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Abstract

We study the behavior of entanglement estimators on chains of few quantum Ising spins coupled to an environment by means of

Monte Carlo simulations. We analyze the ground state value of the von Neumann entropy and the concurrence of our spins system for

different couplings with the quantum bath.
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1. Introduction

Quantum spin chains have been studied very intensively
during the last four decades and many results have been
obtained using a variety of theoretical techniques.

A renewed interest on spin chains has arisen recently in the
context of quantum phase transitions and quantum comput-
ing [1]. Spin-1

2
Ising chains coupled to different types of

quantum thermal baths capture the effect of the interaction
between qubits and the environment. Decoherence effects and
entanglement properties can be examined in these models.
The interaction with the environment turns the problem more
difficult and few analytical results are available.

In this work we are interested in the behavior of
quantum computing observables (like concurrence) of a
small number of spins (or qubits) as a function of their
coupling with an environment. This problem has been
analyzed very recently in Ref. [2] for the case of one spin
where an analytical treatment is possible. In this work we
re-examine this problem (and correct the original claim
made there, see also Ref. [3]) using numerical techniques.
This technique can be used for (small) spins chains. Explicit
results corresponding to two qubits are presented.

We describe the environment by a quantum thermal bath
composed by independent quantum harmonic oscillators
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following the formulation of Feynman and Vernon for
dissipation. The simulations run on an equivalent ð1þ 1Þ-
D classical spin lattice through a Trotter decomposition.
The spin chain coupled to the environment is modeled by

Ĥ ¼ ĤJ þ ĤB þ ĤI þ ĤCT.

The Hamiltonian of the quantum spin chain is described
by

HJ ¼ �
XN

i¼1

Jŝz
i ŝ

z
iþ1 �

XN

i¼1

Gŝx
i ,

where J is the strength of exchange interactions. The
intensity of the external transverse magnetic fields is
represented by G. The Hamiltonian for the quantum bath
reads

ĤB ¼
X~N
l¼1

1

2ml

p̂2
l þ

X~N
l¼1

mlo2
l

2
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and

ĤI ¼ �
XN
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ŝz
i

X~N
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and the counterterm is

ĤCT ¼
X~N
l¼1
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We derive equilibrium properties from the partition
function Z ¼ Tr e�bH . The integration over the bath
variables can be performed explicitly. We use an Ohmic
bath with spectral density

I iðoÞ �
p
2

X~N=N

l¼1

c2il
mlol

dðo� olÞ ¼
2pao for oDto1;

0 otherwise:

�

The Trotter decomposition yields a partition in intervals of
length Dt of the imaginary time direction. As Dt! 0 the
mapping between the 1-D quantum model and the ð1þ 1Þ-
D classical model becomes exact. This equation also defines
the parameter a that we use later as a measure of the
strength of the bath.
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Fig. 1. hsxi (top) as function of a. The von Neumann entropy (bottom) as

function of a for N ¼ 1, G ¼ 1. With dashed lines we show the result of

fitting our data with the exact expressions given by Eq. (1). We choose the

adjusting parameter G=L from Ref. [2].
2. Entanglement

The quantum state of a bipartite system, AB, can be
described with the help of the density matrix, r̂AB. For a
pure state, this system is said to be entangled if its density
matrix cannot be factorized as r̂AB ¼ r̂Ar̂B where
r̂A ¼ TrBðr̂ABÞ, and r̂B ¼ TrAðr̂ABÞ are reduced density
matrices. In this case, the reduced matrices represent mixed
states and the von Neumann entropy [5],

s ¼ �Trðr̂A log r̂AÞ ¼ �Trðr̂B log r̂BÞ,

gives a quantitative measure of the entanglement between
A and B. The von Neumann entropy has the property of
being positive, and takes the zero value if the state is pure.

For our spin chain coupled to a set of harmonic
oscillators, we take as subsystem A a single spin, and as
subsystem B the harmonic oscillators with the rest of the
chain. The reduced density matrix for a single spin can be
obtained measuring spin expectation values

r̂1 ¼
1

2
Î þ

1

2

X
m¼x;y;z

hŝmiŝm

hŝmi ¼ Trðŝmr̂SþBÞ,

with r̂SþB the total spin-environment density matrix.
Symmetry transformations show that some matrix ele-
ments must vanish. In particular, the Hamiltonian Ĥ is
invariant under a global p rotation about the spin x axis
yielding hŝy

i ¼ 0. We can take hŝz
i ¼ 0 if aoac. Then

s ¼ �
1

2
log2

1� hŝx
i2

4

� �
�

1

2
hŝx
i log2

1þ hŝx
i

1� hŝx
i

� �
. (1)

When aXac, the spin is localized. Its reduced density
matrix is r̂1 ¼

1
2
ðÎ � ŝz

Þ and its von Neumann entropy
vanishes, sðr1Þjloc ¼ 0.

In Ref. [6] it is proved that the entanglement of
formation of a general two qubits state r̂ can be written
in terms of the concurrence CðrÞ

Eðr̂Þ ¼ EðCðr̂ÞÞ,
where the function E is given by

EðCÞ ¼ h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2
p

2

 !
,

hðxÞ ¼ �x log2 � ð1� xÞ log2ð1� xÞ.

EðCÞ is monotonically increasing and ranges from 0 to 1
as C goes from 0 to 1, so it is usual to also take C as a
measure of entanglement. The value of the concurrence
results from

Cðr̂Þ ¼ maxf0;
ffiffiffiffiffi
l1

p
�

ffiffiffiffiffi
l2

p
�

ffiffiffiffiffi
l3

p
�

ffiffiffiffiffi
l4

p
g,

where li are the eigenvalues, in decreasing order, of the
matrix r̂ ~̂r � r̂ŝy

� ŝyr̂�ŝy
� ŝy.

We are interested in calculating the concurrence between
spin i and j of our dissipative spin chain through their
reduce density matrix. Taking that r̂ij is Hermitian and
Tr r̂ij ¼ 1 we find that

r̂ij ¼
1

4

X
m;n¼x;y;z;0

hŝmi ŝ
n
j iŝ

m
i ŝ

n
j ,

hŝmi ŝ
n
j i ¼ Tr ðŝmi ŝ

n
j r̂SþBÞ,

where ŝ0 represents the identity operator. We use the
symmetries of the Hamiltonian Ĥ to reduce the number of
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expectation values needed in the calculation. After we
numerically compute the four eigenvalues, we arrange them
in decreasing order and make the concurrence calculation.
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Fig. 2. Plot of hq log sx=qai as a function of a for different products DtG
(top). a for the inflection point of each curve of the left figure as function

of DtG (bottom).
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Fig. 3. w00ðoÞ=o plotted as a function of o for a ¼ 0.1 (top lef
3. Monte Carlo simulations and results

We analyze the static properties of the system by means
of Monte Carlo (MC) simulations performed on a classical
equivalent partition function

ZJ ¼
X

st
i
¼�1

e�A,

A ¼ �
XNt�1

t¼0

XN

i¼1

Kis
t
is

t
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þ
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p
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st

i s
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i

sin2ðpjt� t0j=NtÞ
,

where Ki ¼ Jib=Nt ¼ JiDt and B ¼ 1
2
lnðcothðDtGÞÞ. The

effective classical ð1þ 1Þ-dimensional action, A, is obtained
after applying the Trotter–Suzuki formula and introducing
an imaginary time direction.
The classical counterpart model is defined on a

rectangular lattice with size N �Nt. The expectation
values, which we denote with h� � �i, are averages over
relevant sets of spin configurations in the classical
equivalent ð1þ 1Þ-dimensional system. These configura-
tions are obtained through a modified Wolff algorithm [8]
incorporating long range interactions [9].
The MC method is usually applied to the study of large

chains and the thermodynamical limit (N !1) can be
achieved by using well-known scaling techniques [9].
Coupling with the bath introduces long range interactions
(in the imaginary time) which increases considerably the
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computing time. This is not a problem in our case since we
are interested in small chains.

The method can be even applied for N ¼ 1 where the
problem becomes the well-studied two-level Caldeira
Leggett model [4]. The coherence of the system can be
studied via the behavior of the correlation function
CðtÞ ¼ hszðtÞszð0Þi. With zero coupling to the environment
(a ¼ 0) the system will exhibit coherent oscillations. Weak
coupling leads to damped oscillatory behavior and for a
strong coupling the system will exhibit a completely
incoherent decay of the time correlation function. The
transition between underdamped and overdamped oscilla-
tions occurs at (a ¼ 1

2
). At aX1 the bath localizes the spin.

With the Monte Carlo simulation we obtain the imaginary-
time correlation function CðtÞ ¼ hszðtÞszð0Þi. Next, the
Fourier transform CðonÞ at the Matsubara frequencies is
calculated. The Padé approximant method is used to
continue this spectral function from de positive Matsubara
frequencies onto the real axis. We obtain the imaginary
part of the response function w00ðoÞ. The study of this
function is equivalent to the study of CðtÞ [7]. Under-
damped oscillations manifest through a peak at non-zero
frequency of CðoÞ. Increasing the coupling of the bath
shifts this frequency towards zero. For the N ¼ 1 case this
occurs at a ¼ 1

2
.

The von Neumann entropy of the N ¼ 1 case was
calculated by Stauber and Guinea in Ref. [2]. They
calculated analytically the ground state energy as a
function of the bath frequency cutoff L. Their result can
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Fig. 4. The von Neumann entropy as function of a for N ¼ 2, G ¼ 1(top).

Concurrence as function of a for N ¼ 2, G ¼ 1 (bottom).
be expressed as

E ¼
C

1� 2a
G

G
L

� � a
1�a

�
G2

L

 !
, (2)

where C is some constant. From here, hsxi ¼ qE=qG can be
calculated and the expression of the von Neumann entropy
follows (see Eq. (1)). In Ref. [2], it was claimed that f ðaÞ ¼
q logðhsxiÞ=qa (and consequently the von Neumann
entropy) had a singular behavior at the point a ¼ 1

2
. As

pointed originally by us (see also Ref. [3]) this is not the
case, at least for finite cutoff. Nevertheless, the f ðaÞ shows a
qualitative change at a particular value a�ðLÞ where f ðaÞ
has an inflection point and it can be shown that a�ðLÞ ! 1

2

as L!1.
We show in Fig. 1 the behavior of sðaÞ and the von

Neumann entropy sðaÞ as a function of the coupling to the
bath a as obtained from our MC simulations for a
particular value of DtG ¼ 0:05. We also show the function
sðaÞ as obtained from Eq. (1) for a particular value of L
which corresponds to our cutoff Dt. As evident form the
figures, there is no singular behavior of this quantities.
We show in Fig. 2, the behavior of f ðaÞ for different

values of the cutoff. On the bottom panel the values of the
inflection point are plotted. We see that this value
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extrapolates to a value which is compatible with the
theoretical value of 1

2
.

We can perform numerical simulations on the system of
N ¼ 2 spins where there are no available analytical results.
As mentioned before, we identify the transition between
damped and the overdamped regime as the value of a
where the peak of w00ðoÞ occurs for o ¼ 0. We show in Fig.
3 plots of w00ðoÞ for two values of a corresponding to the
underdamped and overdamped regimes. We show in the
bottom panel of Fig. 3 the value of opeak as a function of a.
The value of opeak becomes zero at a 	 0:2

We show in Fig. 4 the value of the von Neumann
entropy and the concurrence as a function of a. We see that
the concurrence also becomes negligible at a value of
a 	 0:2.

Finally, in Fig. 5 we plot f ðaÞ and the inflection point
value for different values of the cutoff. We see here that the
value of the a where the inflection occurs is slightly larger
a 	 0:25.

We have analyzed the behavior of quantum computing
observables as a function of the system–environment
coupling. We have shown that for a finite cutoff the von
Neumann entropy and the concurrence are not singular but
there is qualitative change around the value where the
overdamped-oscillatory transition occurs. A better under-
standing of the functional dependence of the results with
the cutoff is left for future work.
References

[1] A. Osterloh, L. Amico, G. Falci, R. Fazio, Nature 416 (2002) 608.

[2] T. Stauber, F. Guinea, Phys. Rev. A 70 (2004) 022313;

T. Stauber, F. Guinea, Phys. Rev. A 73 (2006) 042110.

[3] T. Stauber, F. Guinea, Phys. Rev. A 74 (2006) 029902(E).

[4] A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, A. Garg,

W. Zwerger, Rev. Mod. Phys. 59 (1987) 1.

[5] C.H. Bennett, H.J. Bernstein, S. Popescu, B. Schumacher, Phys. Rev.

A 53 (1996) 2046.

[6] W.K. Wootters, Phys. Rev. Lett. 80 (1998) 2245;

S. Hill, W.K. Wootters, Phys. Rev. Lett. 78 (1997) 5022.

[7] K. Völker, Phys. Rev. B 58 (1998) 1892.

[8] U. Wolff, Phys. Rev. Lett. 62 (1989) 361.
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