in this way, when exponential growth
takes place the substrate concentration is kept constant as
well as the growth rate (in accordance to the exponential
growth), Lee et al. (1999). However, any deviation from
the modeled yields or assumed initial conditions makes the
process work at a different growth rate than the desired
one, existing the possibility of instability in non-monotonic
kinetics, as explained in Smets et al. (2002). A closed loop
version of the exponential feeding can be stated to obtain
a given growth rate using an estimation of the rate as
feedback signal, as in Dabros et al. (2010), Biener et al.
(2012) and De Battista et al. (2012). Alternatively, the
control objective can be to regulate the substrate concen-
tration at a given value, and as a consequence to obtain a
corresponding growth rate, Smets et al. (2002). In general
growth rate feedback algorithms are inherently unstable
in the optimal point, while substrate feedback algorithms
are stable. However, the later ones require knowledge of the
optimal substrate concentration, which can be uncertain
and time varying. Moreover, substrate measurement is not
possible in most cases, particularly at low concentrations.
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Extremum seeking controllers allow to drive a system to
a given operating point that maximizes (or minimizes)
a given objective function. In the case of bioprocesses,
this means that the algorithm searches for the maximum
reaction rate value, possibly with partial or no knowledge
at all of the kinetic model or the maximum location. For
example, in Cougnon et al. (2011) an adaptive control law
is proposed, where a dither signal added to the control
action is used to estimate the maximum location. Dochain
et al. (2011) gives a detailed explanation of dither based,
model based and adaptive extremum seeking in biopro-
cesses. Other approaches , like Vargas et al. (2015) propose
the use of a bank of super-twisting observers to estimate
a virtual output which is later maximized with a switched
control. For given design parameters there is guarantee
that the output will oscillate close to its maximum value.
In Lara-Cisneros et al. (2014) a different approach is taken
combining first order sliding mode (FOSM) control tech-
niques with a discrete time siding mode gradient estimator
as the one presented by Fu and Ümit Özgüner (2011). The
controller uses the gradient estimation to reach an operat-
ing point where the gradient is null, which is a necessary
condition for an optimal point. The FOSM sliding mode
controller is able to reach operating points very close the
optimal ones. However, the gain choice is compromised
between disturbance rejection and smoothness of reaction
rate response. Also, the gradient estimation is delayed from
the real value due to its discrete character. It is worth men-
tioning the work by Castanos and Kunusch (2015), who
propose a super-twisting controller with a sliding mode
gradient estimation scheme applied to hydrogen fuel cells,
which can potentially be applied to bioprocesses. However,
a time derivative of the growth rate is required, being that
rate a variable which cannot be directly measured. The
only way to obtain the derivative is to estimate it from a
growth rate estimation or from some indirect measurement
of the growth rate as could be the gas production rate.
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controller uses the gradient estimation to reach an operat-
ing point where the gradient is null, which is a necessary
condition for an optimal point. The FOSM sliding mode
controller is able to reach operating points very close the
optimal ones. However, the gain choice is compromised
between disturbance rejection and smoothness of reaction
rate response. Also, the gradient estimation is delayed from
the real value due to its discrete character. It is worth men-
tioning the work by Castanos and Kunusch (2015), who
propose a super-twisting controller with a sliding mode
gradient estimation scheme applied to hydrogen fuel cells,
which can potentially be applied to bioprocesses. However,
a time derivative of the growth rate is required, being that
rate a variable which cannot be directly measured. The
only way to obtain the derivative is to estimate it from a
growth rate estimation or from some indirect measurement
of the growth rate as could be the gas production rate.

11th IFAC Symposium on Dynamics and Control of
Process Systems, including Biosystems
June 6-8, 2016. NTNU, Trondheim, Norway

Copyright © 2016 IFAC 103



104 Jamilis Martín et al. / IFAC-PapersOnLine 49-7 (2016) 103–108

In this work we propose an extremum seeking controller
based on the super-twisting algorithm (STA) and a high
order sliding mode (HOSM) gradient estimator. The con-
troller allows to reach the optimum in finite time and
provides a smooth control action. The HOSM gradient
estimator provides an estimation with finite time conver-
gence and no additional dynamics are added to the system.

2. PROBLEM STATEMENT

This work is stated for bioprocesses in fed-batch reactors
where there is a single limiting substrate. The microorgan-
ism specific growth rate and the single limiting substrate
concentration are related by a static map. Due to an
inhibiting effect of excess substrate on the growth rate,
a maximum growth rate µ∗ occurs at a given optimal
substrate concentration s∗. An example of this are mi-
croorganisms with Haldane kinetics.

Table 1. Model parameters

Name Description

x biomass concentration
s limiting substrate concentration
sf limiting substrate feeding concentration
v volume
D dilution rate
yxs biomass substrate yield
µ(s) reaction rate
ω(s) gradient of µ(s)
h(s) hessian of µ(s)

The model for the fed-batch process in terms of concen-
trations is described as

ẋ = (µ(s)−D)x (1)

ṡ = −
µ(s)x

yxs
+D(sf − s) (2)

v̇ = Dv, (3)

where all the parameters are described in Table 1. The
static map is represented by µ(s), the specific growth
rate, and its expression and parameters are considered
unknown. For simplicity, from now on µ(s) is addressed
as µ. Given the map, its gradient and hessian are defined
as the first and second partial derivatives of µ with respect
to s

∂µ(s)

∂s
= ω(s) (4)

∂ω(s)

∂s
= h(s). (5)

Then, the gradient and hessian dynamics are obtained by
means of the chain rule

µ̇ = ωṡ = ω

(

−
µx

yxs
+D(sf − s)

)

(6)

ω̇ = hṡ = h

(

−
µx

yxs
+D(sf − s)

)

. (7)

The control objective is to reach an operation point where
ω = 0 (and h < 0). The susbtrate concentration corre-
sponds to the optimal s∗ and µ(s∗) = µ∗. As explained
before, the point (s∗, µ∗) is unknown.

One of the main issues in bioprocess control is the scarcity
of measurements in standard plants. For that reason in
this work it is considered that the only measurements

available are the biomass concentration x, and the dilution
rate D which is obtained by dividing the input flow rate
by the volume. Moreover, the dilution rate is bounded to
0 < D < Dmax.

3. CONTROLLER AND ESTIMATOR DESIGN

The control algorithm proposed in this work is composed
by a feed-forward action, as the one proposed in Lara-
Cisneros et al. (2014), and a HOSM controller based on
the super-twisting algorithm (STA) originally proposed
by Levant (1998). Both the feed-forward action and the
STA controller require the knowledge of the substrate
concentration, the growth rate and the gradient (s, µ
and ω). As these variables are not being measured, their
estimations are obtained with proper observers from the
biomass measurement.

3.1 Control law

The proposed control law is

D =

(

µ̂x

yxs
+ u1 + u2

)

(sf − ŝ)−1 (8)

u1 = k1|ω̂|
1/2sign(ω̂) (9)

u̇2 = k2sign(ω̂) (10)

where k1 > 0 and k2 > 0 are the design gains and µ̂, ŝ and
ω̂ are the estimated growth rate, substrate concentration
and gradient respectively. The sliding function is defined
as the estimated gradient and the sliding surface is reached
when ω̂ reaches zero.

Note that, replacing (8) in (2) yields

ṡ = u1 + u2 + ρ1(µ̃, s̃, ω̃) (11)

where ρ1(µ̃, s̃, ω̃) is a disturbance term gathering the
estimation errors made by the observers.

3.2 Gradient estimation

As it can be seen in (6), the dynamics of the reaction rate
are linked to the gradient as

µ̇ = ωṡ = ωf(µ, x, s) = ω

(

−
µx

yxs
+D(sf − s)

)

. (12)

In order to obtain finite time convergence of the estimated
gradient a HOSM observer is proposed. However, as the
classical STA cannot handle the sign changes of ṡ =
f(µ, x, s), a modified version is used, based on the one
proposed in Moreno and Guzmán (2015)

η̇ = ω̂f(µ̂, x, ŝ)− κ1 |f(µ̂, x, ŝ)| |σ|
1/2sign(σ) (13)

˙̂ω = −κ2f(µ̂, x, ŝ)sign(σ) (14)

σ = µ̂− η (15)

where κ1 and κ2 are design gains chosen with the criteria
suggested in Moreno and Guzmán (2015), η is an auxiliary
estimation of the specific growth rate µ which is only
used in this observer, σ is the estimation error used as
sliding coordinate. It must be noted that the growth rate
and substrate estimations µ̂ and ŝ are used because these
variables are not measured. However, the same gradient
estimator can be used in an scenario where these variables
are measured, or at least a function of them, see Lara-
Cisneros et al. (2014) for instance.
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3.3 Observers

The growth rate estimation µ̂ is obtained using an expo-
nential observer.The observer equations are

˙̂x = (µ̂−D)x− γ1(x − x̂) (16)

˙̂µ = γ2(x − x̂)x. (17)

The gains γ1 < 0 and γ2 > 0 can be adjusted to assign the
eigenvalues of the error dynamics as

λ1 + λ2 = γ1x (18)

λ1λ2 = γ2x
2. (19)

On the other hand, the substrate concentration estimation
ŝ is obtained with an asymptotic observer. The observer
equations are

˙̂z = −D(ẑ − sf ) (20)

ŝ = ẑ −
x

yxs
. (21)

where ẑ is the estimation of z = s + x/yxs, an auxiliary
variable.

Both observers have been extensively treated in the lit-
erature Bastin and Dochain (1990); Dochain (2003). It is
also possible to use discontinuous sliding mode observers
which have finite time convergence and tracking without
delays Jamilis et al. (2015); Nuñez et al. (2013); Picó
et al. (2009). However, in this work it was avoided from
a practical implementation point of view, not to have a
chain of discontinuous observers. Nonetheless, discontin-
uous observers can be included in future versions of the
controller.

4. STABILITY PROOF

In this section the stability proof of the proposed control
algorithm (8)-(10) is given for the nominal case, i.e. with
µ̃ = s̃ = ω̃ = 0 and ρ1(µ̃, s̃, ω̃) = 0. The results presented
here are based on Moreno and Osorio (2008); Moreno
(2012).

In the case without disturbances and considering that
the gradient estimation reached the sliding surface, the
substrate dynamic model is given by

ṡ = k1|ω|
1

2 sign(ω) + u2. (22)

Then, from (7) the dynamic model for the gradient is

ω̇ = hṡ = h
(

k1|ω|
1

2 sign(ω) + u2

)

(23)

u̇2 = k2sign(ω) (24)

Applying the following variable change

ξ1 = |ω|
1

2 sign(ω) (25)

ξ2 = u2 (26)

a new system can be obtained

ξ̇1 =
1

2|ξ1|
(k1ξ1 + ξ2)h (27)

ξ̇2 =
1

2|ξ1|
(2k2ξ1). (28)

Which can be written in matrix form as

ξ̇ =
1

2|ξ1|
Aξ (29)
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Fig. 1. Set of feasible gains for nominal stability when
h = −1.3 and for different cases of h̄

where

A =

[

hk1 h
2k2 0

]

. (30)

From (30) becomes clear that µ(s) needs to be convex
(h < 0) so that the trajectories of ξ are stable. Although
this condition is not met with Haldane kinetics, an upper
bound for the substrate concentration s̄ can be given so
that if 0 < s < s̄ then h < h < h̄ < 0, being h and h̄ the
lower and upper bounds for the hessian in that interval.
Then, the map is convex in the given interval.

System (29) is a linear differential inclusion (LDI)

ξ̇ =
1

2|ξ1|
Aξ (31)

where

A = conv(A1, A2) (32)

A1 =

[

h̄k1 h̄
2k2 0

]

A2 =

[

hk1 h
2k2 0

]

. (33)

To see that A1 and A2 define a convex set which includes
all the matrices of the family A, take the scalar 0 < θ < 1

θA1 + (1− θ)A2 = (34)
[

(θh̄+ (1− θ)h)k1 (θh̄+ (1− θ)h)
2k2 0

]

(35)

Any h (which is scalar) in the range (h, h̄) can be repre-
sented as θh̄ + (1 − θ)h with 0 < θ < 1, see Boyd and
Vandenberghe (2004), then (35) equals (30).

Finally, from Boyd et al. (1994), defining a Lyapunov
quadratic function V (ξ) = ξTPξ where P > 0 and
symmetric, system (31) is stable as long as

AT
1
P + PA1 < 0 (36)

AT
2
P + PA2 < 0 (37)

To illustrate this result take the following example: given
the bounds (h, h̄) and the gain k2, find the smallest
value of k1 for which problem (37) is feasible and (31)
is stable. This problem can be solved numerically using
YALMIP (Löfberg (2004)). In Figure 1 the set of gains
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Fig. 2. Simulation results: Case with two different initial substrate concentrations. In red the case when s(0) > s∗, in
blue the case when s(0) < s∗. Gradient estimations are drawn in dashed lines.

that guarantee stability for different bounds of the hessian
is shown. The lower bound is fixed at h = −1.3 and the
upper bound took the values h̄ = −0.005,−0.01,−0.05.
These values where taken from the kinetic model used for
the simulation results, the lower bound corresponds to the
minimum value of the hessian.

The implemented controller uses estimations of the spe-
cific growth rate, substrate concentration and gradient.
Although their effect on stability is not analysed in this
work, it is worth mentioning that the gradient estimator
has finite time convergence, which means that ideally the
estimation error remains zero after reaching that value. On
the other hand, the growth rate and substrate observers
are continuous and introduce additional dynamics to the
closed loop. However, due to the slow nature of the process,
the control algorithm can be executed at a substantially
lower frequency than the observers, so that the observers
dynamic effect on the closed loop is minimized via fre-
quency decoupling.

5. SIMULATION RESULTS

In this section simulation results are shown for the growth
rate maximization in a fed-batch process with Haldane
kinetics as the one in Lara-Cisneros et al. (2014). The
given process is described as in (1), (2) and (3), with

yxs = 2.5g/g and sf = 20g/L. An expression for the
growth rate is given to perform the simulations

µ =
µmaxs

KS + s+
s2

KI

(38)

where KS = 1.2g/L, KI = 0.22g/L, µmax = 0.531/h.
The optimal substrate concentration and growth rate for
this kinetic model are s∗ = 0.51g/L and µ∗ = 0.0931/h.
The control algorithm is run with period of 0.1h which is
reasonable considering the bandwidth of a real bioprocess.
The observers and gradient estimator are run with a much
higher frequency, T = 1× 10−4h.

Figure 2 shows the growth rate, substrate concentration,
gradient and trajectory in the µ, s map for two different
initial substrate concentrations, one lower than the opti-
mal and the other one higher. The initial condition for
the gradient is also different in both cases, in sign and
modulus. In both cases the optimal substrate concentra-
tion is reached in finite time, although it is faster in the
case with s(0) < s∗ due to the magnitude of the gradient,
which can be seen in Figure 2(c). Some oscillations around
the optimal substrate concentration can be observed in
Figure 2(b) due to the discretization of the controller and
its amplitude can be diminished decreasing the period of
execution. However, these oscillations end up acting as a
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Fig. 3. Simulation results: Case with varying optimums

dither signal which allows to evaluate if the operating point
is the optimum. It must be noticed that the oscillations are
negligible in the growth rate. Figure 2(c) also shows the
gradient estimations, that after an initial transient reach
the real gradient value and track it without delay. At some
points some small errors show up, which are related to the
delays in the exponential growth rate observer. Neverthe-
less, this errors are not relevant in the final control action.

Figure 3 shows results for the case where the optimum
substrate concentration and growth rate are time varying.
The variation can be produced by the unmodeled effect of
another substrate, compound of the medium or product.
Figure 3(d) shows the initial and final kinetic models for
the growth rate, where the transition from one to another
is smooth. The change in the optimal substrate and growth
rate gives places to an optimal trajectory also shown in
Figure 3(d). As it can be observed, the controller is able
to reach the optimal trajectory and stay on it for the rest of
the process. This is also depicted in Figure 3(a), where the
growth rate is always tracking the optimum growth rate.
Equivalently, in Figure 3(c) it can be observed that after
convergence the controller keeps in a neighbourhood of the
sliding surface for the rest of the process, that means, the
gradient stays equal to zero.

6. DISCUSSION AND CONCLUSIONS

The HOSM extremum seeking controller is able to reach
the optimal substrate concentration and growth rate in
finite time. After convergence, the tracking of the optimal
operating point is done without delays as expected from
the STA, even if the optimal point is changing. To do so,
no previous knowledge of the kinetic model is required,
what constitutes an advantage. The obtained control ac-
tion (dilution) is continuous and smooth, which makes
it suitable for plants where adjustable pumps or valves
are used. This also allows to finally obtain a smoother
response in the growth rate, without oscillations. For cases
where the available actuators are of discontinuous nature
, it is advisable to use a similar scheme with a first
order sliding mode control instead, as the one in Lara-
Cisneros et al. (2014). The control and gradient estimation
scheme is based on the use of a biomass concentration
measurement only. Considering that this variable is easier
to measure than substrate concentration, either by optical
density methods or with dielectric spectroscopy probes,
this scheme is easier to apply or adapt to many different
bioprocesses.

With respect to the gradient estimation, the use of the
HOSM observer allows to obtain an accurate estimation
in finite time and without delays, contributing to a better
regulation of the growth rate. Some degradation of the
estimated gradient shows up because the data is obtained
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from observers. However, this has little effect on the
controlled output.

Future work includes the stability proofs for the disturbed
case and the experimental validation. Also, the inclusion
of discontinuous observers and design of an extremum
seeking controller for a multi-substrate case.
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