
Pattern Recognition 60 (2016) 720–733
Contents lists available at ScienceDirect
Pattern Recognition
http://d
0031-32

n Corr
E-m

palonso
montes
journal homepage: www.elsevier.com/locate/pr
Fuzzy mathematical morphology for color images defined by fuzzy
preference relations

Agustina Bouchet a,b, Pedro Alonso c, Juan Ignacio Pastore a,b, Susana Montes d, Irene Díaz e,n

a Digital Image Processing Lab, ICyTE, Engineering Faculty National University of Mar del Plata, Argentina
b CONICET, Argentina
c Department of Mathematics, University of Oviedo, Spain
d Department of Statistics and O.R., University of Oviedo, Spain
e Department of Computer Science, University of Oviedo, Spain
a r t i c l e i n f o

Article history:
Received 2 July 2015
Received in revised form
25 May 2016
Accepted 17 June 2016
Available online 27 June 2016

Keywords:
Mathematical Morphology
Color Images
Morphological Operators
Fuzzy Order
Fuzzy Preference Relations
x.doi.org/10.1016/j.patcog.2016.06.014
03/& 2016 Elsevier Ltd. All rights reserved.

esponding author.
ail addresses: abouchet@fi.mdp.edu.ar (A. Bou
@uniovi.es (P. Alonso), jpastore@fi.mdp.edu.ar
@uniovi.es (S. Montes), sirene@uniovi.es (I. Dí
a b s t r a c t

Nowadays, the representation and the treatment of color images are still open problems. Mathematical
morphology is the natural area for a rigorous formulation of many problems in image analysis. Moreover, it
comprises powerful non-linear techniques for filtering, texture analysis, shape analysis, edge detection or
segmentation. A large number of morphological operators have been widely defined and tested to process
binary and gray scale images. However, the extension of mathematical morphology operators to multi-
valued functions, and in particular to color images, is neither direct nor general due to the vectorial nature
of the data. In this paper, basic morphological operators, erosion and dilation, are extended to color images
from a new vector ordering scheme based on a fuzzy order in the RGB color space. Experimental results
show that the proposed color operators can be efficiently used for color image processing.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Techniques of artificial vision have been initially developed for
binary and gray scale images, where the information is codified by
2 and +2n 1 with ∈ n levels respectively. Nevertheless, the color is
an important source of information. For this reason, during the last
years these techniques have been developed for color images.
However, nowadays, the representation and the treatment of color
images are still open problems [1–4].

Mathematical morphology is the natural area for a rigorous
formulation of many problems in image analysis, as well as a
powerful non-linear technique which includes operators for the
filtering, texture analysis, shape analysis, edge detection or seg-
mentation. In the 1980s, Matheron and Serra [5–8] proposed the
last mathematical formulation of morphology within the algebraic
framework of the lattices. This means that the definition of mor-
phological operators needs a totally ordered complete lattice
structure. In that context, before defining the basic morphological
operators (erosion and dilation) it is necessary to define an order
on the space used for processing the images.
chet),
(J.I. Pastore),
az).
The definition of an order for both binary and gray levels
images is straightforward because for both sets an order relation
exists, inclusion for binary images and the order relation inherited
from  for gray levels image. However, for color images two
problems arise. On one hand, the chromatic space in which the
image is processed [9,10]. On the other hand, it is not clear what
order is the best because of the vectorial nature of the data [11–
19]. Barnett [20] introduced four types of vector orderings: mar-
ginal (M-order), reduced (R-order), conditional (C-order) and
partial (P-order). When applied to color data, all these orderings
have certain disadvantages, depending on the goal. For instance,
the marginal ordering introduces false colors [16,21,22] and the
conditional ordering generates visual nonlinearities from the hu-
man perception point of view; the reduced and partial orderings
are either relying on pre-orderings, thus lacking the anti-sym-
metry property, or generate perceptual nonlinearities, as condi-
tional orderings.

A widely used order in the literature is the lexicographic one.
Several authors have used the complete lattice associated to this
order and defined the dilation and erosion operators for color
images according to it [1,10–12,18,21]. Although the results based
on it are successful, this order is not suitable because some com-
ponent is more important than the others when vectors are sorted.
Therefore, it is necessary to make a choice in advance and there-
fore the component selected as priority will have more weight
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than the others, so that the order will depend on this choice. This
is an important drawback because in many problems all the
components must have the same importance.

The starting point of this paper is fuzzy mathematical mor-
phology. It is a different approach extension of the mathematical
morphology's binary operators to gray level images, by redefining
the set operations as fuzzy set operations. It is based on fuzzy sets
theory [23–30]. The goal of this paper is to define the operators of
the fuzzy mathematical morphology for color images through the
use of a fuzzy order. In addition, the extended operators consider
all the components with the same weight and avoid false colors.

Note that this approach could be applied to other multivariate
images. However, the extension of mathematical morphological
operators to multichannel data with hundreds of spectral channels
is not straightforward. Some interesting results about ordering for
multivariate images in high dimensional spaces can be found in
[31–33]. The approach proposed in [31] consists in computing an
order based on the distance to a central value, obtained by the
statistical depth function, while in [32] an additive morphological
decomposition based on morphological operators is considered.
On the other hand, in [33], the authors presented different kinds of
partial orders based on the end member representation of the
hyperspectral images.

This paper is organized as follows: Section 2 reviews the gen-
eral concepts of the mathematical morphology for color images;
Section 3 presents the main contribution of this paper, i.e., a fuzzy
ordering based on preference relations. Besides, the way in which
the fuzzy order is applied to color images is explained. Section 4
studies invariant properties. In Section 5 the results obtained with
the fuzzy mathematical morphology for some color images are
shown. Finally, the last section details some conclusions and dis-
cusses possible future lines of research.
2. Mathematical morphology for color images

Mathematical morphology (MM) is a non-linear theory for
spatial analysis of images where the topological relations and the
geometry of the objects in the image are the parameters char-
acterizing the object under study [5–7,34]. The main idea of this
methodology is the decomposition of a operator into a combina-
tion of the basic operators: erosion, dilation, anti-erosion and anti-
dilation, as well as the supreme and the infimum operations.

Fuzzy set theory has been extensively applied to image pro-
cessing [27]. In particular, one extension of binary MM is the
fuzzy mathematical morphology (FMM) [23,24,27–30,35]. It in-
corporates fuzzy logic concepts for extending binary morphologi-
cal operators to gray levels images allowing us to model and
manipulate in a different way the uncertainty and imprecision
present almost in all different types of images. One possible ap-
proach is to fuzzify the logical operators involved in the inter-
section and inclusion definitions required to define dilation and
erosion [23,24]. In the same line in [27] fuzzy dilation and fuzzy
erosion is presented a similar approach but t-norms are used in-
stead of a conjunctor to define the fuzzy dilation and the asso-
ciated model implicator to define the fuzzy erosion. This model is
less general than the previous one. Extending the Minkowski ad-
dition to an operation on fuzzy sets in n is another possibility to
define a fuzzy dilation [24]. There are also other different ap-
proaches as those based on non-fault operators [36].

The afore mentioned approaches extend the initial basic mor-
phological operators defined for sets (binary images) in an im-
mediate way to functions (gray levels images) [5–7,34,37]. This
extension was made in a natural way because in both sets exist an
order relation, inclusion for binary images and the order relation
inherited from  in the case of gray level images. Therefore, the
complete lattice can integrate the theoretical models of the MM.
Assuming this, the color mathematical morphology (CMM) can be
developed from the MM for gray level images. In that case, the
definition of a complete lattice in the color space representing the
chromatic information of the digital images becomes necessary.
However, there is not a natural order for multidimensional data
and therefore the extension of MM to CMM is not straightforward.

This will be our starting point for processing color images.
Analogously to CMM, the FMM for color images is developed from
the definition of a total fuzzy order.

The morphological processing of color images, modeled as
functions τ⊂ → ⊂ f D: f

2 3 (Df is the domain of the image and τ
represents the color space) is usually performed from two points
of view: the marginal processing and the vectorial processing [13].

The marginal processing consists in applying the morphological
operators defined for gray scale images to each color component of
the image. An important drawback of this approach is that false
colors usually appear as the combination of the processing com-
ponents that generate new sequences of pixels. Actually this is an
important problem that should be avoided. The vectorial proces-
sing is based on applying a unique operation to the image con-
sidering it as an indivisible composition of vectorial pixels. In such
approach the notion of a complete lattice arises and therefore the
definition of a total order over the subset τ of 3 becomes ne-
cessary. Since there is not any natural order in these sets, it is
necessary to establish an appropriate order on color space τ.

As marginal processing is a particular case of vectorial pro-
cessing, once the order is defined, it is possible to provide a gen-
eral definition for the basic operators called erosion and dilation
(see Section 2.2). Previously, it is necessary to introduce the con-
cept of a structuring element.

2.1. Structuring element

MM examines the geometrical structures of the image by
checking a small neighborhood, called structuring elements (SEs),
in different parts of the image. The SE is a completely defined set
whose geometry is known in advance. It is compared to the image
through translations. The size and shape of the SEs are chosen a
priori depending on the morphology of the set over which it in-
teracts and also according to the desired shape extraction. The SEs
are then moved, so that they cover the whole image pixel by pixel,
making a comparison between each element and the image.

To define the operators of the CMM, the SE plays an important
role. In this case, the SE is not a set as in the binary case or a
function as in the case of gray levels images, but it indicates the
neighborhood over which the pixels of the image are compared.

Definition 1. Let ⊂ → f D: f
2 3 be a color image, let ∈x Df be a

pixel, and let ( )D d,f be a metric space. A structuring element (SE for
short) for a color pixel x is a neighborhood:

( ) = { ∈ ( ) ≤ } ( )B x r y D d x y r, : , 1f

where r denotes any positive real number, which is called
diameter.

Remark 2. The function d is a metric or distance function on Df,
that is, for any ∈x y z D, , f , d satisfies the following properties:

i. ( ) ≥d x y, 0,
ii. ( ) = ⇔ =d x y x y, 0 ,
iii. ( ) = ( )d x y d y x, , ,
iv. ( ) ≤ ( ) + ( )d x y d x z d z y, , , .
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Fig. 1. Different structuring elements: (a) SE defined by d1. (b) SE defined by d2. (c) SE defined by ∞d .

Fig. 2. Image decomposition in a neighborhood.
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Basic examples of different neighborhoods are presented be-
low. They coincide with the notion of SE, which is completely
defined by considering ⊂ Df

2, = ( ) = ( ) ∈x x x y y y D, , , f1 2 1 2 with
one of the following metrics:

(a) Manhattan distance: ( ) = ∑ | − |=d x y x y, i i i1 1
2

(b) Euclidean distance: ( ) = ∑ ( − )=
⎡⎣ ⎤⎦d x y x y, i i i2 1

2 2
1/2

(c) Infinity distance: ( ) = {| − |}∞ ≤ ≤d x y x y, max i i i1 2

Fig. 1 shows the SEs induced by the previous distances. The
geometry and the connectivity of the neighborhood of a pixel are
defined by the used metric while the dimension is defined by the
diameter of the neighborhood.

2.2. Erosion and dilation for color images

As it was previously mentioned, the definition of the basic
operators requires a complete lattice in the color image space. This
complete lattice depends on an order between images, based on
an order on R3. It is defined as follows:

Proposition 3 ([7]). Let ≤τ be an order on τ ⊂ R3. The space of
functions from Df to τ with the order ≤ defined as

≤ ⇔ ( ) ≤ ( ) ∀ ∈τf g f x g x x D, f

for any τ⊆ → ⊆ f g D, : f
2 3 has a lattice structure.

The basic operators for color images are now introduced.

Definition 4. Let τ ⊂ 3 be a color space with a structure of
complete lattice provided by a total order ≤τ . Let B be a SE, the
basic operators erosion ( )ϵ≤τ

B and dilation ( )δ≤τ
B associated to a color

image f are defined as follows:

ϵ ( ) = { ◦ } ( )
≤

∈
τ f f Tinf 2B x B

x

δ ( ) = { ◦ }
( )

≤

∈
−τ f f Tsup

3B
x B

x

being → T :x
2 2 the translation function by the element ∈ x 2,

that is, ( ) = +T s s xx .

Note that for any color image f, any erosion ϵ ( )≤τ fB and any di-
lation δ ( )≤τ fB are new color images.

Example 5. Let f be a color image in RGB space, B the SE defined
by ∞d with r¼3 and x the central pixel of the SE. Fig. 2 shows the
different objects f, B, x and the decomposition of the neighborhood
defined by B in the three components of the RGB space. As an
example, we take some values in each component.

Therefore, to define the erosion or dilation it is necessary
to sort the pixels of the neighborhood to determine the
infimum or maximum respectively. The pixels to sort are the
following: = ( )x 218, 57, 151 ; = ( )x 215, 54, 102 ; = ( )x 215, 53, 73 ;

= ( ) … = ( )x x203, 75, 38 ; ; 132, 38, 124 9 (see Fig. 2).
Applying an order to sort the pixels, both the infimum and

maximum of the pixels are found. In next sections, the way pro-
posed to order the points is explained. Assume, for example, that
the infimum is ( )120, 26, 1 . Therefore, the central pixel of the
neighborhood is replaced by this value as it is shown in Fig. 3.
Following this strategy, the erosion of the color image f is obtained.
Analogously we can obtain the dilation taking the maximum of the
pixels.

From the combination of these basic operators, erosion and
dilation, other operations can be defined in the same way they
were defined for binary and gray levels images [7,34], as we can
see in the following definition.



Fig. 3. Example of an erosion.

A. Bouchet et al. / Pattern Recognition 60 (2016) 720–733 723
Definition 6. Let f a color image and B be a SE, the following
morphological operators are defined as:

� Morphological gradient:

δ ε( ) = ( ) − ( ) ( )≤ ≤ ≤τ τ τGrad f f f 4B B B

� Gradient by erosion:

ε_ ( ) = − ( ) ( )≤ ≤τ τGrad Ero f f f 5B B

� Gradient by dilation:

δ_ ( ) = ( ) − ( )≤ ≤τ τGrad Dil f f f 6B B

� Opening:

γ δ ε( ) = ( ( )) ( )≤ ≤ ≤τ τ τf f 7B B B

� Closing:

ϕ ε δ( ) = ( ( )) ( )≤ ≤ ≤τ τ τf f 8B B B

Let us remark that the erosion and dilation of a color image
strongly depend on the order established in the color space.
Therefore, it has not a unique meaning as in the case of the op-
erators of the MM for binary and gray levels images. In the fol-
lowing section, the order proposed for CMM is explained.
3. Ordering color images

This section is focused on describing the total fuzzy order
proposed for comparing color structures. As a color image is re-
presented by a vector (independently of the selected representa-
tion), it is necessary to study how to compare and order pixels.

3.1. Color image representation

There are many different color representations [9]. RGB is the
most straightforward representation system to manage color
images, widely used in computer system and hardware devices for
color image display. HLS representation system is a color image
polar representation with the variables luminance, saturation and
hue (lum/sat/hue). HLS systems avoids some lacks of RGB model,
but it presents some problems from the quantitative point of
view [1]. There are also other representation as HSV or Lnanbn.
However, the choice of a suitable color space representation is still
a challenging task in the processing and analysis of color images
[9,38].

Thus, RGB space is chosen in this work because the three
components of the image have the same nature, representing a
quantity of a certain primary color. This property is not satisfied
for other color spaces. RGB space is the only codification such that
all the components represent the same concept, the level of sa-
turation of a primary color. An image in this model is composed by
three images, each of them corresponding with a primary color:
red (R), green (G) and blue (B). One possible approach to process
color images is the individual processing of these images. Using
this approach, it is possible to extract shapes and significative
details of the images. However, some tasks as the identification of
an object and the posterior extraction of the scene can be better
solved using the color as a descriptor. For this reason, it is im-
portant to process color images in the color space. On the other
hand, the order proposed can be applied to any subset of Rn. This
allows working with different types of multidimensional data, and
thus, with different representation models [33].

A color image ordering problem is focused on looking for the
pixel (among the n representing an image) which is preferred
according to some criterion. This problem can be seen as a group
decision problem with n alternatives (pixels in this framework)

= { … } ( ≥ )a a n, , , 2n1 and 3 experts = { }e e e, ,1 2 3 (the RGB
components). Each expert (RGB component) provides his pre-
ference among the set of alternatives (pixels). The goal of the
group decision making problem is to look for the alternative which
is most accepted by the experts [39]. The goal here is to apply a
group decision making strategy to identify the pixel most accepted
according to the color representation.

In the following section, the method to select the most ac-
cepted pixel is described. The general procedure described in [40]
is adapted to the pixel ordering problem.

3.2. Fuzzy order

For ordering alternatives in a general framework, it is necessary
to follow the next three steps [39]: Making uniform the informa-
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tion, aggregating and exploiting the information. These three steps
are described below for pixel ordering.

3.2.1. Making the information uniform
The first step consists in transforming each alternative into a

fuzzy preference relation. Thus, a vector = ( )x x x x, ,i i
R

i
G

i
B with

utility values associated to the 3 color components is associated to
each pixel i. Following the method described in [40], three ma-
trices (one associated to each different color component) Pk,

=k R G B, , are constructed as follows:

( )
( ) ( )= ( ) =

+
≠ = …

( )
p h x x

x

x x
i j i j n, , , , 1, 2, , ,

9
ij
k

i
k

j
k i

k s

i
k s

j
k s

where s denotes any fixed positive real number.
The structure of these matrices is given by means of the fuzzy

preference relations. This well-known concept is introduced
below.

Definition 7. Let be a finite set of alternatives, a fuzzy prefe-
rence relation P is a mapping × → [ ]P: 0, 1 such that

( ) + ( ) =P a b P b a, , 1 for each pair of alternatives a and b in . If
has n elements, P can be represented as a matrix:

=
…

⋮ … ⋮
… ( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟P

p p

p p
,

10

n

n nn

11 1

1

where = ( )p P a a,ij i j denotes the degree to which alternative ai is
preferred to alternative aj.

Moreover, if ( ) ∈ [ )P a b, 0, 1/2 , b is said to be preferred over a. If
( ) ∈ ( ]P a b, 1/2, 1 , then a is said to be preferred over b. Finally, in

the case ( ) =P a b, 1/2, a and b are said to be indifferent.
Thus, in the context of this work, each matrix Pk represents the

fuzzy preference relations associated to one color (red, green or
blue). Therefore, considering the particular framework of RGB
images, a neighborhood of dimension n can be represented by its
pixels as follows:

⋮

( )

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

x x x

x x x

x x x 11

R G B

R G B

n
R

n
G

n
B

1 1 1

2 2 2

where the columns respectively correspond to the red, green and
blue components. Following the procedure afore defined and
considering the case s¼1, the three ×n n-matrices PR, PG and PB

are generated as follows:

= +
> >

( )

⎧
⎨⎪

⎩⎪
p

x
x x

x x, if 0 or 0,

0.5 otherwise, 12
ij
R

i
R

i
R

j
R i

R
j
R

where pij
R means the preference of red between the xi and xj pixels.

If pij
R takes values greater than 0.5, it means that the xi pixel is

more intense in the red component than the xj pixel. If pij
R is less

than 0.5, it means that the xj pixel is more intense in the red
component than xi. Finally, if it is equal to 0.5, that means that the
red intensity of both pixels is the same.

In an equivalent way the preferences for the other components
are defined.
= +
> >

( )

⎧
⎨⎪

⎩⎪
p

x
x x

x x, if 0 or 0,

0.5 otherwise, 13
ij
G

i
G

i
G

j
G i

G
j
G

and

= +
> >

( )

⎧
⎨⎪

⎩⎪
p

x
x x

x x, if 0 or 0,

0.5 otherwise. 14
ij
B

i
B

i
B

j
B i

B
j
B

When the two values to compare are equal to zero, the value of pij
is an indetermination. To avoid this, =p 0.5ij as the preference be-
tween pixels xi and xj is the same, i.e., they have the same intensity.
This usually occurs, for example, when two pixels correspond to the
background of the image. Note that the approach followed when the
two values to compare are equal to zero differs from the one pre-
sented in [40].

Example 8. Considering the pixels provided in Example 5, the
following matrix is obtained:

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

218 57 15
215 54 10
215 53 7
203 75 38
209 80 41
205 76 37
120 26 1
128 34 8
132 38 12

According to formulas (12), (13) and (14) the three matrices PR, PG

and PB are obtained:

=

=

=

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

P

P

P

0.5000 0.5035 0.5035 0.5178 0.5105 0.5154 0.6450 0.6301 0.6229
0.4965 0.5000 0.5000 0.5144 0.5071 0.5119 0.6418 0.6268 0.6196
0.4965 0.5000 0.5000 0.5144 0.5071 0.5119 0.6418 0.6268 0.6196
0.4822 0.4856 0.4856 0.5000 0.4927 0.4975 0.6285 0.6133 0.6060
0.4895 0.4929 0.4929 0.5073 0.5000 0.5048 0.6353 0.6202 0.6129
0.4846 0.4881 0.4881 0.5025 0.4952 0.5000 0.6308 0.6156 0.6083
0.3550 0.3582 0.3582 0.3715 0.3647 0.3692 0.5000 0.4839 0.4762
0.3699 0.3732 0.3732 0.3867 0.3798 0.3844 0.5161 0.5000 0.4923
0.3771 0.3804 0.3804 0.3940 0.3871 0.3917 0.5238 0.5077 0.5000

0.5000 0.5135 0.5182 0.4318 0.4161 0.4286 0.6867 0.6264 0.6000
0.4865 0.5000 0.5047 0.4186 0.4030 0.4154 0.6750 0.6136 0.5870
0.4818 0.4953 0.5000 0.4141 0.3985 0.4109 0.6709 0.6092 0.5824
0.5682 0.5814 0.5859 0.5000 0.4839 0.4967 0.7426 0.6881 0.6637
0.5839 0.5970 0.6015 0.5161 0.5000 0.5128 0.7547 0.7018 0.6780
0.5714 0.5846 0.5891 0.5033 0.4872 0.5000 0.7451 0.6909 0.6667
0.3133 0.3250 0.3291 0.2574 0.2453 0.2549 0.5000 0.4333 0.4063
0.3736 0.3864 0.3908 0.3119 0.2982 0.3091 0.5667 0.5000 0.4722
0.4000 0.4130 0.4176 0.3363 0.3220 0.3333 0.5938 0.5278 0.5000

0.5000 0.6000 0.6818 0.2830 0.2679 0.2885 0.9375 0.6522 0.5556
0.4000 0.5000 0.5882 0.2083 0.1961 0.2128 0.9091 0.5556 0.4545
0.3182 0.4118 0.5000 0.1556 0.1458 0.1591 0.8750 0.4667 0.3684
0.7170 0.7917 0.8444 0.5000 0.4810 0.5067 0.9744 0.8261 0.7600
0.7321 0.8039 0.8542 0.5190 0.5000 0.5256 0.9762 0.8367 0.7736
0.7115 0.7872 0.8409 0.4933 0.4744 0.5000 0.9737 0.8222 0.7551
0.0625 0.0909 0.1250 0.0256 0.0238 0.0263 0.5000 0.1111 0.0769
0.3478 0.4444 0.5333 0.1739 0.1633 0.1778 0.8889 0.5000 0.4000
0.4444 0.5455 0.6316 0.2400 0.2264 0.2449 0.9231 0.6000 0.5000

R

G

B

where, for example, =
+

=p
203

203 215
0.4856R

43 .

Once these matrices are obtained, the global preference rela-
tion is obtained by aggregating the three components following
the procedure detailed in the next subsection.



Fig. 4. Invariance properties of fuzzy order. (a) Unit cube. (b) Unit cube translate, scale and rotate.
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3.2.2. Aggregation step
Using the preferences associated to each color component, a

consensus fuzzy preference relation is obtained using an ag-
gregation operator. This concept is introduced in the next
definition.

Definition 9. Let I be a closed interval in . An ordered weighted
averaging aggregation operator (OWA for short) is any aggregation
operator defined by:

∑

⟶

( … )⟶
( )

σ
=

( )

f I I

x x x w x

:

, , ,
15

OWA
m

m
i

m

i i1 2
1

where s is the permutation that sorts the elements in the fol-
lowing way: ≥ ≥ ⋯ ≥σ σ σ( ) ( ) ( )x x x m1 2 and { } =wi i

m
1 is a family of

weights such that ≥w 0i and ∑ == w 1i
m

i1 .

OWA operators were originally introduced by Yager [41] to
provide a method for aggregating scores associated to the sa-
tisfaction of multiple criteria. Examples of OWA operators are the
arithmetic or geometric means, minimum, maximum or median.

The consensus among the 3 fuzzy preference relations is
reached with an OWA operator. Therefore the matrix ∈ ×P n n is
obtained as follows:

( )= ( )p f p p p, , 16ij ij
R

ij
G

ij
B

OWA

Each element of the new preference relation, pij, represents the
preference of pixel xi over pixel xj according to the preferences of
the red, green and blue components of the xi pixel over the xj pixel.
Thus, the pixels can be compared as follows:

Definition 10. Let = ( )x x x x, ,i i
R

i
G

i
B and = ( )x x x x, ,j j

R
j
G

j
B be two

pixels. Let fOWA be an OWA operator. Then the pixel xi is more
intense than the pixel xj if >p 0.5ij with:

=
+ + + ( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟p f

x
x x

x
x x

x
x x

, ,
17

ij
i
R

i
R

j
R

i
G

i
G

j
G

i
B

i
B

j
BOWA

When pij is exactly equal to 0.5, pixels xi and xj have the same
intensity.

The arithmetic mean is used as OWA operator as the purpose of
the work is to give to all the components the same importance and
then to overcome the drawback of some orders used in CMM, as
for example, the lexicographic order.

Example 11. Considering the three matrices PR, PG and PB obtained
in Example 8, the matrix P is obtained:
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=

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

P

0.5000 0.5390 0.5678 0.4109 0.3982 0.4108 0.7564 0.6362 0.5928
0.4610 0.5000 0.5310 0.3804 0.3687 0.3800 0.7420 0.5987 0.5537
0.4322 0.4690 0.5000 0.3613 0.3505 0.3606 0.7292 0.5676 0.5235
0.5891 0.6196 0.6387 0.5000 0.4859 0.5003 0.7818 0.7092 0.6766
0.6018 0.6313 0.6495 0.5141 0.5000 0.5144 0.7887 0.7196 0.6882
0.5892 0.6200 0.6394 0.4997 0.4856 0.5000 0.7832 0.7096 0.6767
0.2436 0.2580 0.2708 0.2182 0.2113 0.2168 0.5000 0.3428 0.3198
0.3638 0.4013 0.4324 0.2908 0.2804 0.2904 0.6572 0.5000 0.4548
0.4072 0.4463 0.4765 0.3234 0.3118 0.3233 0.6802 0.5452 0.5000

where, for example: = + + =p
0.5 0.5047 0.5882

3
0.531023 .

Once the preference relation matrix is obtained, the last step
consists in ordering the different alternatives (that is, the pixels).
The approach followed in this paper is described in the next
subsection [40].

3.2.3. Exploitation step
This last step is in charge of selecting the most intense pixel

from the consensus fuzzy preference relation. To avoid the pre-
vious preference relation to be cyclic, an extension of the weighted
voting method (EWVM) [42] is used. EWVM defines a parameter α
allowing to model the importance of “being desirable” or “not
being preferred” among the whole pixel set.

The algorithm, proposed in [40], is described below. Taking as
input a fuzzy preference relation P over a set of pixels

= { … }a a, , n1 , the parameter α ∈ [ ]0, 1 and an aggregation op-
erator Agg, the method obtains a total fuzzy order among the
pixels after following the steps:

1. Normalize P
2. Separate the “positive preference” ( )+P and the “negative pre-

ference” ( )−P
� = { − }+p pmax 0, 0.5ij ij� = { − }−p pmin 0, 0.5ij ij

3. α α= · + ( − )·α + −P P P1
4. Aggregate each row of Pα and order according the aggregated

value

The computational cost in flops associated to each step is also
analyzed. Regarding the first step (making uniform the information),
each matrix element is obtained with one addition and one division.
Thus, 3n2 additions and divisions are required, being n the number of
Fig. 6. Two synthetic image containing colored balls. (a) Original synthetic image. (b) S
references to color in this figure caption, the reader is referred to the web version of th
matrix elements. Thus, this is a ( )O n2 step. In the aggregation step,
each element is obtained with 2 additions and 1 division, that means,
3n2 basic operations ( ( ))O n2 . Finally, in exploitation step, the most
consuming task is also ( )O n2 .

For more information about this method and how it performs,
authors refer to [39,40]. Note that the previous algorithm induces
the following total fuzzy order:

Definition 12 ([40]). For each set of alternatives = { … }a a, , n1

the binary relations ≻, ≽ and ∼ are defined as follows:

� ≻ ⇔ ∃a a ,i j s t such that ∈ ∈a a,i s j t and <s t .
� ∼ ⇔ ∃a ai j s such that ∈ ∈a a,i s j s.
� ≽ ⇔ ≻a a a ai j i j or ∼a ai j.

The binary relation ≽ is called fuzzy order.

The name of fuzzy order is appropriate since it was proven in
[40] that it is a total order and it is based on a fuzzy relation, in
particular in a fuzzy preference relation.

For explaining these steps in terms of images, it is important to
describe the second and the third steps of the algorithm. The
second one means that preferences pij are divided into two ma-
trices. Given +P , each >+p 0ij means pixel xi is more intense than xj,
and the matrix −P contains all the pixels in which xj is more intense
than xi. Then, these matrices are mixed generating Pα. In our case,
we have considered the case α = 0.5 since we need all the pre-
ferences to have the same importance. Finally, the operator Agg is
applied for sorting the pixels. Thus, we obtain the ordering of the
pixels of the neighborhood taken in the color image.

Example 13. Consider the matrix P obtained in Example 11, ac-
cording to Step 2 of the algorithm, we separate the pixels in which
xi is more intense than xj:

=+

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

P

0 0.0390 0.0678 0 0 0 0.2564 0.1362 0.0928
0 0 0.0310 0 0 0 0.2420 0.0987 0.0537
0 0 0 0 0 0 0.2292 0.0676 0.0235
0.0891 0.1196 0.1387 0 0 0.0003 0.2818 0.2092 0.1766
0.1018 0.1313 0.1495 0.0141 0 0.0144 0.2887 0.2196 0.1882
0.0892 0.1200 0.1394 0 0 0 0.2832 0.2096 0.1767
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.1572 0 0
0 0 0 0 0 0 0.1802 0.0452 0
ub-image obtained by selecting only some pixels of (a). (For interpretation of the
is paper.)



Fig. 7. Dilation obtained by d1 with (a) r¼3, (b) r¼5, (c) r¼7 and by ∞d when (d) r¼3, (e) r¼5, (f) r¼7.
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For example in the matrix above, pixel x1 is more intense than
pixel x2. In a similar way, we separate the pixels in which xj is more
intense than xi:

=

− − −
− − − −
− − − − −

−

− −
− − − − − − − −
− − − − − − −
− − − − − −

−

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

P

0 0 0 0.0891 0.1018 0.0892 0 0 0
0.0390 0 0 0.1196 0.1313 0.1200 0 0 0
0.0678 0.0310 0 0.1387 0.1495 0.1394 0 0 0

0 0 0 0 0.0141 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0.0003 0.0144 0 0 0 0

0.2564 0.2420 0.2292 0.2818 0.2887 0.2832 0 0.1572 0.1802
0.1362 0.0987 0.0676 0.2092 0.2196 0.2096 0 0 0.0452
0.0928 0.0537 0.0235 0.1766 0.1882 0.1767 0 0 0

Then, considering α = 0.5 and applying Step 3 of the algorithm, the
matrix α α= · + ( − )·α + −P P P1 is:

=

− − −
− − − −
− − − − −

−

− −
− − − − − − − −
− − − − − − −
− − − − − −

α

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

P

0 0.0195 0.0339 0.0446 0.0509 0.0446 0.1282 0.0681 0.0464
0.0195 0 0.0155 0.0598 0.0656 0.0600 0.1210 0.0493 0.0268
0.0339 0.0155 0 0.0693 0.0748 0.0697 0.1146 0.0338 0.0117

0.0446 0.0598 0.0693 0 0.0071 0.0002 0.1409 0.1046 0.0883
0.0509 0.0656 0.0748 0.0071 0 0.0072 0.1444 0.1098 0.0941
0.0446 0.0600 0.0697 0.0002 0.0072 0 0.1416 0.1048 0.0883

0.1282 0.1210 0.1146 0.1409 0.1444 0.1416 0 0.0786 0.0901
0.0681 0.0493 0.0338 0.1046 0.1098 0.1048 0.0786 0 0.0226
0.0464 0.0268 0.0117 0.0883 0.0941 0.0883 0.0901 0.0226 0

Finally, Step 4 is applied. The Agg operator (the arithmetic mean in
this case) is applied, obtaining:
( ( ) ) = ( ( ) ) = ( ( ) ) = −

( ( )) = ( ( ) ) = ( ( ) ) =

( ( ) ) = ( ( ) ) = − ( ( )) = −

α α α

α α α

α α α

= = =

= = =

= = =

Agg P j Agg P j Agg P j

Agg P j Agg P j Agg P j

Agg P j Agg P j Agg P j

1, 0.0173 2, 0.0009 3, 0.0115

4, 0.0556 5, 0.0615 6, 0.0557

7, 0.1066 8, 0.0460 9, 0.0270

j j j

j j j

j j j

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

Therefore, the more intense pixel is = ( )x 209, 80, 415 as the ag-
gregated value obtained for x5 is the greater. Now x5 is deleted and
the procedure is applied again to all the pixels except x5. Repeating
the process until the pixel set is empty the order of all the pixels is
obtained.
4. Invariant properties

In this section the invariant properties of the previously de-
fined operators are studied according to [43]. Note that an op-
erator ϕ τ τ→: is called invariant to a transformation ψ τ τ→: if
ϕ ψ ψ ϕ( ( )) = ( ( ))f f .

The method proposed in this work is clearly invariant to band
permutation. In contrast, the operators defined over the lattice
induced by the lexicographic order do not satisfy this important
property because in this order some components of the image are
prioritized over the others (see [9]).

When erosions and dilations are defined using lattice theory,
erosions are operators that commute with taking the meet while
dilations are operators that commute with taking the join. As the



Fig. 8. Erosion obtained by d1 with (a) r¼3, (b) r¼5, (c) r¼7 and by ∞d when (d) r¼3, (e) r¼5, (f) r¼7.
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fuzzy order presented in the previous section defines a complete
lattice (see Definition 12), the erosion ϵ≤τ

B and the dilation δ≤τ
B are

invariant with meet and join respectively.
In the same way, openings are order-preserving, anti-extensive

and idempotent operators. Closings are operators that are order-
preserving, extensive and idempotent. The morphological gradient

≤τGradB is invariant under translation and scale changes.
On the other hand, an operator on a lattice τ, or the lattice it-

self, is said to be invariant to a transformation group  if it is in-
variant to all group actions in  . In [7] it is proved that when
erosion and dilation are defined on lattices then, they are invariant
with regard to the following three transformation groups  :

� Translation group formed by translation (with the null vector as
a identity element).

� Translation group formed by all rotations around the gray axis
(with the rotation by °0 as a identity element).

� Translation group formed by the change of scale (with the null
vector and λ = 1 as a identity element).

Therefore, as the erosion ϵ≤τ
B and dilation δ≤τ

B defined in this
work for color images are defined using lattices, it is possible to
conclude (using the results shown in [7]) that they are invariant
with regard to these three transformation groups in  . Fig. 4
(a) shows the unit cube. Their translation in a direction Tx and Ty,
scaled by a parameter λ and rotated by an angle θ is shown in
Fig. 4(b).

Without loss of generality, the eight colors corresponding to
the vertices of the unit cube are considered:

ε = {( ) ( ) ( ) ( ) ( ) ( )

( ) ( )}

0, 0, 0 ; 1, 0, 0 ; 0, 1, 0 ; 0, 0, 1 ; 1, 1, 0 ; 0, 1, 1

; 1, 0, 1 ; 1, 1, 1 .

As the geometric transformations mapped the pixel co-
ordinates (x,y) into ( ′ ′)x y, , without changing the color at that pixel,
then these same colors correspond to the ends of the translated,
scaled and rotated cube (see Fig. 5). Therefore, the infimum and
supreme are given by the fuzzy order introduced in this paper. As
it can be easily checked, ε = ( )≤τinf 0, 0, 0 and ε = ( )≤τsup 1, 1, 1 .

In next section the results obtained when this order is con-
sidered to construct the morphological operators in real images
are presented.
5. Results

In this section some experiments are conducted to check the
performance of the proposed morphological operators.

To test the method several experiments are performed. First
the effect of different SE in dilation and erosion is studied.



Fig. 9. Comparison between fuzzy and M-order using a synthetic image containing colored balls. (a) Original synthetic image. (b) Erosion with fuzzy order. (c) Erosion with
M-order. (d) Dilation with fuzzy order. (e) Dilation with M-order. (For interpretation of the references to color in this figure caption, the reader is referred to the web version
of this paper.)
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Fig. 6 shows the images used to check the performance of the
approach presented in this paper. The original image is shown in
Fig. 6(a) (authored by Heine [44]). It is composed of regions where
some pixels take gray level values and another pixels take colors.
The test is restricted to the bounded region of the original image
(Fig. 6(b)) to simplify calculations.

It is important to highlight that both color image erosion and
dilation strongly depend on the order established in the color
space. Therefore, it has not a unique meaning as in the case of
binary images and gray levels. Figs. 7 and 8 show the behavior of
d1 and ∞d distances when =r 3, 5, 7. From this image, that com-
bines color and gray levels, it is possible to observe that the be-
havior of the operators defined from fuzzy order on the gray levels
are as expected. The eroded image is a darker image while the
dilated image is clearer, observing the same effect on the part of
color. Finally, it is observed that the shape (given by the metric)
and the size (given by r) of the structuring element determine the
structure of the transformed image.

Next experiment is focused on comparing the proposed
method to other two approaches, one of them based in the use of a
M-order (marginal processing) and the other based in the lexico-
graphic order. As it has been just evidenced, different metrics and
diameters defined by different SEs produce diverse dilations and
erosions. The selection of the SE depends on the analysis required
by the problem to solve. In this case, to evidence and compare the
effects of the basic operators, erosion and dilation, the SE is fixed.
In particular, SE is defined by the metric ∞d with r¼5.

Fig. 9 shows the comparison between M-order and the ap-
proach proposed in this work when both are applied to Fig. 9(a). In
the figures a region of the same image was scaled in order to
better appreciate the effects of the different operators (image (a)).
Images (b) and (c) in Fig. 9 respectively represent the image
(a) after erosion with fuzzy and lexicographical orders. On the
other hand images (d) and (e) in Fig. 9 respectively represent the
image (a) after dilation with fuzzy and lexicographical orders.

As it can be observed when applying M-order false colors ap-
pear as it was expected. However, the application of the erosion
and dilation induced by the proposed fuzzy order does not pro-
duce false colors.

Fig. 10 shows the comparison between lexicographical and
fuzzy orders using the SE defined by the metric ∞d with r¼5. The
upper part of Fig. 10 contains an image (a), the same image eroded
with the fuzzy order (b) and the lexicographical one (c). It can be
seen that when applying lexicographic order, no false colors ap-
pear but the quality of the original image is not preserved. Re-
garding dilation (the original image and its corresponding dilated
images using fuzzy and lexicographical orders are respectively
shown in (d), (e) and (f)) when lexicographical order is used the
interior of the object looses its smooth coloring. However, the
image after dilation when the proposed method is applied does
not present these issues.

In addition, it is also interesting to check if the operators in-
troduced in this paper represent an extension of gray level images.
To make such checkup, the image authored by Heine [44] (Fig. 6
(a)) is used. Fig. 11 shows the original image (a), the erosion
(b) and the dilation (c) using a SE defined by the metric ∞d with
r¼3. In this case, it can be seen that the effects of the erosion and
the dilation over the image were the expected ones. Looking at the
region composed by gray levels, it is easy to check that the area
occupied by a clear image area surrounded by dark areas tends to



Fig. 10. Comparison between fuzzy and lexicographic order using a synthetic image containing colored balls. (a) Original synthetic image. (b) Erosion with fuzzy order.
(c) Erosion with lexicographic order. (d) Original synthetic image. (d) Dilation with fuzzy order. (f) Dilation with lexicographic order. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 11. Effects of basic operators. (a) Original image. (b) Erosion. (c) Dilation.
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be reduced. Similar effects occurs for the colors whose intensity
tends to decrease, resulting in a darker image. In the dilation, the
gray levels for the area occupied by a clear image area surrounded
by dark areas tends to expand while colorful areas tend to increase
in intensity, creating a clearer image. It is important to highlight
that this application does not generate false colors. This is because
it does not create new combinations of values for each pixel.
The gradient information is widely used in image processing
for detecting edges. In MM, there are several digital implementa-
tions of the gradient. The most used are the morphological gra-
dient, the gradient by erosion and the gradient by dilation given in
Definition 6. Fig. 12 shows the effects of these kind of operators in
color images. Image (a) in Fig. 12 shows the morphological gra-
dient computed through the subtraction between the dilation and



Fig. 12. Edge detection. (a) Morphological gradient. (b) Gradient by erosion. (c) Gradient by dilation.

Fig. 13. Filter operators. (a) Original image. (b) Opening. (c) Closing.

Fig. 14. Example of the 68 texture of Outex13.

Table 1
Classification rates in percent for textures of Outex13, using erosion based
covariance.

Order

Fuzzy order M-order Lexicographic order

RGB 77.20 77.65 70.74
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the erosion. Secondly, image (b) shows the gradient by erosion
obtained by the subtraction between the original image and the
erosion, and finally (image (c)), the gradient by dilation is pre-
sented (obtained through the dilation minus the original image).
The colors that appear in the gradients can be new colors because
they were generated as a result of a vectorial subtraction. This
means that false colors are independent of the proposed order.
Finally, opening and closing basic filters (see Definition 6) are

studied. The opening is defined as an erosion followed by a dilation.
This filter generally smooths the outline of the image, eliminating the
narrow parts and thin protrusions. It is useful for removing small
bright details regarding the SE, leaving the rest of the image rela-
tively unchanged. This effect can be seen in Fig. 13(a).

The closing, defined as a dilation followed by an erosion, also
tends to smooth the contours, but unlike opening, it merges nar-
row spaces, and long and thin entries. In addition, it eliminates
small gaps and fill spaces in the outline. It is useful to eliminate
small dark details regarding the SE, leaving the rest of the image
relatively unchanged. This effect can be seen in Fig. 13(b). As these
operators are combinations of erosions and dilations, false colors
neither appear.

As there is no obvious criteria to compare the performance of
these kinds of operators, the effects produced by these operators over
the image are shown. This is because there is no obvious reason for
saying, for example, why the green color should be greater than the
red one from the human perception point of view. In [38,45] it was
explained that it is difficult to perform a quantitative comparison
between morphological approaches only through the results given
by their basic operations, because there is no obvious criteria to apply
in order to generate which approach is better.

One of the most important features in the visual perception
and description of natural images is the notion of texture. Thus,
the performance of the operators introduced in this paper is now
studied following the model for texture classification presented in
[2]. In this model the authors use the Outex framework, which (see
[46]) contains a large collection of surface textures captured under
different conditions, which facilitates construction of a wide range
of texture analysis problems. The image database contains an
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extensive collection of textures, both in form of surface textures
and natural scenes. In particular the color textures of Outex13 (see
Fig. 14) are employed here.

One of the most frequent texture analysis tools offered by
mathematical morphology is the so-called morphological covariance,
which is introduced adopting the notations used in [2] or [47].

The morphological covariance ′K of an image f, is defined as the
volume Vol of the image (i.e. sum of pixel values), eroded by a pair
of points νP2, separated by a vector v:

ε′( ) = ( ( )) ( )ν νK f P Vol f; , 18P2, 2,

where ε denotes the erosion operator. In practice, ′K is computed
for varying lengths of ν, and most often, as also here, the nor-
malized version K is used for measurements:

ε( ) = ( ( )) ( ) ( )νK f Vol f Vol f/ . 19P2,

The covariance based in increasing lineal SE (0°, 45°, 90°, 135°)
order from 1 to 49 pixels in steps on size two is computed. Con-
sequently 25 values are available for each direction.

Table 1 shows the accuracy rates obtained for the erosion with
fuzzy, M and lexicographic orders. Although the values for the
fuzzy order and M-order are similar, when fuzzy orders are ap-
plied, false colors are not obtained.

Other authors carry out similar experiments for both Lexicographic
and M-orders (see [2,43]). In fact, in Table 5 of [2] the accuracy rate for
M-order is 77.65 and for lexicographic one is 70.74. These values are
compared (see Table 1) to those obtained by fuzzy order under the
same conditions, i.e., same image basis and considering the k-nearest
neighbors (K-NN) algorithm and Euclidean distance. Unfortunately, we
cannot compare our results with those of van de Gronde and Roerdink
[43] because they have used a different way to apply the operators. In
any case, we can observe (see Fig. 12 in page 1287) that the group-
invariant frames lead to better performance than the original RGB
basis (RGB: 81.8, hue: 84.1, and rotation: 85.4).
6. Conclusions

In this paper, basic morphological operators for color images
using a fuzzy total order are introduced. That is, a fuzzy mathe-
matical morphology for color images is presented. These operators
present interesting properties. In particular, they extend gray level
operators of the mathematical morphology to color image pro-
cessing framework and they do not produce false colors. In addi-
tion, the suggested fuzzy order allows giving the same importance
to all the components of the image, not prioritizing some of the
component over the others as the lexicographic order does.
Moreover, when the performance of the operators is studied in the
context of texture classification, the accuracy rates obtained for the
erosion with the fuzzy order are close to the ones obtained with
other orders, but avoiding false colors. It is also important to
highlight that the proposed operator generates a flexible method
for segmentation as the OWA and aggregation functions can be
tuned according to the proposed image analysis.

As future work, we plan to study the behavior of this method
when other color representations are used. Besides, other orders will
be analyzed in order to produce new erosion and dilation operators
for color images. In addition, we will consider these operators for
image segmentation. Finally, we will analyze the way to extend our
method to “non-flat” mathematical morphology operators.
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