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Abstract
Acute myelogenous leukemia (AML) is the most common form of acute leukemia in adults. After diagnosis, patients with
AML are mainly treated with standard induction chemotherapy combining cytarabine (araC) and anthracyclines. The
majority of them achieve complete remission (CR) (65 – 80%). However, prospects for long-term survival are poor for the
majority of patients. Resistance to chemotherapy therefore remains a major obstacle in the effective treatment of patients with
AML. In this review, we highlight the current knowledge of substrate cycles involved in normal deoxynucleoside triphosphate
(dNTPs) metabolism and their possible role in drug resistance to araC.
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Introduction

Acute myelogenous leukemia (AML) is the most

common form of acute leukemia in adults with

approximately 20,000 new cases and 15,000 deaths

caused by this disease each year in the US, Europe

and Australia. After diagnosis, patients with AML

are mainly treated with standard induction che-

motherapy combining cytarabine (araC) and

anthracyclines. The majority of them achieve com-

plete remission (CR) (65 – 80%). However,

prospects for long-term survival are poor for the

majority of patients. In fact, 75 – 80% of patients who

achieve their first CR will relapse, and the median

time in remission before relapse is only 12 months

with current treatments.

Relapse disease is typically treated again with

chemotherapy. Unfortunately, subsequent remis-

sions are obtained in only 40 – 60% of relapsed

patients who do survive treatment. These remissions

have a shorter duration than the prior CR (a median

of only 6 months in the case of second patients).

Resistance to chemotherapy therefore remains a

major obstacle in the effective treatment of patients

with AML.

In this review, we highlight the current knowledge

of substrate cycles involved in normal deoxynucleo-

side triphosphate (dNTPs) metabolism and their

possible role in drug resistance to araC.

Substrate cycles and nucleotide metabolism

DNA synthesis and repair requires a continuous and

balanced intracellular deoxyribonucleoside tripho-

sphates (dNTPs) pool. There are two distinct

metabolic pathways which determine nucleotide

pools (Figure 1). The first one is named the ‘‘de

novo’’ pathway and is activated in replicating cells. It

is believed that nucleotides thus produced are

preferentially used in DNA synthesis. The main step

in this pathway is the reduction of ribonucleoside

diphosphates into deoxyribonucleoside diphosphates

by ribonucleotide reductase (RNR). The second one

is the ‘‘salvage’’ pathway, which is the main source of

dNTPs in resting or G1 cells. This dNTPs will be

preferentially used in DNA repair [1,2]. This pathway

involves recycling of nucleosides produced by the

catabolism of nucleic acids [3]. Extracellular nucleo-

sides are taken up by specific membrane transporters

into the cell, and then they are phosphorylated by
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specific nucleoside kinases to become nucleoside

monophosphates. In mammals there are six main

kinases for this pathway named deoxycytidine kinase

(dCK), thymidine kinases 1 and 2 (TK1 and TK2),

deoxyguanosine kinase (dGK) and uridine-cytidine

kinases 1 and 2 (UCK1 and UCK2). Nucleosides

monophosphates are next phosphorylated by mono-

phosphate kinases (UMP-CMPK, thymidylate

kinase, guanylate kinase and adenylate kinases) and

finally by nucleosides diphosphates (NDPK) kinases

to become dNTPs (Table 1).

Given that the intracellular concentration of

dNTPs pool must be controlled, they are continu-

ously degraded by one of the two main catabolic

pathways. The first one is mediated by intracellular

deaminases such as cytidine deaminase (CDA),

adenosine deaminase (ADA) and deoxycytidylate

deaminase (dCMP-deaminase). These enzymes dea-

minate non-phosphorylated deoxyribonucleosides

and deoxyribonucleoside-monophosphates (MP).

The other catabolic pathway is exclusively for

monophosphorylated derivatives, as they are sub-

strates for 5’-nucleotidases. The role of the 5’-
nucleotidases is the opposite to that of the nucleoside

kinases, decreasing the amounts of phosphorylated

forms of deoxynucleosides inside the cells. Several

human 5’-NTs with different subcellular localization

have been cloned and they can be classified in three

main classes: membrane-bound, cytosolic and

mithochondrial 5’-NTs. The membrane-bound en-

zyme is termed ecto-5’NT and is also known as

CD73, the mitochondrial 5’-NT is called mdN and

finally the five 5’-NT in the cytosol are termed cN-I

(A and B), cN-II, cN-III and cdN [4].

When dNTPs are needed, deoxyribonucleosides

are taken into cells, phosphorylated, and incorpo-

rated into DNA. These regulated mechanisms

provide the cell with continuous and balanced

nucleotide dNTPs pools [3]. If the pool of deoxyr-

ibonucleotides exceeds the requirements for DNA

replication and repair, the surplus is degraded and

leaves the cell as deoxyribonucleosides [5].

Figure 1. Schematic representation of nucleosides metabolism. Nucleosides are newly synthesized in the de novo pathway or are

incorporated into the cell by specific nucleoside transporters through the salvage synthesis. In this case, nucleosides are phosphorylated by

dCK, NMPK and NDPK to their phospho-deoxyribonucleosides derivates. Cytoplasmic 5’-nucleotidase activity opposes that of dCK by

dephosphorylating monophosphoderivates. Both deoxyribonucleosides and deoxyribonucleosides diphosphate (dNDP) in the cytosol can

enter the mitochondria by specific membrane transporters. Finally, deoxyribonucleotides are incorporated into newly synthesized DNA or

RNA.

336 P. Fernandez-Calotti et al.



Substrate cycles and araC metabolism

The metabolism and the mechanism of action of

araC are based on the metabolism of physiological

deoxyribonucleosides. In fact, araC enters cells by

using the equilibrative nucleoside transporter 1

(hENT1) and undergoes intracellular phosphoryla-

tion by deoxycytidine kinase (dCK) (Figure 2).

This first phosphorylation step is the limiting step

in intracellular araC activation, and dCK activity is

therefore crucial to obtain any cytotoxic effect.

The monophosphorylated metabolite of araC,

araCMP, is further di- and tri-phosphorylated by

kinases of the salvage pathway, to obtain araCTP

[6]. This active form of araC acts as an

antimetabolite, competing with physiologic nucleo-

sides for the incorporation into DNA which results

in synthesis inhibition and chain termination. In

addition, araCTP interacts with DNA pola. These

different effects may lead to cell death by

apoptosis. araC metabolites might also be sub-

strates for catabolizing enzymes such as

deaminases and 5’-NTs [7,8]. An increase of the

activity of such enzymes might decrease the

accumulation of araCTP and therefore the cyto-

toxic effect of araC (see below).

araC activating kinases

Deoxycytidine kinase is the main cytosolic enzyme

that catalyzes the initial step of the 5’-phosphoryla-
tion of three of the four natural deoxyribo-

nucleosides: deoxycytidine (dC), deoxyguanosine

(dG) and deoxyadenosine (dA). dCK is also an

essential enzyme for the phosphorylation of araC as

well as other nucleoside analogues (NA) to their

monophosphate form [9,10], thus playing an im-

portant role in the activation of NA. dCK can use

different NTPs as phosphate donor in the phosphor-

ylation of deoxycytidine, but seems to prefer UTP

over other NTPs [11 – 14]. Overall dCK activity is

known to be under a feedback control by dCMP,

dCTP and ADP [15].

Human dCK gene is localized in chromosome 4. It

is codified by 7 exons under the control of ubiqui-

tously expressed transcription factors such as Sp1 and

USF1/USF2 [16]. These interactions could regulate

dCK expression over a wide range and contribute to

tissue-specific patterns of expression of this gene.

dCK functions as a 60 kDa homodimer, consisting of

two identical subunits of 30,5 kDa each [17]. It has

been demonstrated that dCK is a constitutive enzyme

and its activity is highly variable (between 2 – 10

Table I. Biochemical characteristics of the main enzymes involved in nucleoside metabolism.

Enzyme Description

Chromosome

localization Protein size Principal substrates Tissue distribution

dCK Cytosolic deoxycytidine

kinase

4q13.3-q21.1 30.5 kDa (260 aa) Deoxycytidine Lymphoid and

neoplastic tissues

Deoxyadenosine

Deoxyguanosine

UMP-CMPK Cytosolic

monophosphate kinase

1p31 26 kDa (196 aa) Uridine-MP Ubiquitous

Cytidine-MP

Deoxyuridine-MP

Deoxycytidine-MP

NDPK

(H1and H2)

Nucleoside diphosphate

kinase

17q 21.3 17.15 kDa (H1)

(177 aa)

Deoxynucleosides-TP Ubiquitous

17.3 kDa Overexpressed in tumors

(H2)

(152 aa)

cN-II Cytosolic selective 5’-NT 10q24.32 65 kDa (561 aa) Inosine-MP Ubiquitous

Deoxyinosine-MP

Guanosine-MP

Deoxyguanosine-MP

Hypoxanthine-MP

cN-III Cytosolic 5’ nucleotidase 7p15.3 36 kDa (286 aa) Uridine-MP Red blood cells

Cytidine-MP

cdN Cytosolic 5’(3’)
deoxynucleotidase

17q25.3 23.9 kDa (200 aa) Deoxyguanosine-MP Ubiquitous

Deoxyinosine-MP High in lymphoid cells

CDA Cytidine deaminase 1p35-p36.2 16.1 kDa (146 aa) Cytidine ND

Deoxycytidine
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times) in extracts of different tissues. dCK activity is

high in lymphoid, mononuclear blood cells and

quiescent cells in which it phosphorylates nucleosides

needed for DNA repair, increasing its activity several-

fold when cells enter the S-phase of the cell cycle

[18 – 21]. The correlation between the expression of

dCKmRNA, protein and the enzymatic activity using

a panel of solid tumors, leukemic and lymphoma cell

lines has been addressed by van der Wilt et al. [22]

and more recently by Sigmond et al. [23]. It was

found that the expression of dCK mRNA was closely

correlated to the activity of this enzyme.

The nucleoside monophosphate kinase UMP-

CMP kinase (UMP-CMPK) is involved in the

phosphorylation of UMP, CMP, dUMP and dCMP

to their respective nucleoside diphosphates. UMP-

CMPK seems to be also the nucleoside monopho-

sphate kinase implicated in araCMP phosphorylation

[6,24]. This enzyme is a 26 kDa cytoplasmic nuclear

kinase that was cloned in 1999 [24]. ATP and dATP

are the main phosphate donors for this enzymatic

reaction.

The ultimate phosphorylation of nucleosides is

catalyzed by nucleoside diphosphate kinases

(NDPKs or nm23). This is a group of eight

proteins in which five have shown nucleoside kinase

activity with ATP or GTP as phosphate donor (see

[25] for recent review). Isoforms H1 and H2 seem

to play an important role in the production of

araCTP [26]. However, the implication of these

enzymes in the production of dNTPs is discussed

because of the high affinity towards NDPs as

compared to dNDPs. araCDP is phosphorylated

by purified NDPK from human cells [26], and

therefore this enzyme is likely to be involved in

intracellular araC metabolism.

5’-nucleotidases implicated in araC metabolism

As for natural nucleosides, 5’-NTs might oppose the

phosphorylation of NAs. Three of the known 5’-NTs

have been shown to modulate araC activity in cell

models or in patients treated for AML. cN-II was the

first human cytoplasmic 5’-NT cloned from placenta

Figure 2. Metabolism and mechanism of action of the nucleoside analog araC. araC enters the cell through specific nucleoside transporters

and is activated by phosphorylation to its triphosphate derivate. araC catabolism results from rapid deamination to non-toxic metabolites.

Active araC exerts its action by being incorporated into and altering the DNA or by interfering with enzymes involved in DNA synthesis

leading to cell apoptosis.
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[27]. Human cN-II gene is located in chromosome

10q24.32, and for vertebrate tissues, active cN-II is a

homo-tetramer in which each subunit has a mole-

cular mass of 60 – 70 kDa [28 – 30]. This enzyme is

an IMP/GMP-selective 5’-NT and its activity op-

poses the action of the salvage enzymes by

dephosphorylating IMP and GMP, thus participating

in the regulation of purine deoxyribonucleotide

metabolism (ATP and GTP).

cN-II expression is ubiquitous in mammals and it

is present in different organs and tissues [31]. High

enzyme activity has been measured in tissues with a

rapid turnover rate of nucleic acids or DNA synthesis

such as testis, liver, spleen and lymphoblastoid cells.

By contrast, very low levels of cN-II activity were

found in skeletal muscle and erythrocytes [32,33].

The enzymatic activity of cN-II requires the

presence of Mg2+ and a pH optimal between 6

and 7.5 [34]. cN-II activity is stimulated by ATP

[30] and regulated/inhibited by its substrates

inosine/guanosine and by inorganic phosphate

possibly by subunit association-dissociation [30].

It has been proposed the formation of an enzyme-

phosphate intermediate after the hydrolysis of the

phosphate group in nucleoside monophosphate.

This intermediate could transfer the phosphate

moiety to water or to a nucleoside [35]. In this

latter case, cN-II acts as a phosphostransferase,

and it has been shown that by the means of this

activity, it is able to phosphorylate antiviral

nucleoside analogues [35 – 38]. However, there is

no evidence showing that cN-II actually phosphor-

ylates NA currently used in anticancer therapy.

Thus, it seems that cN-II acts as nucleotidase or

phosphotransferase, playing catabolic or anabolic

functions respectively depending on the concentra-

tion of inorganic phosphate, ATP and the

availability of a suitable nucleoside, which is a

better phosphate acceptor than water [36].

Another 5’-nucleotidase, cN-III (also called pN-I),

was cloned and characterized in 2000 [39]. The gene

situated on chromosome 7p15.3 encodes a 36 kDa

protein which dephosphorylates preferentially UMP

and CMP as well as the monophosphorylated form of

araC [39]. Mutations in cN-III might cause protein

deficit and hemolytic anemia [40 – 43].

Finally, cytoplasmic deoxynucleotidase (cdN also

called dNT-1 or pN-II) was cloned in 2000 by

Rampazzo et al. [44]. Its gene is situated on

chromosome 17q25.3 and encodes a 23.9 kDa

protein containing 5’-nucleotidase activity when

forming a homodimer. cDN prefers deoxyribonu-

cleotide monophosphates and monophosphates of 5’-
deoxyribonucleotides over 3’-deoxyribonucleotides
as substrates in its dephosphorylating enzymatic

reaction. Purified cdN is not capable to depho-

sphorylate araCMP, but this enzyme could be

involved in araC metabolism by the means of

substrate cycles in AML cells [45].

Deaminases involved in araC metabolism

As cited before, deaminases are involved in dNTP

metabolism by deaminating nucleosides or mono-

phosphorylated forms. Cytidine deaminase (CDA) is

a 48.7 kDa protein encoded by a gene situated on

chromosome 1p35-p36.2 [46 – 48]. It transforms dC

and C into dU and U respectively, as well as araC

into araU [49]. Different CDA inhibitors have been

identified, such as THU (3,4,5,6-tetrahydrouridine),

zebularine, 5-fluorozebularine and diazepinone

[9,49].

dCMP deaminase is another protein involved in

nucleotide metabolism by deamination. Its gene

located on chromosome 4q35 and, cloned in 1993,

encodes a 20 kDa protein capable of transforming

dCMP into dUMP [50]. Its activity is stimulated by

dCTP and inhibited by dTTP and THU. No

deamination of araCMP by dCMP deaminase has

been identified, but it is obvious that this enzyme is

implicated in nucleoside metabolism. In fact, dCMP

deaminase deficient cells have great perturbations in

dCTP pools and dTTP pools [51 – 54]. These

modifications induce an increased rate of sponta-

neous mutations [55].

Substrate cycles and in vitro araC resistant

models

Drug resistance to araC is one of the major problems

in the treatment of acute leukemias, and therefore it

has been largely studied and several mechanisms

have been identified. These involve alterations in the

structure, expression level or activity of different

proteins that play important roles in the metabolism

(transporters, kinases, nucleotidases, deaminases)

and/or in the cytotoxicity exerted by NA. Alteration

on any of these proteins could theoretically induce

resistance. In general, araC resistant leukemia cell

lines are cross resistant to other NA [56]. In addition

to decreased or increased activity of kinases or

catabolic enzymes involved in araC metabolism,

other mechanisms for resistance could be altered

such as intracellular pools of deoxynucleotides,

decreased nucleoside transport into the cells, as well

as modifications in the cellular apoptotic machinery

(for recent review see [57]).

Kinase deficiency

Many studies have reported the development and the

characterization of in vitro leukemia models for araC
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resistance. A large majority of these models shows

modification in dCK as evidenced by decreased

genomic expression [58,59], kinase activity [60 – 66]

or araCTP accumulation [67,68]. The role of dCK

deficiency in this kind of models has been validated

by transfection studies. In fact, increased expression

of dCK gene by transfection into dCK deficient

leukemia cells restored the sensitivity to araC [69]. In

addition, specific dCK inhibition by the addition of

dCK antisense oligonucleotides in K562 cells turns

tumor cells resistant to araC cytotoxicity underlining

the direct role of dCK in araC resistance [70].

Beauséjour et al. showed that it is necessary to

diminish dCK activity more than 18% to obtain araC

resistance, suggesting an excess of dCK in cells

treated with NA [71].

Structural analyses of the dCK gene have shown

inactivating mutations and deletions that causes dCK

deficiency [65] (Figure 3). In leukemic blasts from

relapsed/refractory AML patients, Flasshove et al.

have shown that among 16 patients who were

resistant to araC treatment, 7 present point muta-

tions in dCK gene. However, only one of them had a

mutation that inactivated the enzyme [72] raising the

question of the clinical relevance of these findings.

More recently, van den Heuvel-Eibrink et al. show

that dCK point mutations are not frequently

observed and that they have no clinical relevance in

the araC resistance in a study performed in 30 AML

patients [73]. DNA methylation has also been

suggested as a possible mechanism of dCK gene

regulation. On the other hand down-regulation of

dCK gene may also come from inhibition of gene

transcription by steroids. Exposure of human cancer

cells to cortisol or dexamethasone partially reduced

gemcitabine cytotoxicity [74,75]. As steroids are

used in cancer treatment, it is probably that they

can modify NA cytotoxicity by decreasing dCK

transcription.

Another study made in multidrug resistant

K562 cell line developed for resistance to daunor-

ubicin, which is used in association with araC in

treatment of leukemia, showed 15-fold cross-resis-

tance to araC associated with a three-fold decrease in

dCK activity [76]. There was no difference in dCK

mRNA expression level, thus suggesting a gene

alteration or post-transcriptional or translational

events to cause the decrease in dCK activity.

Post-translational modifications of enzymes activ-

ities are numerous. One possible explanation is the

activation of dCK by protein phosphorylation. This

possibility is supported by results from Wang and

Kucera [77] who found that the activation of dCK

was increased by in vitro protein kinase C treatment.

Moreover, results from Csapó et al. [78] showed that

treatment of cells with NaF, an inhibitor of protein

phosphatases, increases dCK activity while inhibits

DNA synthesis. By contrast, the addition of phos-

Figure 3. Cellular processes responsible for dCK regulation associated to araC resistance.
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phatases inhibited dCK activation, showing that this

effect is a result of dCK phosphorylation [79].

A number of cytotoxic drugs, such as etoposide,

cladribrine, araC, fludarabine and clofarabine have

been found to stimulate dCK activity in human and

murine leukemic cells [80,81]. It is important to

notice that this stimulation requires a basal dCK level

in the cells, because in NA-resistant and dCK-

deficient cells there was no stimulation of the enzyme

(unpublished data from Galmarini).

Finally, four different alternatively spliced dCK

forms of mRNA were identified in coexpression with

wild-type (wt) dCK in purified leukemic blasts from

patients with clinically resistant AML [82] without

any modification on the dCK gene. In vitro activity

assay showed that these variants of dCK were

inactive, with lower molecular weights than wt

dCK. More importantly, these proteins were unable

to restore araC sensitivity in dCK-deficient rat

leukemia cells when transfected alone or with wt

dCK [83]. However, when transfection was done

into araC sensitive cells, these spliced dCK forms did

not change sensitivity towards araC [76] indicating

that they cannot act as dominant-negative inhibitor

on dCK wild type cells when they are coexpressed in

a single cell [83]. In any case, alternative spliced dCK

forms might contribute to araC resistance in patients

with AML if wt dCK expression is lost, as was

demonstrated in vitro [82].

In reference to the other kinases, no in vitro model

for araC resistance has shown alterations in the

activity or expression levels of UMP-CMPK and

NDPK.

Increased expression/activity of deaminases and 5’-
nucleotidases

It is interesting to notice that no in vitro model for

araC resistance developed by continuous exposure to

the drug with increased deaminases has been

reported. However, the implication of CDA in araC

activity has been evidenced by the resistance induced

by CDA-transfection in leukemic CCRF-CEM cells

[84]. In fact, several CDA transfection studies show a

decreased sensitivity to araC in overexpressing

fibroblasts, and Neff et al. proved this in a leukemic

cell line [84]. dCMP deaminase could theoretically

also be involved in this mechanism, but no published

data is available on this subject.

In reference to 5’-nucleotidases, in vitro models

using cancer cell lines have demonstrated that

intracellular level of cN-II seems to influence cell

sensitivity to NA [56,85,86]. In the CCRF-CEM cell

line, it has been shown that cross-resistance with

cladribrine, araC and gemcitabine was associated to a

2-fold higher level of cN-II, higher dCTP levels and

normal dCK level [86]. Schirmer et al. also reported

that cladribrine resistant HL60 cells had a 2 – 3-fold

increased activity of cN-II comparing with its parental

sensitive cell line, without any change in dCK activity

[85]. However, the overexpression of cN-II in 293

human embryonal kidney cells did not induce

resistance to cladribrine [87], neither has any araC

resistant cell model shown an overexpression of cN-II

as mechanism for the resistance. There are no

published data concerning gene mutations or post-

translational modifications that might increase cN-II

activity and be responsible for the phenotypic changes

observed in resistant cell lines [57]. To date, any

study has demonstrated the origin of overexpression

of cN-II activity and mRNA in resistant cell lines.

The role of cN-II in NA resistance remains to be

elucidated, because there is no data showing that cN-

II can dephosphorylate the different NA [45].

Another 5’-NT, cN-III, is able to dephosphorylate

araCMP [8]. However, whether its overexpression

can induce araC resistance has not yet been proved.

As for cN-II, no in vitro data on the implication of

cdN in araC resistance exist.

Substrate cycles and araC resistance in the

clinic

Given that activating and catabolic enzymes involved

in substrate cycles interact with a large variety of NA

used in anticancer therapy, their activities may have

high relevance to the therapeutic effectiveness in

different types of leukemia [88].

Development of resistance during chemotherapy

can often be the result of inactivation of dCK and/or

increased activity of cN-II. It was early reported that

dCK activity correlated with the response to araC

treatment in 21 patients with AML [89]. Similarly,

ALL patients more often relapsed when dCK expres-

sionwas lowor absent [90].However, activation ofNA

by dCK is not always indicative of in vivo response to

these NA [91], (for review see [92]). Thus, the role of

this enzyme in clinical drug resistance remains a

subject of controverse. In reference to UMP-CMPK

or NDPK, up to date, there is no clinical information

regarding their relevance in the therapeutic effective-

ness in different types of leukemia.

Concerning cN-II, some studies have demon-

strated that there is a correlation between cN-II

activity and resistance to NA [93]. High levels of cN-

II activity were correlated to a worse clinical response

in acute and chronic leukemias: In ALL, high levels

of cN-II activity was associated with in vitro

thiopurine resistance [94], while in AML there is a

correlation between high cN-II mRNA levels and

araC resistance and worse clinical outcome [95 – 97].

Moreover, the pretreatment levels of cN-II were
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significantly lower in responders than in non-

responding patients. This study also shows that

patients whose blasts had detectable expression of

cN-II at diagnosis and relapse had a shorter disease-

free survival (DFS) and overall survival (OS) than

cN-II-negative patients [95], suggesting a role for

cN-II in the in vivo activity of araC in AML patients.

Rather than an isolated increase in cN-II or a

decrease in dCK, an increase in the ratio of cN-II

to dCK (cN-II/dCK) seems to be a good indicator

for resistance to NA. We have recently reported that

in AML patients a high cN-II/dCK ratio was related

to a worse clinical outcome [98]. The relative ratio

may have a predictive clinical value with cN-II

contributing to drug resistance.

Clinical evidences for a role of cdN in araC

resistance have been published recently [99]. Cells

overexpressing this 5’-NT produce more dC, dU, U,

C and T than control cells, showing that this enzyme

is involved in cell cycles regulating nucleosides [100].

Finally, the implication of cN-III in vivo araC

resistance is not known.

The in vivo correlation between CDA activity and

araC resistance remains controversial and the relative

contribution of CDA to drug resistance has not yet

been fully elucidated. The clinical relevance of a high

level of CDA activity as a major cause of araC

resistance in AML patients has been emphasized by

several investigators [89,101 – 103]. Conversely, we

and others did not find a relationship between

increased CDA mRNA expression or enzyme activity

and resistance to therapy in AML patients [96,104].

Structural analyses of the CDA gene showed the

correlation between a polymorphism at codon 27 and

substantially different deamination rates of araC in

vitro [103]. This structural aberration did not seem

to represent a major cause for the differences

observed in CDA activities between araC sensitive

and araC resistant patients. Schröder and co-workers

demonstrated a significant correlation between the

amount of CDA mRNA and CDA enzyme activities

in AML blasts suggesting that variations in CDA

activity result from differences in gene expression

[105]. It therefore appears that CDA activity in vivo

is correlated with transcriptional regulation rather

than with CDA gene aberrations.

Conclusions

AML therapy usually fails because of the appearance

of drug resistance [106]. Actually, response following

araC induction regimens is variable and is dictated by

a set of well-described prognostic factors. Perfor-

mance status and age are the principal predictors of

early death, whereas cytogenetics and history of

abnormal blood counts are predictors of resistance.

In fact, rates of therapy-induced mortality increase

with increasing age, abnormal organ function, and

particularly, poor performance status. However,

standard therapy is satisfactory only for a minority

of patients.

Thus, there is a need for new prognostic and

predictive factors that could be used for planning of

more effective treatments. A realistic goal would be

the identification of tumor cell traits which could

allow tailored or targeted therapy. In this sense, a

better knowledge of metabolic pathways involved in

araC activation would help to determine the expres-

sion of a phenotype of probable resistance to araC,

that would be of great value in the choice of optimal

therapy, and the avoidance of administration of

ineffective but toxic treatments.

A better knowledge of the role of substrate cycles

in araC activation would also help to optimize the

efficacy of araC-based combinations and to develop

more potent araC derived compounds that are less

sensitive to the resistance mechanisms described

above. Efforts to increase intracellular levels and

DNA incorporation of phosphorylated araC are very

promising [107,108]. In the same way that combina-

tion chemotherapy has provided curative treatment

of AML, a multifactorial approach of araC resistance

should allow significant progress in the treatment of

currently chemoresistant disease.
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