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Abstract. The paper focuses on the problem of testing for the existence and direction of
causality in a group of variables, with a spatial framework. Our objective is to produce useful
criteria to discuss causality on rational and objective bases. We introduce a new non-parametric
test, based on symbolic entropy, which is robust to the functional form of the relation. The test
has good behaviour in samples of medium to large size. The proposal is illustrated with an
application to the case of migration versus unemployment, using data on 3,108 US counties for
the period 2003–2008.
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1 Introduction

In recent years there has been a growing interest in causality issues, as shown by the bibliometric
study of Hoover (2004, p.4): 70 per cent of the articles in the JSTOR archives, published during
the last decades, contains words in a ‘causal family (“cause”, “causes”, “causal”, “causally” or
“causality”)’. The percentage increases up to 80 per cent if the search is restricted to the field of
econometric papers.

However, the impact of this debate has been surprisingly small in the field of spatial
econometrics. For example, the subject index of the most influential textbook in this discipline,
Anselin (1988), comprises approximately 500 items, not one of them being related to causation.
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The same can be said with respect to other popular textbooks, including the most recent of
LeSage and Pace (2009): 1,000 headwords, none of which is related to Hoover’s causal family.

There are several reasons to account for this singularity. First is the type of data, usually
cross-sections without temporal perspective which clashes with the notion of a delay between
cause and effect. Second is the multidirectionality of spatial interaction; in space there is nothing
like an ‘arrow of time’ to interpret the data, which results in isotropic relationships. Moreover,
it is assumed that a cross-sectional model is a general equilibrium model (Isard 1971) that must
be interpreted, preferably, in the long-term where causality plays a minor role. This view is
shared by part of the time series literature (i.e., Brockwell and Davis 2002).

In spite of these difficulties, we think that the notion of causality must be in the forefront of
spatial econometrics methods. The widespread use of impact analysis illustrates this necessity.
It is tempting to wonder, as LeSage and Pace (2009, p. 35) if ‘a change in the explanatory
variable for a single region (observation) can potentially affect the dependent variable in . . .
other observations (regions)’. The statement has a strong causal meaning that can be answered
only if we have a causal relation. Unfortunately this is not the case in most spatial models, which
are essentially correlation models.

According to Pearl (2009, p. 138), the crucial distinction between the two lies in the
interpretation of the equality sign: ‘in structural (causal) models, this equality sign conveys the
asymmetrical relation “is determined by” and hence behaves more like an assignment symbol
(:=) . . . than like an algebraic equality’. For example, in the well-known model specified for the
case of the crime in Columbus (Anselin 1988), the following three equations are small variations
of each other:

y i h y ui i i i i= + + + ′ +α α α α0 1 2 3w , (1)

h i y h ui i i i i= + + + ′ +β β β β0 1 2 3w , (2)

i h y i ui i i i i= + + + ′ +θ θ θ θ0 1 2 3w , (3)

where yi is an indicator of crime in the location i, ii is income per capita and hi housing value
in the same location; the term wi is a vector that captures ‘nearby’ locations. The first is the crime
equation as appears in the textbook of Anselin. What makes singular this equation is the quality
of asymmetry: there is certain spatial pattern in the variable but crime in the neighbourhood is
determined (it is caused) by income and housing prices. If this is the correct conclusion, renders
meaningless the Equations (2) and (3) because a variable cannot be, simultaneously, cause
and effect.

However, if the variables proceed from a trivariate normal distribution, for example, the
three system equation is admissible. In this case, parameter α1 in (1) measures the reduction in
variance of yi obtained after conditioning for ii. This is a totally different question from the
impact on E[yi] due to an intervention in ii. In fact, the answer can be zero if (1) is just a
correlation equation (the same as the entire chain of direct, indirect and total effects).

Cartwright (1995) recognizes that causality cannot be derived only from functional rela-
tionships. Something additional is needed, which may be prior knowledge of the causal relation,
as a prerequisite for any causal conclusion, or, as it is defended in this paper, statistical evidence
supporting the assumption of causality and the asymmetry of the relation.

We believe this problem is of interest for applied research in spatial economics. The problem
is how to address it. Angrist and Pischke (2009) propose performing natural experiments in
economics. The aim is to mimic the conditions of an experiment where we have two groups (i.e.,
treatment and control) before and after the intervention. Gibbons and Overman (2012) argue that
the experimentalist approach is a good alternative to achieve identification (the idea dates back
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to Isserman and Merrifield 1982), putting causality at the centre in the debate of spatial
econometrics. However, the difficulty of this approach in a non-experimental field, as econom-
ics, is evident based on the uni-directionality of time.

The dominant paradigm in economics is non-experimentalist, favouring approaches such as
that of Granger (1969) to the notion of causality. Unidirectionality of time, temporal precedence
and information content are some of the main principles of his approach, supported also by
Wiener (1956), as quoted by Hlavácková-Schindler (2009, p. 185): ‘For two simultaneously
measured signals, if we can predict the first signal better by using the past information from the
second one than by using the information without it, then we call the second signal causal to the
first one’. This is the way that we want to explore in our contribution.

Recently, some researchers give the impression that spatial causality means: ‘when out-
comes in area A affect outcomes in area B’ (Partridge et al. 2012, p. 168). For example, Gibbons
and Overman (2012) offer an extended definition of spatial causality, using a spatial auto-
regressive model (SAR, in what follows):

y y x ui i i i= ′ + +ρ βw , (4)

where i indexes locations, yi is the outcome, xi an explanatory variable, ui an error term, ρ and
β are parameters. According to the authors, parameter β captures the causal effect of x on y and
ρ represents the causal effect of neighboring dependent variable. This interpretation is firmly
recorded in the DNA of spatial econometrics but, at the very least, it is questionable. Space is
just the support where the data are taken. Indeed, we need to account of the stochastic structure
of the variables (and spatial dependence is probably one of the most important) in order to
isolate potential causality relations. However, space is not a causal factor the same that a variable
cannot be a causal factor for itself. As indicated by Davidson (2000, p. 75): ‘Granger non-
causality is a property of the DGP, under which (the information about x) can innocuously be
excluded from the conditioning variables . . . It is unambiguously a relationship between
variables’. According to this approach, the spatial lag in (4), ′wi y , captures correlation but not
causality. In fact, only x can cause y.

The objective of the paper is to introduce a new test for causality in pure cross-sectional spatial
series, inspired on the Granger-Wiener’s idea of information content. Our proposal is fully
non-parametric. The paper is structured as follows. Section 2 provides a review of some of the
main principles of Granger causality. Section 3 introduces the machinery of our approach. Section
4 formalizes our causality test for spatial cross-sectional data. Section 5 contains the results of a
Monte Carlo experiment, while Section 6 presents a case study, the relation between unemploy-
ment rate and net migration for US county data. Main conclusions appear in Section 7.

2 From ranger causality to spatial causality

As said, the Granger approach, together with the test of Sims (1972), is by far the preferred
option to test for causality in applied econometrics. This literature has produced an operational
and testable definition of causality, based on three principles:

1. Temporal precedence, in the sense that the effect should not precede the cause.
2. Temporal invariance that assures that causal mechanisms remain constant throughout time.
3. Information completeness, in the sense that all information needed for the variables involved

in the analysis is available.

Under these premises, and assuming that the series are weakly stationary, we say according to
Granger (1969) that x is a causal variable for y if and only if V y V yt t t t+ +( ) < ′( )1 1| |Λ Λ . Λt refers
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to the information set at time t, which includes historical information up to period t of both
series, xt and yt, together with the contextual variables zt. Moreover ′ ≡ { }− −Λt t j t jy z, , ∀j ≥ 0,
excludes the information of xt and V(·) is the forecasting error variance. In brief, x causes y if
future values of y can be predicted more precisely if past values of x, in relation to yt+1, are
included in the information set.

Let us emphasize a couple of important aspects of this definition:

1. Granger causality does not require the specification of a direct causal mechanism (that is, we
do not need a model). Theory is important but this is not a theory-driven approach as, for
example, Zellner (1988). All that matters is observable predictive capacity (Davidson 2000).

2. Investigators can never be sure whether an information set is complete. This is the problem of
confounders, or common causes, which led Pearl (2009) to distinguish between necessary and
sufficient conditions of causality: Granger causality is a necessary clause, not a sufficient one.

The functioning of the Granger test for a bivariate system in a time domain can be represented
graphically as in Figure 1.

Relations (i) and (ii) reflect univariate serial dependence, relation (iii) adds causality from x
to y. This means that if we want good predictions of y, it is not enough with the past of this series,
we also need to control for the impact that x has on y. The principles of temporal precedence and
time invariance appear clearly in this temporal flow-chart, which is naturally oriented. The third
criterion, information completeness, refers to the order of the system and it is an uncertainty
factor.

The spatial domain lacks of such natural orientation and relationships become more com-
plicated because of the multidimensionality, as in the case of Figure 2 with three regions. As
before, solid lines (relations (i) and (ii)) indicate relations of spatial dependence that affect,
separately, each variable, x and y. This univariate spatial structure means spatial dependence, for
x and y. If the spatial structure of both variables is similar, or there are unknown common factors
shaping their spatial pattern, we will find spatial correlation between the two. However, this is
not causality which is only reflected by the broken lines of (iii). The origin of the causal impulse
may be in the same region (x causes y inside each region, and the spatial dependence of y boosts
this relation outwards) or it may proceed from nearby regions, whose impact is transferred to the
region because of the spatial dependence of y. As it is well-known, there are mirroring effects
on space that complicate the analysis of spatial relationships.

The differences between both figures are evident. They illustrate that our proposal of
detecting causality in cross-sections of spatial data will require specific techniques as those
introduced in Section 3.

x

y

t+1t-1 t

(iii)

(ii)

(i) (i)

(ii)

(iii)

Fig. 1. Representation of Granger causality in a time domain
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3 Symbolic dynamics and entropy

Symbolic dynamics appeared in the field of mathematics with the purpose of modelling dynamic
systems by means of discrete sequences of (abstract) symbols obtained for a suitable partition
of the state space (Hao and Zheng 1998). The basic idea is to consider a space in which the
possible states of a system are represented; each state corresponds to a unique point in the state
space. Then, this space can then be partitioned into a finite number of regions and each region
can be labelled by a symbol (i.e., a Greek letter, a natural number). The inference is solved in
the space of symbols. Symbolic dynamics is a coarse-grained method that loses some informa-
tion, but retains most part of the essential features of the system.

The first step in symbolic dynamics is the so-called symbolization process, where
the symbols are defined and assigned to the estate space. There is no a unique process of
symbolization; in fact, we may think in different procedures among which the user must choose
the most adequate. The observed distribution of the symbols conveys valuable information about
the system that produced the data. This information can be summarized in a measure of
symbolic entropy. Last step is solving the inference using this measure of information.

In the following we use symbolic entropy as a measure of spatial organization of a map. The
idea is simple: if x causes y, information about the spatial distribution of x will help to significantly
reduce the uncertainty about the distribution of y over space. First, the symbolization procedure
is defined and then several measures of entropy, useful for our purpose, are introduced.

3.1 Symbolization process

Let us begin by defining two real spatial processes {xs}s∈S and {ys}s∈S, where S is a set of
geographical co-ordinates. The locations are given and fixed. Denote by Γn = {σ1, σ2, . . . , σn}
the non-empty finite set of n symbols. Symbolizing a process is defining a map

f xs s S n: ,{ } →∈ Γ (5)

x

(ii)

reg. a reg. b reg. c

y
reg. a reg. b reg. c

(iii)

(iii)

(iii)(iii) (iii)

(ii)

(i) (i)

(i)

(ii)

Fig. 2. Representation of Granger causality in a spatial domain

Papers in Regional Science, Volume 95 Number 3 August 2016.

Detecting causal relationships between spatial processes 581



such that each element xs is associated to a unique symbol f(xs) = σi. We say that location s∈S
is σi − type, relative to the series {xs}s∈S, if and only if f(xs) = σi. We call f the ‘symbolization
map’. The same can be done for y.

Let us introduce the bivariate process Zs = {xs, ys}s∈S and the corresponding set of symbols
Ωn, which may consists of the direct product of the two previous sets Γn. Formally, the
symbolization map, g, for this Z is:

g Zs s S n n n: .{ } → = ×∈ Ω Γ Γ (6)

The elements of Ωn are η σ σij i
x

j
y= ( ), , where the superscript helps to distinguish the series.

g Z f x f ys s s ij i
x

j
y( ) = ( ) ( )( ) = = ( ), , .η σ σ (7)

We say that s is ηij − type for Z = (x, y) or simply that location s is ηij − type, if and only if
s is σ i

x type− for x and σ j
y type− for y.

A natural way to symbolize a series, namely, x, is to embed it in an m − dimensional space
as follows:

x s x x x for s Sm s s sm
( ) = ( ) ∈

−
, , , ,

1 1
… (8)

where m ≥ 2 is the embedding dimension and {sj; j = 1, 2, . . . , m − 1} are the (m − 1) nearest
neighbours of s (the user should define the notion of neighborhood). We use the term m −
surrounding in reference to xm(s).

We are now ready to symbolize the series, for which we need a specific symbolization map.
According to our experience, the following procedure is simple and efficient for treating with
spatial data (Matilla-García and Ruiz Marín 2008, 2009; López et al. 2010; Ruiz et al. 2010 for
more patterns).

1. Define the indicator function:

τ s
s e

xx M
=

≥⎧
⎨
⎩

1

0

if

otherwise
, (9)

where Me
x is the median of series x.

2. Define a second indicator

ι
τ τ

ss

s s

i

i=
≠⎧

⎨
⎩

0

1

if

otherwise
, (10)

ιssi
relates each location, s, with every other location of its m − surrounding si, i = 1, 2, . . . ,

m − 1.
3. The symbolization map for {xs}s∈S is

f xs ss
i

m

i
( ) =

=

−

∑ι
1

1

. (11)

Note that, in this case, the cardinality of the set of symbols is m (that is, m = n and Γm =
{0, 1, . . . , m − 1}).
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The final result is simply a natural number (the symbol) assigned to each location s that,
according to the previous symbolization map, measures the degree of coincidence of variable x
in location s with its neighbourhood. The same can be done for y and, finally, also for the
bivariate process Z.

3.2 Entropy: Definitions and concepts

The symbols entail a (rough) description of the spatial distribution of the associated process, and
entropy is a measure of the information conveyed by a distribution function. It seems natural to
relate the two concepts in what we call symbolic entropy. We begin by introducing some basic
definitions.

Let us assume that a is a discrete random variable that takes on values {a1, a2, . . . , an} with
probabilities p(ai) for i = 1, 2, . . . , n. Shannon entropy for this variable, h(a), is defined as:

h a p a p ai i
i

n

( ) = − ( ) ( )( )
=
∑ ln .

1

The extension to the bivariate case (a, b), where b is another discrete variable with a finite
number of categories, is simple: h a b p a b p a b

ba

, , ln ,( ) = − ( ) ( )( )∑∑ . In this case, we need the joint

probability distribution p(a, b). Similarly, we can obtain the conditional entropy of variable a with
respect to b: h a b p a b p a b

ba

( ) = − ( ) ( )( )∑∑ , ln . The conditional entropy measures the entropy of

a that remains when b has been observed, and it is very important in our procedure because it
encapsulates the notion of additional information upon which rests Granger’s approach.

It is true that the probabilities of the symbols are unknown, but they can be estimated using the
corresponding frequencies.After symbolizing the series {xs}s∈S and {ys}s∈S for a given embedding
dimension, m ≥ 2, we calculate the absolute and relative frequencies of the set of symbols σ i

x :

n s S s type x
i
x i

x

σ
σ= ∈ −{ }# | ,is for (12)

p p
s S s is type for x

S

n

Si
x

i
x

i
x

i
x

σ σ
σ

σ( ) ≡ =
∈ −{ } =

# |
, (13)

where |S| denotes the cardinality of set S, in general |S| = N. Similarly for the symbols
corresponding to y, σ j

y , and for those of the bivariate case, Zs = {xs, ys}s∈S, ηij ∈ Ωn:

p p
s S s is type

S

n

Sij ij

ijijη
η

η
η( ) ≡ =

∈ −{ }
=

# |
. (14)

The symbolic entropy for the two–dimensional spatial series {Zs}s∈S is the Shannon entropy:

h m p pZ

m

( ) = − ( ) ( )( )
∈
∑ η η

η

ln .
Ω2

(15)

Similarly, we estimate the marginal symbolic entropies as:

h m p p x y
m

δ
δ δ

σ

σ σ δ
δ

( ) = − ( ) ( )( ) =
∈
∑ ln , , .

Γ
(16)
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The symbolic entropy of y, conditioned to symbol σx in x is:

h m p p
y

y x y x
x

y
m

|
| ln | ,

σ
σ

σ σ σ σ( ) = − ( ) ( )( )
∈
∑

Γ
(17)

from which we estimate the conditional symbolic entropy of y given x:

h m p py x
x y y x

y
m

x
m

| = , | .( ) − ( ) ( )( )
∈∈
∑∑ σ σ σ σ

σσ

ln
ΓΓ

(18)

After a few manipulations, and using the well-known result that p(σx, σy) = p(σx)p(σy|σx), we
obtain a more compact expression for the conditional symbolic entropy:

h m p h my x
x

y x
x

m

| |
.( ) = ( ) ( )

∈
∑ σ

σ
σ Γ

(19)

All the elements that appear in (19) have been estimated previously, in (13) or in (17), so this
magnitude can also be estimated. As indicated, the conditional symbolic entropy of y given x
measures the uncertainty that remains about y, once the distribution of x, has been fixed. In
causal terms, a decrease in this quantity means a certain impact of x on y.

4 Spatial causality in information

The test to be present in this Section will help us to determine if a variable, x, causes another
variable, y, according to the spatial patterns observed for the two variables. It is worth remem-
bering that this test is the final stage of a longer process. As discussed in Herrera (2011), a
number of issues have to be considered:

(1) The role of the space. Two series are analysed in a spatial support and it is crucial making
sure that space is a factor that we need to consider and how it should be treated. This
amounts to discussing which is the most adequate spatial weight matrix and testing the
assumption of spatial independence of both series. If the series are spatially independent, in
a univariate sense, a traditional causality analysis would be advisable (i.e., as in Heckman
1999).

(2) The relation between the variables. Assuming that the space is relevant and that we have
selected the corresponding weighting matrix, we need to test for the existence of spatial
dependence between the two variables (Herrera et al. 2013, for a recent test in this direc-
tion). This is a necessary condition for causality.

(3) Assuming that (1) and (2) are satisfied, causality in information implies that there is a
one-way information flow between the two variables. Part of the literature on causality
(Charemza and Deadman 1997, for example) discards the notion of simultaneous causality
(x and y cause each other simultaneously) as a case of effective causation between variables.
We follow this approach. By ‘one-way information flow’ we mean that entropy measures
detect causality in one direction but not in the reverse direction.

Below we focus on the third point; the other two are beyond the scope of the current
paper.

Let {xs}s∈S and {ys}s∈S be two spatial processes and let W x y,( ) be the set of spatial-
dependence structures (that is, the set of spatial weighting matrices relevant for each variable)
between x and y.
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We use

X WW = ∈ ( ){ }W x W x yi i| , , (20)

Y WW = ∈ ( ){ }W y W x yi i| , , (21)

to denote the sets of spatial lags of x and y given by all the weighting matrices in W x y,( ).

Definition. We say that {xs}s∈S does not cause {ys}s∈S under the spatial structures XW and
YW if

h m h my y| | , .Y Y XW W W
( ) = ( ) (22)

Then, we propose an unilateral non-parametric test for the following null hypothesis

H x ys s S s s S0 : { } { }∈ ∈does not cause under the spatial structuress andX YW W, (23)

with the following statistic:

ˆ , ˆ ˆ .,δ Y XW W Y Y XW W W
( ) = ( ) − ( )h m h my y (24)

That is, if XW does not contain extra information about y then ˆ ,δ Y XW W( ) = 0, otherwise,
ˆ ,δ Y XW W( ) > 0. As usual, the hat, ‘∧’, means estimated. The alternative is that the null hypoth-

esis of (23) is not true.
Note that, as indicated in subsection 3.2, h my|YW

( ) measures the uncertainty of the distribu-
tion of symbols of y, conditional to the symbols of its spatial lag, YW . Moreover h my| ,Y XW W

( )
measures the uncertainty of the distribution of symbols of y, conditional to the symbols of the
spatial lags of y, YW , and of x, XW . If the second variable, x, indeed causes the first one then
there should be a significant decrease in the entropy, and the statistic of (24) will take on high
positive values. On the contrary, if there is only correlation, but not causation, the difference
between both entropies will be small.

In order to remain in a model-free framework, we prefer to determine the significance of the
test using bootstrap methods. Following the guidelines of the non-overlapping time block
bootstrap of Carlstein (1986), Herrera et al. (2013) apply a similar approach in spatial context.
Under the name of spatial block bootstrap, SBB, the authors break down the dependence
between the series but preserving most of the spatial structure in each series. The SBB proce-
dure, with a number B of bootstraps, consists of the following steps:

1. Compute the value of the statistic δ̂ Y XW W,( ) using the original data, {xs}s∈S and {ys}s∈S.
2. Divide each spatial series into b = N/l contiguous observational blocks of l units. Remember

that N is the sample size. By contiguous observational blocks we mean that the observations
of each block are contiguous according to the W matrix. The blocks cannot overlap and must
cover the entire space.1

3. Generate two new samples of length N by resampling, with replacement, the b blocks of x
and y. Let us call {xs(i)}s∈S and {ys(i)}s∈S the two bootstrapped series, where i is the number
of the bootstrap sample.

1 This condition means that each location belongs to one and only one block and the blocks are designed to contain and
exhaust all locations.
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4. Estimate the bootstrapped realization of the statistic ˆ ,δ i( ) ( )Y XW W using the bootstrapped
series {xs(i)}s∈S and {ys(i)}s∈S.

5. Repeat B − 1 times steps 3 and 4 to obtain B bootstrapped realizations of the statistic
ˆ ,δ i

i

B( )
=

( ){ }Y XW W 1
.

6. Compute the estimated bootstrap p – value:

p value
Bboots

i

i

B

− ( )( ) = ( ) > ( )( )
=
∑ˆ , ˆ , ˆ , ,δ τ δ δY X Y X Y XW W W W W W

1

1

(25)

where τ(·) is an indicator function that assigns 1 if inequality is true and 0 otherwise.
7. Reject the null hypothesis that {xs}s∈S does not cause {ys}s∈S under the spatial structure

W x y,( ) if

p valueboots − ( )( ) <ˆ , ,δ αY XW W (26)

for a nominal size α.

5 Monte Carlo simulations

The objective of this section is to study the behaviour of the test in (24) for finite samples. We
examine the empirical size in two cases: (i) when x and y are iid and (ii) if they are spatially
dependent. We also want to examine the power of the test in presence of linear and non-linear
spatial causality.

5.1 Experimental design

Each experiment begins by obtaining a random map in a bivariate system of co-ordinates. Then
a normalized W matrix is built following the m − 1 nearest neighbours criterion.

The following global parameters are involved in the data generating process (DGP):

N m∈{ } ∈{ }320 560 800 4 5 6, , , , , , (27)

where N is the sample size and m is the embedding dimension. We simulate linear and non-linear
relations between the two variables x and y:

y I W x Wx= −( ) + +( )−ρ β θ ε1 , (28)

y I W x Wx= −( ) + +⎡⎣ ⎤⎦
−exp ( ) ,ρ β θ ε1 (29)

where x ∼ ∼N N0 1 0 1, , ,( ) ( )ε , cov(x, ε) = 0 and ρ ∈ {0.0; 0.3; 0.5; 0.7}.
We want to control for the intensity of the signal between the two variables using the

expected Ry x/
2 coefficient in a hypothetical linear equation:

y x Wx= + +β θ ε. (30)

The expected Ry x/
2 in (30), under the assumptions above, is:

R
m

my x/ .2
2 2

2 2

1

1 1
=

+ −( )
+ −( ) +

β θ
β θ
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We have considered two values for this coefficient:

Ry x/ . ; . .2 0 6 0 8∈{ } (31)

For simplicity, in all cases we use β = 0.5. The spatial lag parameter of x is obtained simply

as: θ β
=

−( ) −( ) −( )
−

1 1

1

2 2 2

2

m R R

R
.

The empirical size has been estimated using two independent processes such as:

y Wyy y= +ρ ε , (32)

x Wxx x= +ρ ε , (33)

where as before ε λλ ∼ N 0 1, ; ,( ) = x y and:

ρy ∈{ }0 0 0 4 0 8. ; . ; . ,

ρx ∈{ }0 0 0 3 0 7. ; . ; . .

As a general rule, following Rohatgi (1976), we consider that there should be, on average,
five observations for each symbol whose frequency is estimated (this decision affects the sample
size and the number of variable used in the experiment).

5.2 Monte Carlo results

The size is the percentage of false rejections of the null hypothesis of no causality from x to y.
Under the best of circumstances, this empirical size should be closed to the nominal level. If the
empirical size is smaller than the nominal level, the test is called conservative, and oversized in
the opposite case.

It is important to stress that all the results below have been obtained after a double testing
sequence. That is, global empirical size reflects the percentage of cases in which the hypothesis
of (23) is incorrectly rejected and, simultaneously, its complement (y does not cause x) is
correctly non-rejected. That is, we compute a false positive only if the hypothesis of (23) is
unambiguously rejected by detecting one way information flow from x to y. Similarly, global
estimated power is the percentage of rejections of the null of (23) with the simultaneous
non-rejection of the complementary hypothesis (y does not cause x). Simultaneous rejection of
both null hypothesis, as indicated before, does not allow identifying an unambiguous direction
of causality. These cases are excluded when computing the estimated power.

Table 1 shows the empirical size of the statistic at a 5 per cent nominal level. As it is
evident from this table, the best situation for the ˆ ,δ Y XW W( ) test corresponds to iid series
(ρy = ρx = 0) when the empirical size is close to the nominal level. The test becomes conser-
vative for higher values in any of the two parameters of spatial dependence. In other words, it
is more difficult to reject the null hypothesis of non causality when there is spatial structure in
the variables.

Table 2 shows the estimated global power obtained for the linear case (28). As expected, the
estimated power function increases with the size of the sample size and with the embedding
dimension. For high values of the coefficient of spatial autocorrelation of y, such as 0.7, and
small sample sizes the estimated power decreases slightly. Note that the estimated power for
large samples and ample m − surroundings is 100 per cent.
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For the non-linear process, Table 3, the test shows a good performance in almost all cases.
As before, the estimated power improves with the sample size and the dimension of the m −
surroundings.

Table 1. Global empirical size of ˆ ,δ Y XW W( ) test at 5 per cent level

ρy ρx N = 320 N = 560 N = 800

m = 4 m = 4 m = 5 m = 4 m = 5 m = 6

0.0 0.0 5.5 4.9 5.4 5.5 3.4 4.0
0.0 0.3 3.8 3.7 4.9 3.6 4.2 3.1
0.0 0.7 2.0 1.5 1.1 4.0 2.2 0.3
0.4 0.0 3.7 4.7 3.0 5.2 3.2 2.4
0.4 0.3 2.7 2.9 2.1 3.0 2.1 1.7
0.4 0.7 1.5 2.5 0.4 2.5 1.2 0.2
0.8 0.0 1.0 1.6 0.9 2.9 0.6 0.4
0.8 0.3 0.8 1.8 0.5 1.8 0.5 0.3
0.8 0.7 0.2 0.7 0.1 1.0 0.1 0.1

Notes: Boots: 399. Blocks: 8. Replications: 1,000.

Table 2. Global estimated power of ˆ ,δ Y XW W( ) test at 5 per cent level. Equation (28): linear case

N ρ Ry x/ .2 0 6= Ry x/ .2 0 8=

m = 4 m = 5 m = 6 m = 4 m = 5 m = 6

320 0.3 92.2 – – 87.5 – –
320 0.5 97.0 – – 97.3 – –
320 0.7 92.2 – – 95.8 – –
560 0.3 87.6 98.3 – 82.0 98.0 –
560 0.5 96.1 99.6 – 94.5 99.3 –
560 0.7 99.3 99.7 – 98.8 99.8 –
800 0.3 68.0 93.3 99.4 54.6 90.1 99.7
800 0.5 87.5 98.6 100.0 83.1 98.6 99.9
800 0.7 96.9 99.8 100.0 95.9 99.7 100.0

Notes: Boots: 399. Blocks: 8. Replications: 1,000. Empty cells correspond to cases where number of observations per
symbol is below of 5.

Table 3. Global estimated power of ˆ ,δ Y XW W( ) test at 5 per cent level. Equation (28): non-linear case

N ρ Ry x/ .2 0 6= Ry x/ .2 0 8=

m = 4 m = 5 m = 6 m = 4 m = 5 m = 6

320 0.3 91.3 – – 87.7 – –
320 0.5 95.5 – – 94.6 – –
320 0.7 93.8 – – 95.4 – –
560 0.3 82.3 93.0 – 78.8 92.7 –
560 0.5 91.7 98.3 – 87.6 97.4 –
560 0.7 97.2 99.5 – 96.1 99.6 –
800 0.3 69.5 87.9 97.0 57.2 82.4 95.7
800 0.5 83.3 94.8 99.3 78.9 93.7 99.3
800 0.7 94.9 98.3 100.0 91.0 97.9 99.8

Notes: Boots: 399. Blocks: 8. Replications: 1,000. Empty cells correspond to cases where number of obs. per symbol
is below of 5.
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Overall, these results are quite satisfactory in spite of the test being conservative. A conser-
vative test reduces the possibility of committing the error of correctly rejecting the null hypoth-
esis but for the wrong reasons. The situation of the Ry x/

2 is a bit puzzling. Its impact is positive
for small samples (higher Ry x/

2 means, in general, higher power) but a worsening effect, due to
the univariate spatial dependence of the series, tend to offset when the sample size increases. We
are working in this aspect.

6 Unemployment and migration in US counties

The debate between unemployment and migration has a long tradition in the economic litera-
ture. At the risk of simplifying, we can say that the axiom that immigration causes unemploy-
ment is part of the neoclassical paradigm (Borts and Stein 1964). Assuming homogeneity in the
labour force and perfect competition in the market of goods, workers move to prosperous
regions attracted by higher salaries. The inflow increases labour supply in these regions (direct
effect). In turn, migrants increase the consumption of local goods, leading companies to hire
more workers (indirect effect). It is customary to assume that direct effects prevail over the
indirect effects, raising unemployment in the regions of destination. New economic geography
(Krugman 1991) assumes imperfect competition on the goods market and rigid labour markets
but the conclusion is the same: migration causes unemployment.

Other strands of literature conclude that unemployment is the cause of migration. Pissarides
and Wadsworth (1989) argue that people move from places where they are not fully employed
to places offering greater possibilities of being employed. In fact, it is well documented that
unemployment in the place of origin increases the willingness to migrate (Antolin and Bover
1997).

In sum, this controversy constitutes an interesting piece of research because:

• There is no consensus about the relation between unemployment and migration; let us add that
there exist abundant evidence supporting both hypothesis.

• The spatial dimension, although not in a very prominent role, has been frequently considered
in this debate.

• Typical data consist of national, or regional, time series data; rarely a pure cross-section has
been used.

• Granger notion is the preferred option in causality studies in this field.

This section analyses the relation between unemployment and net migration in 3,108 US
counties for the period 2003–2008. The purpose is testing for causality between the two
variables and, if so, detecting the direction of causation using the methodology introduced
previously.

We use annual data. The unemployment rate is equal to the number of unemployed divided
by the labour force.2 Net migration is the difference between in-migration to an area and
out-migration from the same area, on a July-to-July comparison, as a proportion of an area’s
population at the midpoint of the time period and expressed per 1,000 population.3

Table 4 presents a summary for the 3,108 US counties during the six years period. The
unemployment rate fell for the whole period 2003–2007. The average rate for the counties was

2 Unemployment rate was estimated using labour force data by county, annual averages (Bureau of Labor Statistics,
Local Area Unemployment Statistics programme).

3 Includes domestic and international migration (United States Census Bureau, Demographic Components of County
Population Change).
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5.97 per cent in 2003, falling to 4.84 per cent in 2007. Net migration grew in the first four
periods, from an average of 0.85 per cent in 2003 to 2.26 per cent in 2006. Years 2007 and 2008
show a decrease in the aggregated value reaching a negative mean to −0.14 per cent, that is
outmigration exceed immigration on average. The dispersion differs among variables and
between periods. In the case of unemployment, the standard deviation fell from 2003 to 2006
and then increased over 2008 reaching a value of 2.07. Dispersion in the net migratory rate grew
throughout the first four periods but decreased for the last two years.

Net migration is measured from July to July but unemployment is measured on a calendar
year. In order to reduce this mismatch, we use averaged data for 3-years periods: 2003–2005,
2004–2006, 2005–2007, 2006–2008, plus the average corresponding to the overall period
2003–2008.

Figure 3 shows the spatial distribution of unemployment and net migration (averaging all
years). There are clusters of high unemployment in West Coastal counties and in some North-
eastern regions in the area of Michigan, Wisconsin and Maine. Furthermore, we can detect
clusters of low unemployment rate in North Central regions and in some states of East Coast
(Virginia, Maryland, Columbia, Vermont and New Hampshire). With regards to migration flows,
the Western and Eastern states are recipients whereas the central states are generators of
migrants.

As said, there are 3,108 counties in the sample. Applying the rule of m3·5 ≅ N, we choose an
embedding dimension m equal to 9, which means that the symbol corresponding to each county
has been obtained using the eight nearest neighbours.

Before testing causality, we did some preliminary checks in order to assure that the weight-
ing matrix corresponding to the eight nearest neighbours is an adequate selection. Moreover,
there is strong spatial dependence in these series according to Moran’s I. Finally, and conditional
to the spatial structure identified in the weighting matrix, unemployment and migration are
statistically dependent over space, as shown by the Ψ2 test (Herrera et al. 2013). Main results
appear in Table 5.

Table 6 shows the results of the testing strategy introduced in Section 4. We detect spatial
causality from net migration to unemployment. Indeed, there is a clear signal of causality in our
county dataset, in the sense that the information flow is unidirectional from migration to
unemployment.

Summarizing, space is relevant to interpret the relation between net migration and unem-
ployment in the US counties; the two variables are not spatially independent and there exists
causality from migration to unemployment. The reverse causal mechanism is not supported by
the data.

Unemployment must be on the left hand side and migration on the right hand side of the
equation. Then we can proceed with the labour of building the model in a gets or stge strategy.

Table 4. Unemployment rate and net migration by US county

Year Unemployment Rate (%) Net Migration (‰)

Average Stand. Dev. Average Stand. Dev.

2003 5.97 1.93 0.85 13.83
2004 5.63 1.77 1.63 15.34
2005 5.38 1.78 1.28 15.39
2006 4.89 1.67 2.26 18.44
2007 4.84 1.69 1.15 14.77
2008 5.76 2.07 −0.14 14.42

Source: US Census, Bureau of Labor Statistics.
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Let us assume that we cannot reject linearity and that, finally, a spatial Durbin model has been
selected, such as:

y y x x ui i i i i= ′ + + ′ +ρ β βw w1 2 , (34)

Table 5. Spatial dependence tests

Year Unemploment Net Migration Net Migration – Unemployment

Moran’s I Moran’s I p – value (Ψ2)

2003–2005 0.55*** 0.40*** 0.030**
2004–2006 0.56*** 0.39*** 0.047**
2005–2007 0.58*** 0.38*** 0.040**
2006–2008 0.61*** 0.36*** 0.027**
2003–2008 0.58*** 0.42*** 0.045**

Notes: **: significant at 5%, ***: significant at 1%. Permuts: 499, W: 8 nearest neighs.

17.4

2.0

Unemployment Rate, 2003−2008

77.2

-93.5

Net Migration Rate, 2003−2008

Fig. 3. Spatial distribution of unemployment and net migration by county. Average 2003–2008
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i indexes counties, y is unemployment rate, and x is net migration. Also, ui an error term, ρ is a
parameter that captures the diffusion effect, β1 is a parameter that captures the causal effect of
net migration in the location and β2 is the causal effect of the net migration of the nearest
neighbours. After estimating and calibrating the equation, the subsequent study of multipliers
should be done to complete the analysis. The difference is that, now, the direct and indirect
effects will have a strong causal meaning.

To open the path to other applications, we develop a Matlab routine for this estimation
procedure, which can be downloaded for free from the web pages Spatial Causality (https://
sites.google.com/site/spatialcausality/codes) and Runmycode (http://www.runmycode.org/
companion/view/708).

7 Conclusion and discussion

Pagan (1989, p. 89) admitted his disappointment with the notion of causality in the field of
econometrics, writing that ‘there was a lot of high powered analysis of this topic, but I came
away from a reading of it with the feeling that it was one of the most unfortunate turnings for
econometricians in the last two decades, and it has probably generated more nonsense results
than anything else during that time’. We partially share his disappointment. However we do
think that causality is one of the major concepts developed in modern economics and, because
of that, we need powerful techniques to deal with it.

Following the Granger-Wiener tradition, we identify causality with the principle of incre-
mental informative content. Granger’s approach is greatly dependent of the temporal precedence
principle: there must be a time lag between cause and effect. This is intuitive but it is not
applicable to pure cross-sections, where the notion of additional informative content works
better. We have tried to extend this reasoning by developing adequate measures of information
content, with the aim of solving the causality analysis. Intuitively, our definition establishes that
the cause variable should provide additional, and unique, information about the effect variable.

The δ test of spatial causality developed in this paper compares two distribution functions;
in fact it looks for significant differences in their informative content by using measures of
conditional entropy. One of the distributions uses all the information available in the space
concerning the effect variable, whereas the other adds the spatial information of the variable
assumed to be the cause. The test is intuitive and does not need of any hypothesis about
functional form, distribution function, or other aspects of the specification. It is a fully non-
parametric causality test.

This proposal sharply contrasts to the usual practice in applied literature, where dominates
an approach based on the Wold decomposition theorem and the VAR representation of stationary
time series. The extension of VAR methodology to a spatial framework has been subject to

Table 6. Results of spatial causality test

H0 Unemploment ⇏ Migration Migration ⇏ Unemploment Conclusion

Periods p – value p – value

2003–2005 0.100 0.045 Migr. ⇒ Unemp.
2004–2006 0.882 0.048 Migr. ⇒ Unemp.
2005–2007 0.827 0.049 Migr. ⇒ Unemp.
2006–2008 0.812 0.047 Migr. ⇒ Unemp.
2003–2008 0.652 0.050 Migr. ⇒ Unemp.

Notes: ‘⇏’ means does not cause and ‘⇒’ means causes. m = 9, Boots: 399, Blocks: 42 (74 observations by block).
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intense investigation in recent years with significant results (i.e., Beenstock and Felsenstein
2007; Mutl 2009; Di Giacinto 2010, to mention just a few). Indeed, it offers some advantages
(simplicity, easy to generalize, etc.) but also has weaknesses among which we can mention:
(i) spatial data are usually more complicated than time series data, at least because of the
multidirectionality of the relations and to the uncertainty in relation to the so-called weighting
matrix; and (ii) the notion of prediction in a spatial setting is difficult to apply (in spite of some
recent interesting work, Kelejian and Prucha 2007). Specifically, research made by the authors
in this direction did not produce acceptable results with respect to spatial causality. In any case,
this is a field that merits more investigation in the future.

One of the problems of our own proposal is that we need of symbolization maps to evaluate
and compare the entropies of the distributions. We distinguish between standard and non-
standard symbolization functions (the first assigns equal probability to each symbol, whereas the
second allows for symbols with different probabilities). Standard symbolization maps were used
previously to capture spatial dependence in quantitative and/or qualitative series (see López
et al. 2010; Ruiz et al. 2010). The symbolization function developed in our paper is non-
standard, partly, because this type of function assures a more efficient use of the information to
estimate the probability of the symbols.

It should be acknowledged that the discussion in relation to the symbolization function
(specification, properties, comparison, selection, etc.) is an area still under development that
needs further research. The function used in this paper produced reasonable results, but we
cannot exclude the existence of better optimal symbolization functions.

Another difficulty related to our approach is the generalization to the case of more than two
variables. From a theoretical point of view, the extension to a multivariate context is not a
problem: it is enough with extending the set of conditioning factors that appear in the entropy
of the right hand side of (22), (i.e., the trivariate case where z and x are the variables assumed
cause of y, hy| , ,Y X ZW W W

, where the notation is obvious). The real problem in this direction is the
inflation of degrees of freedom: the more potential causing variables we introduce in the
analysis, the more symbols we need to add to the procedure, which increases the need of
observations to estimate correctly their probability. This point is clearly related with the problem
of producing efficient symbolization functions.

Finally, let us remind that the δ test shows a good behaviour in samples of medium to large
sample size. Moreover, it is robust to the functional form of the relation and we do not need the
assumption of normality. This procedure to detect causality has been applied to the debate about
unemployment versus migration. There is an abundant literature supporting the assumptions that
migration causes unemployment and also that unemployment causes migration. Using data on
US counties for the 2003–2008 period, we have found clear evidence supporting the first
hypothesis: migration causes unemployment.

It is clear that the topic of causality in spatial econometric models requires more attention.
More work is needed in this field, both of an applied and methodological type. Our impression
is that the topic is of sufficient importance to justify this effort.
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Resumen. Este artículo se centra en el problema de probar la existencia y la dirección de la 

causalidad en un grupo de variables, mediante un marco espacial. Nuestro objetivo es producir 

criterios útiles para debatir la causalidad en función de bases racionales y objetivas. Se introduce 

un nuevo test no paramétrico, basado en la entropía simbólica, que es robusto en cuanto a la forma 

funcional de la relación. La prueba muestra un buen comportamiento en muestras de tamaño 

medio a grande. La propuesta se ilustra con un ejemplo en torno al caso de la migración frente 

al desempleo, a partir de datos de 3108 condados de los EE.UU. para el período 2003–2008.
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