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Abstract. Evolutionary processes greatly impact the outcomes of biological invasions. An extensive body of re-
search suggests that invasive populations often undergo phenotypic and ecological divergence from their native
sources. Evolution also operates at different and distinct stages during the invasion process. Thus, it is important to
incorporate evolutionary change into frameworks of biological invasions because it allows us to conceptualize how
these processes may facilitate or hinder invasion success. Here, we review such processes, with an emphasis on tree
invasions, and place them in the context of the unified framework for biological invasions. The processes and
mechanisms described are pre-introduction evolutionary history, sampling effect, founder effect, genotype-by-
environment interactions, admixture, hybridization, polyploidization, rapid evolution, epigenetics and second-
genomes. For the last, we propose that co-evolved symbionts, both beneficial and harmful, which are closely
physiologically associated with invasive species, contain critical genetic traits that affect the evolutionary dynamics
of biological invasions. By understanding the mechanisms underlying invasion success, researchers will be better
equipped to predict, understand and manage biological invasions.
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Introduction

Evolutionary processes are important mechanisms con-
tributing to successful biological invasions. An extensive
body of research demonstrates that invasive populations
often undergo phenotypic and ecological divergence
from their native sources (Williams 2009; Williams et al.
2010). Some lineages or genotypes are highly successful
invaders, whereas others may fail to invade (Lachmuth
et al. 2010; Meyerson et al. 2010; Corliss and Sultan
2016). After introduction, invasive populations originat-
ing from the same sources may colonize different envi-
ronments in the introduced range (Zenni et al. 2014;
Zenni and Hoban 2015) and, in some instances, adapta-
tion can be surprisingly rapid (Colautti and Barrett 2013).
During the invasion process, evolutionary factors can op-
erate at different invasion stages, e.g. introduction, es-
tablishment and spread (Blackburn et al. 2011). It is
therefore important to incorporate these factors into
frameworks of biological invasions in order to under-
stand the roles that ecological versus evolutionary driv-
ers play in invasion success.

Invasive trees have significant environmental and eco-
nomic impacts worldwide (Richardson and Rejm�anek
2011; Rejm�anek et al. 2013; Valduga et al. 2016), but our
understanding of the drivers and the extent of genetic
changes in invasive tree populations are limited relative
to other plant functional groups such as herbaceous
plants and shrubs. To date, studies have more commonly
focused on the ecological and anthropogenic, rather
than on evolutionary drivers of tree invasions (Lamarque
et al. 2011; Procheş et al. 2012). Given that the
life-history traits of trees include long lifespans and gen-
eration times, it is not surprising that their evolutionary
dynamics are still poorly understood. However, many
tree invasions pose unique natural experiments—e.g. in-
troductions of diverse provenances for forestry and se-
lective breeding for yield—to test the importance of
evolutionary factors in promoting invasions.

Here, we review the evolutionary mechanisms associated
with tree invasions and place them in the context of the
unified framework for biological invasions (Blackburn et al.
2011). An increasing number of studies suggest several
evolutionary mechanisms allow populations to overcome
different barriers of the invasion process: the introduction–
naturalization–invasion continuum (Richardson and Py�sek
2012). Consequently, it is imperative that such evolutionary
aspects of the invasion process are placed within a unified
framework. In considering evolutionary mechanisms asso-
ciated with tree invasions, we take a broad view and include

not only the plant genome but also the epigenome and the
genomes of closely associated plant symbionts (including
mutualists and pathogens), recently been referred to as the
‘second-genome’ (Zhao 2010; Zhu et al. 2010; Grice
and Segre 2012). This broader view allows us to include
all of the genetic and potentially heritable traits of an
organism (although the second-genome may be partially
acquired from the new environment). In this regard, it has
been suggested that altered second-genome interactions
are one of the most important aspects defining how
introduced species differ from native species (Dickie et al.
2016).

The unified framework

The unified framework proposed by Blackburn et al.
(2011) integrates two widely adopted frameworks aimed
at conceptualizing the invasion process (Williamson
1996; Williamson and Fitter 1996; Richardson et al.
2000). The unified framework mainly focuses at the
population-level and combines a suite of barriers (geog-
raphy, captivity/cultivation, survival, reproduction, dis-
persal and environmental) and their underlying stages
(transport, introduction, establishment and spread) that
a species must overcome in order to become invasive
(Fig. 1). Importantly, it also includes those cases where
invasions fail or where populations undergo ‘boom
and bust cycles’. The framework, however, does not de-
scribe specific mechanisms allowing transitions from
stage to stage, mechanisms hindering transitions or
mechanisms causing failures (sensu Zenni and Nu~nez
2013).

Evolutionary mechanisms underlying
tree invasions

Below, we explore evolutionary processes that have al-
ready been shown to occur during tree invasions and ex-
plain where and how they align with each barrier of the
unified framework (Fig. 1). Our aim was twofold (i) to re-
view current knowledge on how evolutionary processes
affect tree invasions and (ii) suggest research strategies
to further advance our understanding of how evolution
affect tree invasions (e.g. Box 1).

Pre-introduction evolutionary history

Frameworks for biological invasions depict the transpor-
tation of non-native individuals into a new range as a
starting point for the processes leading up to
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establishment and subsequent invasion (Blackburn et al.
2011; Foxcroft et al. 2011; Gurevitch et al. 2011).
However, the influence of evolutionary processes on in-
vasion success may be manifest prior to transportation
to a new region (Fig. 1; Thompson et al. 2012). Local ad-
aptations and co-evolved symbiotic interactions devel-
oped in the native range can be key factors fostering or
hindering invasive potential in new ecosystems
(Lachmuth et al. 2010; Zenni et al. 2014). Variation in bi-
otic and abiotic conditions across the landscape can pro-
mote differentiation across groups of individuals in their
native ranges, potentially resulting in genetic differentia-
tion and, ultimately, local adaptation (Mosca et al. 2012).
Most life forms show intra-specific trait variation across
their native populations. Coincidently, successful plant
invaders often have wide native ranges (Hayes and Barry
2008). For instance, loblolly pine (Pinus taeda) shows
considerable genetic variation in seed dormancy and cli-
matic conditions needed for successful germination in its
native range (Schultz 1997). For this species, seed size,
seed weight and seed coat thickness vary by region and
affect seedling growth (Schultz 1997). Similarly, two dis-
tinct provenances of Chinese tallow tree (Triadica sebi-
fera) differ in cold hardiness, germination rate and
overwinter seedling survival (Park et al. 2012) and appear
to be genetically distinct (DeWalt et al. 2011). In some

Eucalyptus species, phenotypic plasticity in response to
drought depends on the origin of populations, with those
from harsher climates exhibiting greater plasticity (Drake
et al. 2015).

Trees commonly experience high seed and seedling
mortality owing to maternal effects, stochasticity in seed
dispersal, predation, damping-off pathogens or competi-
tion for resources. The ability of individual trees to over-
come early mortality depends in large part on their
inherited traits. Consequently, individual mother plants
have differential contributions to future generations and
the distribution of female reproductive success tends to
be very skewed (Moran and Clark 2011). For example, in
central Spain, 10 % of maritime pine (Pinus pinaster)
trees mothered 50 % of offspring (Gonz�alez-Mart�ınez
et al. 2006), whereas for red oaks (Quercus spp.) in the
eastern USA, <40 % of potential trees were estimated to
have mothered at least one seedling (Moran and Clark
2011). In both these cases, bigger trees were more suc-
cessful. Only a few genotypes survive past the seed stage
in trees because the seed-seedling stages suffer a strong
selection force. Consequently, the genetic characteristics
of propagules sampled for transport (intentional or acci-
dental) can strongly influence the invasive potential of a
new population in the introduced range as detailed in
the section below.

Figure 1. The unified framework for biological invasions (Blackburn et al. 2011) expanded to incorporate evolutionary mechanisms associ-
ated with invasions, including evolutionary effects occurring in the species’ native ranges.

Zenni et al. — Evolutionary responses to the unified framework for biological invasions

AoB PLANTS www.aobplants.oxfordjournals.org VC The Authors 2016 300

D
ow

nloaded from
 https://academ

ic.oup.com
/aobpla/article-abstract/9/1/plw

085/2763314 by guest on 18 O
ctober 2018

Deleted Text: , 
Deleted Text: , 
Deleted Text: ,
Deleted Text: , 
Deleted Text: less than 


Pre-adaptations, such as those discussed above, are
normally highly context (environment) specific (e.g.
Zenni et al. 2014). Some genotypes are adapted to faster
growth and earlier reproduction, making them more
likely to naturalize if introduced to a new range
(Matesanz and Sultan 2013). For example, the
Neotropical tree Miconia calvescens has evolved high lev-
els of phenotypic plasticity in response to light in its na-
tive range (Baruch et al. 2000). Under normal low-light
and dense forest understory conditions, saplings develop
slowly but respond rapidly to the availability of light
when canopies open up, growing and developing rapidly
into adult trees. This species harbours extremely low lev-
els of genetic diversity throughout its invasive ranges (Le
Roux et al. 2008; Hardesty et al. 2012); pre-adapted phe-
notypic plasticity to light availability likely plays a key

role in this tree’s invasion success under less-saturated
forest conditions in numerous Pacific Islands (Le Roux
et al. 2008).

The long lifespan of many tree species make them
ideal models to better understand the differences be-
tween native and introduced populations of particular
species. In many instances, the original trees that initi-
ated invasions are still living and their native prove-
nances are known. This provides ideal opportunities to
infer the contribution of evolutionary processes to inva-
sion success under complex demographic scenarios (e.g.
Zenni et al. 2014; Zenni and Hoban 2015). Comparative
studies that consider ecological and evolutionary trajecto-
ries of populations descending from the same mother-
plants located in both native and introduced ranges (i.e.
reciprocal common gardens – see Box 1), could provide
important insights into the importance of pre-adaptation,

Box 1. Research example: forestry provenance trials as

tools for understanding evolutionary dynamics of tree

invasions

Invasions are ‘natural experiments’ where researchers

can study multiple ecological and evolutionary factors

over long periods of time and large spatial scales (Sakai

et al. 2001; Yoshida et al. 2007). However, while inva-

sions can provide long-term large-scale data sets that in

many instances are virtually impossible to obtain from

manipulative experimental systems (Bøhn et al. 2008),

often they also have numerous sources of biases and

lack critical information about historical factors, initial

sources, dispersal pathways, and state of the habitat at

the time of arrival (Richardson et al. 2004; Py�sek et al.

2008). Natural experiments also tend to lack true repli-

cates, which can make them limited and context depen-

dent (e.g. different source pools, different environments,

introductions at different times). Such problems can be

avoided in manipulative experiments.

Provenance tests, largely known by ecologists as com-

mon garden experiments, provide the best of both

worlds for studying invasions, as they are controlled ex-

periments. However, if planted and left unchecked for

long periods of time, they could initiate an unintended

natural experiment of invasion (Zenni et al. 2014; Zenni

and Hoban 2015; Zenni et al. 2016). For instance, prove-

nance trials around the globe have shown the interaction

existing between growth of loblolly pine (Pinus taeda)

genotypes and environmental conditions (Falkenhagen

1978; Shimizu and Higa 1981; Schmidtling 1994; Harms

et al. 2000; ZhiGang 2000). In China, there were signifi-

cant variations among 15 different seed sources of

loblolly pine and these variations were significantly cor-

related with minimum temperature in the seed origin

(ZhiGang 2000). In South Africa, provenances of P. taeda

from coastal southern Texas, southern Louisiana and

Florida presented growth rates up to twofold greater

than some other provenances (Falkenhagen 1978). In

this case, strong correlations were found between

growth in South Africa and latitude of the place of origin

in North America. In Brazil, all provenance trials showed

remarkable growth differences among provenances,

likely having a climatic origin (Baldanzi et al. 1974;

Baldanzi and Malinovski 1976; Shimizu and Higa 1981).

As with loblolly pine, many other tree species have been

planted around the world in forestry provenance trials

and show similar trends of heritability for traits associ-

ated with greater invasive potential (e.g. Gapare et al.

2012a; Gapare et al. 2012b). Moreover, it is not uncom-

mon that these experiments last for decades.

Researchers have been using provenance trials to under-

stand species responses to climate change (i.e.

Schmidtling 1994; O’Neill et al. 2008). Accordingly, such

large scale, long-term experiments can be used to

improve our understanding of non-native species and

populations responses to new environments. Because

provenance trials include a significant pool of seed sour-

ces and genetic lineages, researchers can use these ex-

periments to detect intra-specific trait differences. In

some cases, where the species escapes the experiment

and starts invading surrounding areas, researchers can

use available data from the experiment to test evolution-

ary processes related to naturalization and invasion (Zenni

et al. 2014; Zenni and Hoban 2015; Zenni et al. 2016).
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genotype–environment interactions, local adaptation, ge-
netic drift and interactions with co-evolved mutualists for
biological invasions and range shifts.

Sampling effect

Species can be transported to a new range in several
ways, accidently or intentionally. The means of, and rea-
sons for, introductions will result in different propagule
sampling for transport (Fig. 1). Sampling effects affect
propagule pressure, including propagule diversity and
therefore genetic diversity (sensu Zenni and Simberloff
2013). However, propagule pressure only considers the
number and size of introduction events (Simberloff 2009)
and does not take into consideration the genetic compo-
nent of introductions although some have argued that
genetic diversity is implicit in the concept (see Thompson
et al. 2016). Propagule pressure is also influenced by life-
history traits of different taxa (Colautti et al. 2006).
The interplay between native genetic diversity and a spe-
cies’ introduction history ultimately determines the ge-
netic diversity introduced (Le Roux et al. 2011). For
instance, while ornamental trees tend to be transported in
lower numbers and introduced in low densities, forestry
species tend to be transported in higher numbers and in-
troduced in high densities (K�riv�anek et al. 2006; Essl et al.
2010; McGregor et al. 2012; Donaldson et al. 2014; Crous
et al. 2016). Furthermore, trees introduced for erosion con-
trol (e.g. Pinus contorta and Alnus viridus in New Zealand,
Prosopis spp. in east Africa) are often transported in high
numbers and introduced into particularly vulnerable habi-
tats (Ledgard 1976; Wilson et al. 2009). Both ornamental
and forestry pathways intentionally involve trait selections
that are often linked with significant genomic changes like
polyploidization or hybridization (Wilson et al. 2009; Essl
et al. 2010). But the types of traits selected for in each
pathway may differ drastically. While ornamental plants
may be selected for flower, fruit, and foliage traits
(Kitajima et al. 2006), forestry plants are usually selected
for more rapid growth, disease resistance, and environ-
mental hardiness (Carson and Carson 1989; Fenning and
Gershenzon 2002; Wingfield et al. 2015). Artificially se-
lected traits for ornamentation and forestry are also often
positively linked to invasion success (Essl et al. 2010; Zenni
2014). There are also substantial efforts made to intro-
duce and improve mycorrhizas for many forestry species
(e.g. Ledgard 1976), which may cause substantial in-
creases in tree invasiveness following fungal introduction
(Wood et al. 2015). Thus, intentional introductions tend to
be carefully planned (Box 1) and the chance of introducing
individuals adapted to particular ecosystems is therefore
high, as is the probability of establishment and spread
(Essl et al. 2011).

Contrary to intentional sampling and transport mech-
anisms, many introduction events are accidental (Santini
et al. 2013). In accidental transports, only a few propa-
gules tend to be released (Wilson et al. 2009) and inva-
sions are more likely to fail than to succeed (Zenni and
Nu~nez 2013). However, if high-performance genotypes
or adapted individuals are present in the pool of acciden-
tally released individuals, the chances of successful es-
tablishment may increase (Matesanz and Sultan 2013;
Corliss and Sultan 2016). Organisms with some eco-
evolutionary experience of the prevailing ecosystem con-
ditions in the novel environment should have an inherent
advantage to establish (Saul et al. 2013; Saul and
Jeschke 2015). Unintentional introductions often suffer
from severe founder events, reduced genetic diversity,
and therefore strong genetic drift. This can lead to rapid,
albeit non-adaptive (neutral), trait differentiation
between introduced and native range populations
(Keller and Taylor 2008). Once introduced, further range
expansions by bottlenecked populations may exacerbate
the effects of drift, and for small populations, drift may
result in invasion failure (Zenni and Nu~nez 2013). Strong
founder events could also cause inbreeding and induce
evolutionary change through the purging of genetic load
(Facon et al. 2006; Schrieber and Lachmuth 2016).

Despite the importance of sampling in shaping the
transported pool of propagules, the evolutionary histories
and dynamics occurring in native ranges are not consid-
ered in the unified framework for biological invasions (Fig.
1). Many invasive tree species were introduced for eco-
nomic and environmental alleviation purposes in which
some level of intentional sampling of adapted species or
genotypes was used (Castro-D�ıez et al. 2011; McGregor
et al. 2012; Rejm�anek et al. 2013). Thus, for tree invasions,
it is important to consider sampling effects during the
transport of propagules from one region to another to un-
derstand causes and mechanisms of invasion.

Founder effects

The loss of genetic variation resulting from the sub-
sampling and introduction of a small number of individ-
uals from a source population, known as founder effect,
suggests small populations recently introduced are un-
likely to succeed (Kanarek and Webb 2010). Such reduc-
tions in genetic diversity may be exacerbated once a
species starts to spread in the new environment. Higher
genetic diversity in pools of introduced organisms is ex-
pected to allow the expression of a wider range of trait
values compared to introduced pools characterized by
genetic bottlenecks (Fig. 1). More variable populations
tend to tolerate a wider range of environments and dis-
turbances and have more phenotypes upon which
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natural selection can act. They are also more likely to
survive attack by pests and pathogens, either introduced
or native, than obligatory clonal populations or those
with a narrow genetic base (Levin 1975; Clay and Kover
1996). However, genetic diversity may not be crucial for
the successful establishment and spread of non-native
populations, with many plant invasions caused by single
genotypes and clonal plants (e.g. Le Roux et al. 2007;
Hardesty et al. 2012). If an initial pool of individuals suc-
cessfully survives and reproduces (naturalizes; Fig. 1), the
population tends to accumulate new genetic diversity
(Kanarek and Webb 2010). Additional introductions of
propagules from the native range may also occur, possi-
bly from distinct populations, or multiple independent in-
troductions can coalesce over time in the new range
(Dlugosch and Parker 2008). Further, mutations normally
accrue at low rates and tend to be silent or detrimental,
thus having no effect or a largely negative effect, with
the latter usually being under strong negative selection
in small populations. The larger the population becomes,
the greater the chances are that some of the genotypes
will successfully produce viable offspring.

Founder effects, just like sampling effects, although key in
forming the genetic make-up of introduced populations, are
not considered in the unified framework (Fig. 1). Tree inva-
sions may help biologists understand the relative importance
of founder effects in invasions by comparative analyses of
multi-generational tree populations that are invading or fail-
ing to invade, or are in different stages of spread.

Genotype 3 environment interactions

Most species introductions or colonizations result in es-
tablishment failure (Zenni and Nu~nez 2013). This is possi-
bly owed to mismatches between adaptations of
introduced individuals acquired in their native range and
the selective forces present in their newly introduced en-
vironments. However, for biological invasions, where in-
troduced populations are often non-randomly sampled,
the initial selection of pre-adapted or high-performance
genotypes for introduction may contribute to rapid post-
introduction adaptations (Matesanz et al. 2012;
Matesanz and Sultan 2013; Corliss and Sultan 2016).
These adaptations can increase survival and fitness of in-
dividuals, potentially leading to increases in population
size, dispersal, and invasiveness (Colautti and Barrett
2013; Colautti and Lau 2015).

For many tree invasions, positive genotype-by-
environment (G�E) interactions mediated by humans
are key factors underlying invasion success. For instance,
many forestry species were first introduced in prove-
nance trials (Box 1) where foresters actively sought ge-
notypes adapted for specific climatic conditions

(Falkenhagen 1978; ZhiGang 2000). Once suitable geno-
types were identified, they were selected for large scale
planting (Box 1). The same active search for positive G�E
interactions exists for horticultural and forage plants
(Cook et al. 2005; Ebeling et al. 2011). Such positive G�E
interactions may help introduced trees survive, repro-
duce, and spread (Fig. 1). In the unified framework, ge-
netic diversity helps populations overcome selection
pressures and transition from naturalized to invasive by
potentially increasing fitness of populations (Fig. 1).

Admixture, hybridization and polyploidization

During establishment and spread some populations might
accumulate new diversity by recombination of standing
genetic diversity, especially through admixture (intra-spe-
cific breeding between historically isolated populations) or
hybridization (interbreeding between different species; Fig.
1). Further, additional introductions of propagules from
the native range can occur, possibly from distinct native
populations, also adding new diversity.

Admixture is a common phenomenon during introduc-
tion, establishment and spread of introduced organisms
(Fig. 1; Ellstrand and Schierenbeck 2000). However, we lack
evidence that admixture increases invasiveness (Rius and
Darling 2014) but see Lavergne and Molofsky (2007). For
invasive P. taeda populations, frequent admixture did not
result in increased invasiveness (Zenni et al. 2014; Zenni
et al. 2016). It remains unclear if the importance of admix-
ture in invasiveness can increase over time as new genetic
combinations occur in the population and selection acts
on these. Because many tree species form populations
with overlapping generations, they represent ideal systems
to assess the frequency of admixed plants across multiple
generations, without having to follow populations over
time. Many invasive trees have been introduced to multiple
locations for provenance� environment trials and there-
fore, post-introduction admixture resulting in elevated lev-
els of genetic diversity could be a common, but hitherto
overlooked, phenomenon.

Polyploidy has been repeatedly linked with plant inva-
sion success (te Beest et al. 2011). On the one hand, poly-
ploids are more commonly represented as invasives. On
the other hand, for species with varying ploidy levels, inva-
sive populations are more commonly polyploid. The mode
of polyploidization, i.e. auto- or allopolyploidy (both pro-
cesses associated with many plant breeding programs),
greatly impacts the rate and direction of genetic and epi-
genetic changes (te Beest et al. 2011). Significant epige-
netic changes (see below) and subsequent phenotypic
effects have been reported for allopolyploids (Paun et al.
2010). Therefore, hybridization followed by genome
multiplication (i.e. allopolyploidization) rather than
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autonomous genome multiplication per se (i.e. autopoly-
ploidization) may lead to substantial epigenetic variation
in polyploid genomes.

For introduced trees whole-genome duplication, through
polyploidization, might be a particularly important evolu-
tionary mechanism (Gaskin 2016). Polyploidization is often
employed in forestry species because of the immediate
and sometimes large phenotypic effects such as increased
growth rate, denser wood and resistance to pathogens. In
addition to these traits that could directly promote inva-
siveness, polyploidization also confers immediate genetic
advantages linked to genetic diversity and gene expression,
physiological and environmental tolerance, and altered bi-
otic interactions (te Beest et al. 2011). For example, tetra-
ploid Acacia mangium, a member of a highly invasive
genus, had lower seed set compared to diploid genotypes,
but had higher levels of self-compatibility, which can facili-
tate naturalization and invasion (Griffin et al. 2012).

In the unified framework, admixture, hybridization
and polyploidization can affect the establishment of in-
troduced plants, allowing the expression of novel pheno-
types with increased fitness compared to source
populations (Fig. 1).

Rapid evolution

Introduced populations can evolve rapidly in response to
selection pressures in the new environment (Bossdorf
et al. 2005; Dlugosch and Parker 2008; Whitney and
Gabler 2008; Moran and Alexander 2014). Rapid evolu-
tion in growth and productivity traits in long-lived trees
can occur <50 years after introduction (Zenni et al. 2014;
Zenni and Hoban 2015). For example, following the intro-
duction of P. taeda just over 40 years ago to southern
Brazil, evolutionary changes in plant growth rate and leaf
traits are correlated with greater rates of spread of inva-
sive populations (Zenni et al. 2016). Similarly, invasive
populations of Acer negundo exhibited genetic differenti-
ation in traits related to growth, leaf phenology and eco-
physiology, providing evidence that genetic effects may
have influenced the spread of established populations
(Lamarque et al. 2015). Seedlings of invasive populations
of the Siberian elm (Ulmus pumila) produce more bio-
mass and can more efficiently allocate belowground re-
sources towards growth than native populations under
common garden conditions. This suggests evolutionary
shifts of early life cycle traits (germination and growth
of seedlings/saplings) in non-native U. pumila popula-
tions (Hirsch et al. 2012; Hirsch et al. 2016). Despite these
examples, there are very few case studies of rapid evolu-
tion for long-lived trees compared to the large number of
successful tree invaders. For herbaceous plants, these pat-
terns have been examined more frequently since their

short life cycles more easily facilitate experimentation
(e.g. Colautti and Barrett 2013; Turner et al. 2014;
Colomer-Ventura et al. 2015).

In the unified framework (Blackburn et al. 2011), rapid
evolution is a definite mechanism that can allow popula-
tions to transition from the establishment to spread stages
(Fig. 1), specifically by decreasing the limitations of sto-
chastic effects on invasiveness (Kanarek and Webb 2010).
Invasive trees may make a less suitable group to study
rapid evolution. Trees, however, often produce abundant
seeds and suffer great selection pressures at the seedling
stage. The major difficulty for studies of rapid evolution in
trees is to follow the fate of at least several generations in
order to detect genetic changes in populations (Box 1).

Epigenetics

The modern evolutionary synthesis, based on the as-
sumption that only heritable genetic variation and its ori-
gin by random mutation explain evolution by natural
selection, is challenged by the rapidly expanding field of
epigenetics (Feinberg and Irizarry 2010). Epigenetics in-
volves molecular mechanisms that can cause variation in
gene expression levels (and thus trait variation) without
changes in the underlying DNA sequence (Richards 2006).
In this regard, recent research has shown that epigenetic
variation, e.g. DNA methylation profiles, can be heritable
over multiple generations (Verhoeven et al. 2010).

Despite the potential impact of epigenetics on natural
selection, the link between epigenetic variation and func-
tional genomics remains weak. This is complicated by ac-
tual genetic diversity between individuals and/or
populations, making inferences of epigenetic versus ge-
netic contributions to phenotypic trait variation difficult.
Moreover, environmentally induced epi-alleles may not
be heritable and therefore would contribute only to pure
phenotypic plasticity rather than to adaptive variation
(Richards et al. 2010). Epigenetic variation may benefit
non-native species, especially when the introduced
standing genetic variation is low (Schrey et al. 2012).
Epigenetically controlled traits are usually differentially
expressed in response to environmental cues and, when
heritable, could have significant adaptive value, even in
the absence of the initial environmental stressor
(Johnson and Tricker 2010). As previously mentioned,
newly introduced populations often experience genetic
bottlenecks and/or are exposed to novel environmental
conditions. These species might consequently experi-
ence increased epigenetic variation as invasion pro-
gresses along the naturalization–invasion continuum.

Insights into the role of epigenetics in invasion biology,
while rare and almost non-existent for trees, are now
emerging. Wilschut et al. (2016) recently found heritable
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trait variation (flowering time) to be correlated with herita-
ble epi-alleles across different populations of an apomictic
clonal lineage of common dandelion (Taraxacum offici-
nale). Similarly, the successful invasion of diverse habitats
by genetically depauperate populations of Japanese knot-
weed (Fallopia japonica) appears to be correlated with epi-
genetic differentiation (Richards et al. 2012). Further, as
discussed, hybridization sometimes precedes invasiveness
(Ellstrand and Schierenbeck 2000) and the combination of
diverged parental genomes in hybrids often requires major
epigenetic modifications to re-establish compatibility be-
tween divergent parental genomes (Rieseberg 2001). For
example, in invasive Spartina anglica populations, methyl-
ation changes are predominantly associated with inter-
specific hybridization and rarely with intra-specific genome
doubling (Salmon et al. 2005).

Even though limited information is available on the role
of epigenetic variation during establishment and spread
of non-native species, the possible role of such diversity in
compensating for the low genetic variability typical of
most introductions is conceivable. When heritable, epige-
netic variation can serve as a form of ‘molecular memory’
to optimize environmental compatibility through pheno-
typic plasticity (Wilschut et al. 2016). For example, in pop-
lar trees (Populus spp.) genetically identical clones
obtained from different geographic plantings showed dif-
ferences in gene expression when exposed to drought
stress under common garden conditions (Raj et al. 2011).
These differences reflect divergences in DNA methylation
patterns between geographic provenances, with those
provenances with longer residence times (time since
planting) having the most distinct location-specific pat-
terns in gene expression response (Raj et al. 2011).

Introduced trees represent particularly interesting sys-
tems to study the role of epigenetics in invasion success.
As mentioned, trees are usually long-lived with many
species having complex life cycles; they must therefore
cope with variable environmental conditions over long
and individual lifespans (Rohde and Junttila 2008), which
can limit natural selection under fluctuating environ-
mental conditions over short timescales (sensu Davis
et al. 2005). High levels of phenotypic plasticity are there-
fore seen as a vital strategy to cope with these limita-
tions, especially when standing genetic diversity is low,
as is the case for many introduced species.

Second-genomes

Like most higher organisms, almost all tree species rely on
mutualistic interactions for nutrient acquisition.
Consequently, they often require either the formation of
novel associations with native mutualists or co-
introduction with invading partners (Nu~nez and Dickie

2014; Burgess et al. 2016). Concurrently, both the initial ab-
sence and subsequent accumulation of symbiotic microbes
(Diez et al. 2010), comprising myriad fungi, oomycetes,
bacteria and viruses, can be a key determinant of invasive-
ness (Crous et al. 2016). The phenotype of an organism is
not determined solely by the interaction of the genotype
and the environment and its epigenome but also by the
combined genomes of closely physiologically associated
symbionts. These have been termed ‘second-genomes’
(Grice and Segre 2012), recognizing that physiological traits
controlled by symbiotic genomes are often overlooked as
being neither classically ‘genomic’ nor entirely encom-
passed within environmental acclimation. Second-
genomes comprised of closely associated symbionts can
be a critical and semi-heritable (transmitted by the parents
but also environmentally determined) determinant of plant
adaptive traits (e.g. Rout and Southworth 2013).

We consider second-genome interactions as distinct
from most biological interactions (e.g. competition, gen-
eralist pollination, seed dispersal and herbivory) because
the duration of interaction between individual host plant
and symbiont generally spans a substantial portion of
the life cycle of at least one interacting partner. For ex-
ample, infection of legume root hairs and the formation
or endosymbiotic root nodules by rhizobia would be an
instance where a second-genome associated with le-
gume plants. Further, the symbiotic nature of second-
genome interactions implies that species phenotype can
be strongly determined by second-genomic controls, in-
cluding phenology (Courty et al. 2007) and foliar traits
(Moeller et al. 2016).

When plant species are introduced to a new range,
their second-genome may be accidentally or intention-
ally co-introduced on plant tissue or in soils, leading to
co-invasion (Dickie et al. 2010; Diez et al. 2010; Nu~nez
and Dickie 2014). Alternatively, introduced plants can
form ‘novel associations’ with native symbionts or co-
xenic novel associations (Nu~nez and Dickie 2014) can be
formed between symbionts from different regions (Klock
et al. 2015; Le Roux et al. 2016). The level of interaction
specificity, coupled with chances of co-introduction, may
therefore have serious fitness consequences for intro-
duced plants. Pines, for example, largely rely on co-
introduced mycorrhizal fungi in New Zealand, South
America and Hawaii (Hynson et al. 2013; Hayward et al.
2015) for establishment and growth; however, novel as-
sociations are common in pine plantations in Iran
(Bahram et al. 2013). Eucalyptus in Europe appear to be
largely associating with co-introduced symbionts (Diez
et al. 2010), but where introduced as seeds without sym-
bionts in the Seychelles they appear to form novel asso-
ciations (Bahram et al. 2013); in New Zealand co-xenic
associations (both interacting partners non-native)
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between Eucalyptus and European Amanita muscaria
have also been observed (Nu~nez and Dickie 2014).
Similarly, the symbioses between legumes and rhizobia
provide additional examples of co-introductions. For ex-
ample, invasive Australian wattles (genus Acacia sensu
stricto) appear to have been co-introduced with their
Australian rhizobia to South Africa (Acacia pycnantha,
Aacacia mearnsii, Acacia saligna and Acacia longifolia)
(Ndlovu et al. 2013; Le Roux et al. 2016), Europe (A. longi-
folia, A. saligna) (Rodr�ıguez-Echeverr�ıa et al. 2009, 2012),
and New Zealand (A. longifolia) (Weir et al. 2004). In ad-
dition, there is evidence that acacias that have become
invasive in multiple parts of the globe are more promis-
cuous hosts (i.e. capable of associating with a vast diver-
sity of rhizobial mutualists) (Klock et al. 2015), potentially
facilitating their invasion in novel ranges. Finally, the
rates of association and the benefits from mycorrhizal
associations may differ between native and invasive
trees, providing a competitive advantage to invasive
trees. For instance, T. sebifera exhibits higher degrees of
arbuscular mycorrhizal colonization compared to native
species, which may partly explain the successful invasion
of the species into coastal plant communities of the
southeastern USA (Paudel et al. 2014).

Pathogens can also co-invade, potentially hampering
plant invasion success. For example, Diplodia sapinea, an
important Botryosphaeriaceae conifer pathogen, has
been introduced into every country where Pinus spp. are
propagated as exotics (Burgess and Wingfield 2002). This
pathogen is also horizontally transferred to trees after
germination (Bihon et al. 2011). Diplodia sapinea is almost
exclusively limited to conifers and mainly Pinus species;
other species in the Botryosphaeriaceae show preference
for angiosperm hosts (De Wet et al. 2008). Fungi in the
Botryosphaeriaceae are particularly interesting because
they are common endophytes in woody plants studied
and they include important latent pathogens; further
work is needed to determine how widely they are co-
introduced and co-invade. Co-invading pathogens and
native pathogens on invasive trees can transfer to native
plants (spillover and spillback), also contributing to tree
invasions (Blackburn and Ewen 2016).

A lack of compatible mutualists may also be a factor in
invasion failures (Zenni and Nu~nez 2013). For the genus
Casuarina, invasion is limited by a lack of mutualistic and
nitrogen-fixing Frankia bacteria (Zimpfer et al. 1999).
Similarly, for legume–rhizobium associations, the impor-
tance of co-introductions for establishment success is ex-
emplified by Mimosa pudica introductions to India. Here,
invasive populations of M. pudica only nodulate with co-
introduced South American rhizobia and appear unable
to utilize rhizobia associated with sympatric, but native,
Indian Mimosa species (Gehlot et al. 2013). Besides

horizontal transfer, some plant symbionts are capable of
transmission directly from mother plant to seed, and
hence spread along with the plant. However, most do not
and must therefore spread independently from the plant
host. For mutualisms, this creates a chicken-and-egg par-
adox: which comes first? The plant or its mutualists? In
the case of pine invasions, it appears that as little as a
single individual of the fungus Suillus luteus, which is
adapted for animal dispersal and a critical pine mutualist,
may facilitate pine establishment (Hayward et al. 2015;
Wood et al. 2015). Neither the pine, nor the fungus, may
be able to invade without the other, and it is unclear
which one allows the spread of the other.

Very little is known about second-genomes, particu-
larly in the context of invasion. Most work on invasive
tree second-genomes has focused on identification of
symbionts, with less understanding of how these associ-
ated microorganisms might influence the tree physiol-
ogy or invasiveness (but see Dickie et al. 2016; Klock
et al. 2016). Increased introduction effort of other mem-
bers in a plant genus or family may be more important in
overcoming the constraints associated with second-
genomes than introduction effort of a particular species.

Conclusions

Organisms transitioning from casual to invasive are
called ‘invasive non-native species’; however, the dy-
namics underlying these processes are likely led by a few
individuals and occur at the population level (Corliss and
Sultan 2016; Zenni et al. 2016). The concept of pre-
adaptive experience in novel environments is particularly
helpful to articulate the ecological and evolutionary
mechanisms behind the inherent establishment ability of
a plant, or its outright failure to spread. For long-lived
species such as trees, in particular, higher eco-
evolutionary experience, coupled with the ability to
adapt in situ, can be a powerful framework to help ex-
plain their long-term persistence in landscapes. Indeed,
integrating genetics with population dynamics is critical
to better understanding the probability of either niche
conservatism or niche evolution of an invader species in
time (Holt 2009; Lavergne et al. 2010). This is especially
important since species niches are considered to be un-
der constant natural selection pressures, and thus a lack
of adaptive traits in the novel environment might not be
as generalizable as previously thought (Lavergne et al.
2010; Suda et al. 2015).

Demographic, genetic and environmental factors, and
their stochasticity, interact to determine a population’s in-
vasion success. Possessing genes that increase fitness at a
given site can be critical for the survival, growth and repro-
duction of newly introduced populations. Recently
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introduced individuals, as well as individuals at the leading
edge of an invasion front during the spread stage, are also
likely to have more depauperate mutualist communities
than the trailing edge of the population as the ability to as-
sociate with local microorganisms is limited. Thus, evolu-
tionary factors, including the second-genomes, are key
mechanism of invasions. The same may apply to standing
genetic variation, with erosion of genetic diversity as
spread progresses across landscapes. Many of the
population-level processes undergone by invasive popula-
tions, as described in our additions to the unified frame-
work (Fig. 1), have strong evolutionary roots.

The unified framework for biological invasions
(Blackburn et al. 2011) provides a useful general descrip-
tion of the invasion process. However, it does not suggest
mechanisms to breach the stages and barriers associated
with invasion or explicitly consider a species’ or popula-
tion’s eco-evolutionary history prior to introduction. Here,
we have explicitly addressed these points in order to ex-
pand and unify how these mechanisms may affect plant
invasions, with a focus on trees. Other non-evolutionary
factors also greatly affect biological invasions, which have
been discussed at great length in the scientific literature
(i.e. Van Kleunen et al. 2010; Lamarque et al. 2011; Speek
et al. 2011). Similarly, other eco-evolutionary frameworks
have been proposed to improve our understanding of bio-
logical invasions (i.e. Facon et al. 2006; Saul et al. 2013;
Saul and Jeschke 2015).

Our goal was not to propose a new framework, or
even an expanded version of the existing unified frame-
work. Rather, we have sought to populate a general
framework with potential evolutionary mechanisms af-
fecting the invasion stages and barriers (Fig. 1). By high-
lighting these mechanisms, researchers should become
better equipped to understand and manage the ob-
served patterns of biological invasions.

Sources of Funding

This paper had its origin at a workshop on ‘Evolutionary
dynamics of tree invasions’’ hosted by the Department
of Science and Technology - National Research
Foundation Centre of Excellence for Invasion Biology
(CIB) in Stellenbosch, South Africa, in November 2015.
Funding for the workshop was provided by the CIB,
Stellenbosch University (through the office of the Vice
Rector: Research, Innovation and Postgraduate Studies),
and the South African National Research Foundation
(DVGR grant no. 98182). RDZ was funded by Conselho
Nacional de Desenvolvimento Cient�ıfico e Tecnol�ogico
(grant number 313926/2014-0). IAD was funded by
CORE funding to the Bio-Protection Research Centre. TGZ
acknowledges funding from Coordenaç~ao de
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