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a b s t r a c t

Tumor cells display phenotypic plasticity and heterogeneity due to genetic and epigenetic variations
which limit the predictability of therapeutic interventions. Chromatin modifications can arise stochas-
tically but can also be a consequence of environmental influences such as the microenvironment of
cancer cells. A better understanding of the impact and dynamics of epigenetic modulation at defined
chromosomal sites is required to get access to the underlying mechanisms. We investigated the epige-
netic modulations leading to cell-to-cell heterogeneity in a tumor cell line model. To this end, we
analyzed expression variance in 80 genetically uniform cell populations having a single-copy reporter
randomly integrated in the genome. Single-cell analysis showed high intraclonal heterogeneity. Epige-
netic characterization revealed that expression heterogeneity was accompanied by differential histone
marks whereas contribution of DNA methylation could be excluded. Strikingly, some clones revealed a
highly dynamic, stochastically altered chromatin state of the transgene cassette which was accompanied
with a metastable expression pattern. In contrast, other clones represented a robust chromatin state of
the transgene cassette with a stable expression pattern. Together, these results elucidate locus-specific
epigenetic modulation in gene expression that contributes to phenotypic heterogeneity of cells and
might account for cellular plasticity.
Copyright © 2016, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and

Genetics Society of China. Published by Elsevier Limited and Science Press. All rights reserved.
1. Introduction

The heterogeneity and cellular plasticity observed in cancer cell
populations represent a major hurdle in treating cancer patients.
The development of resistance in the metastatic cells limits the
utility of the therapeutic remedies.Whilemost of this heterogeneity
was previously thought to be due to genetic alterations and inherent
genetic instability of cancer cells (Marusyk et al., 2012), there is
increasing evidence showing that genetic mutations cannot be held
as a sole cause of this heterogeneity (Marjanovic et al., 2013). Studies
have shown that the disruption in the epigenetic marks can also be
an important intrinsic factor that might result in cellular hetero-
geneity and plasticity (Huang, 2013; Marjanovic et al., 2013).
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The phenotypic reversibility and metastability frequently
observed in tumor populations are considered to be significantly
contributed by dynamic chromatin markings (Huang, 2013;
Marjanovic et al., 2013). These structures might act as sensors
and effectors (mediators) to adjust the selection pressure exerted
by the cellular microenvironment.

Epigenetic modifications are known to critically affect the
chromatin state. This includes changes in the methylation pattern
of DNA as well as specific histone modifications such as methyl-
ation and acetylation on the specific amino acid residues of his-
tones (Ghavifekr Fakhr et al., 2013). Thereby, the differential
accessibility and/or binding of DNA sequences by a set of proteins
are realized. Together, this modulates the efficiency of transcription
and as a consequence the cellular phenotype (Cui et al., 2013; Li,
2013; Buck et al., 2014). DNA methylation is one of the best char-
acterized epigenetic modifications. It predominately involves
addition of a methyl group to the position 5 of cytosine residues
that are coupled to guanine (CpG motifs) (Crider et al., 2012). His-
tone modifications comprise a set of modifications like methylation
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and acetylation that can occur on specific residues (e.g., lysine)
present on the histone tails. These modifications form a histone
code that modulates gene expression by allowing or preventing
access to chromatin, thereby acting as a guide for the transcription
factors and other regulatory proteins. In recent times, a large
number of studies have permitted a partial unraveling of this code
(Misri et al., 2008; Gacek and Strauss, 2012). Generally, DNA
hypermethylation and certain histone markings like trimethylation
of lysine 27 on histone H3 have been considered to suppress gene
expression, whereas the DNA hypomethylation and histone H3
acetylation were shown to be associated with active gene expres-
sion (Kirmizis et al., 2004; Yu et al., 2007; Pauler et al., 2009;
Connolly et al., 2013).

Most of our understanding of the role of epigenetics in cancer is
based on studies of differential expression of cellular oncogenes
and tumor suppressor genes in their natural chromosomal context.
However, tumor progression is frequently accompanied with an
inherent genomic instability. As a result of genomic rearrange-
ments, deletions and translocations can occur. As a consequence,
genes are subjected to influences arising from new genetic
environments.

We aimed at a better understanding of the phenotypic variation
of gene expression that may occur if genes are exposed to novel
chromosomal environments. To simulate this situation, we inves-
tigated the epigenetic mechanism(s) underlying the alterations in
expression of single-copy transgenes randomly integrated into
chromosomal sites of a tumor cell line without selection pressure.
Interestingly, we could correlate the expression phenotype with
defined histone modifications. Depending on the particular chro-
mosomal site, these chromatin modifications were either stable or
dynamically changed upon prolonged cultivation. Together, the
results highlight the plasticity of chromatin modulation upon
rearrangement and resulting phenotypic variations in cancer cells.

2. Results

2.1. Expression heterogeneity in HEK293T clones with a single-copy
GFP expression cassette

To establish an in vitro system to study the mechanism(s) that
cause epigenetically mediated variation in gene expression, we
used genetically stable single-copy transgenes as sentinels. To
simulate the influence of epigenetic variations in different chro-
mosomal sites, we analyzed randomly chosen integration sites of a
sentinel transgene. We employed SV40 T antigen-transfected hu-
man HEK293T cells which represent a model for cancer stem cells
(Debeb et al., 2010). To set up a strategy to identify chromosomal
sites that support transgene expression, we employed a transgene
screening cassette comprising the human cytomegalovirus (CMV)
promoter that drives a reporter gene encoding a stable GFP protein
(half-life >20 h (Corish and Tyler-Smith, 1999)). This promoter was
shown to be susceptible to epigenetic modifications (Grassi et al.,
2003; Mehta et al., 2009; Hsu et al., 2010). As a reliable method
for achieving single-copy integrations, lentiviral transduction was
used. A self-inactivating (SIN) lentiviral vector with a deletion of
the viral promoter in the 30 long terminal repeat (LTR) was
employed to avoid interference of the viral regulatory elements
with the CMV promoter upon infection (Fig. S1). To ensure single-
copy integration of the screening cassette, infectionwas performed
at a multiplicity of infection (MOI) of 0.01 using a standardized
protocol. Thereby, statistically, 99% of expressing cells carry a sin-
gle-copy integration of the expression cassette; in previous studies,
we confirmed this protocol with respect to the efficient generation
of single copy integrations (see Materials and methods for further
details) (Schucht et al., 2006; Gama-Norton et al., 2011). Ten days
after lentiviral infection, single cells with high (>103 arbitrary units
(a.u.)) and low (101e103 a.u.) GFP fluorescence were sorted by FACS
and clonally expanded. This state was defined as passage 0. At
passage 2 after sorting, flow cytometry analysis was performed for
55 and 25 clones that had been established from the high and low
GFP expressing population, respectively. At this time point, the
clonal cells were expanded about 100,000 folds corresponding to
about 17 generations. Such cell clones represent sentinel genes
whose expression is dominated by the respective chromosomal
neighborhoods.

The FACS analysis revealed large differences in GFP expression in
the individual clonal cell populations. None of the 25 cell clones
established from the cells sorted for low-level expression showed
GFP expression at this time point (less than 0.4% expressing cells,
data not shown). Cell clones established from the 55 high GFP
expressing cells showed variable expression with high clone-to-
clone variation (Fig. S2 for overview and Fig. 1 for details of
representative clones). One of the clones (clone 42T) even showed a
dramatically decreased expression. We observed variable mean
expression levels and a high intraclonal variation of expression in
individual clones. Some HEK293T clones (e.g., clone 12T and 35T)
showed a more homogeneous expression phenotype while others
(e.g., clones 31T and 42T) displayed a pronounced variation of
expression.

For further in-depth characterization, we selected five HEK293T
clones with different levels of heterogeneity (12T, 17T, 31T, 42T and
54T). In all of the clones, a distinct population of low/non-
expressing cells was detected (Fig. 1). To separate GFP positive
expressing (PS) and GFP non-expressing cells (NS) from these five
clonal populations, cells were sorted at passage 3 after infection
which corresponds about 20 cell generations (Fig. 2A for overall
scheme and Fig. S3 for sorting details). To exclude that non-
expressing cells were a result of contamination by non-
transgenic cells, genomic DNA was isolated from the five NS
populations. PCR was used to confirm transgene integration for all
populations (data not shown).

To evaluate the stability of the expression phenotype of the
sorted populations, the selected cell clones were expanded for
further 25 passages (corresponding to a total of about 110 cell
generations) and re-analyzed for respective expression. The sub-
populations of clones 12T, 17T and 54T showed a stable phenotype
upon extended cultivation: the PS populations remained positive
and the NS populations also remained negative for GFP (Fig. 2B). In
contrast, the subpopulations of clones 31T and 42T changed their
phenotype: the NS populations of these clones shifted towards
higher expression levels, while the PS populations showed a partial
loss of GFP expression. As a result, the respective populations
partially merged. Thus, these cell clones undergo a continuous
modulation of the phenotype from the non-expressing state to the
expressing state and vice versa, thereby exhibiting a highly dy-
namic, metastable phenotypic state.

2.2. Intraclonal heterogeneity is not correlated to differential CpG
methylation

Phenotypic loss of expression has been frequently associated
with a high degree of DNA methylation in CpG islands (Esteller,
2002; Cohen et al., 2008; Kaise et al., 2008; Liu et al., 2010;
Tahara et al., 2010). Thus, we hypothesized that the heterogene-
ity in transgene expression might be modulated by epigenetic
modification of the promoter sequence. We analyzed the DNA
methylation status in the NS and PS populations immediately
after second sorting (passage 3). In particular, we focused our
analysis on a 283-bp fragment of the CMV promoter encom-
passing the TATA box and essential transcription factor binding
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Fig. 1. Intraclonal heterogeneity in GFP expression in randomly selected chromosomal sites. FACS plots showing the GFP expression profiles of randomly selected HEK293T clones
two passages after initial sorting for high expression GFP. The five selected clones from HEK293T for further characterization are marked by yellow rectangle.
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sites as well as 14 CpG sites which could be potentially methyl-
ated (Fig. 3) (Tate and Bird, 1993; Mancini et al., 1999; Butta et al.,
2006).

We performed bisulfite conversion of genomic DNA isolated
from the NS and PS populations from the five clones. The CMV
promoter fragment was amplified by PCR and cloned. Eight bac-
terial clones from each HEK293T cell clone reflecting the promoter
sequence of an individual cell were randomly picked and
sequenced. Unexpectedly, sequencing of the clones revealed CeT
conversions for nearly all CpGs and thus complete absence or only
rarely methylated CpGs, even for the NS populations (Fig. 3). The
methylation status in these clones was also analyzed 40 passages
post sorting. Importantly, also at this late time point, both the
expressing and non-expressing cells remained largely free of CMV
promoter methylation (data not shown). This excludes a delayed
manifestation of DNA methylation upon prolonged passaging as
previously suggested for other experimental settings (Jaenisch and
Bird, 2003;Mutskov and Felsenfeld, 2004; Strunnikova et al., 2005).
Thus, silencing of gene expression in HEK293T cells and intraclonal
phenotypic variation are not reflected by differential methylation of
the promoter.
2.3. Phenotypic variability correlates with differential histones
markings

Since DNA methylation could be excluded as the underlying
mechanism of phenotype variation in the subclonal populations,
we analyzed the prevalence of differential histone modifications in
the PS and NS subpopulations of the five selected clones. For this
purpose, we performed chromatin immunoprecipitation (ChIP) and
determined histone H3 lysine 4 acetylation marking (H3K4ac).
H3K4ac is an abundant modification of transcriptionally active
chromatin (Guillemette et al., 2011). The H3K4ac markings associ-
ated with the CMV promoter were quantified by PCR. As endoge-
nous controls for active and repressed genes, we used previously
validated primers for endogenous MYT1 and ACTB genes, respec-
tively (see Materials and methods for details). Interestingly, the cell
populations of the five clones displayed a differential pattern of
histone modifications. The PS populations (sorted for GFP expres-
sion) were enriched for the H3K4ac marking. In contrast, the NS
population (GFP negative) showed these H3K4ac marks with much
less frequency (Fig. 4). This indicates that the expression phenotype
correlates with elevated levels of H3K4ac.
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We then looked for the trimethylation of lysine 27 on the histone
H3 (H3K27me3) which is known not only to suppress transcription
in a DNA methylation independent manner but also to be respon-
sible for stabilizing the silenced phenotype (Angel et al., 2011). We
observed a strong enrichment of the H3K27me3 marking in the
CMV promoter of the NS populations of all clones in comparison to
the PS population with GFP expressing cells (Fig. 4). These results
show that the phenotype of the sorted populations correlates with
a differential histone modification pattern of the reporter.
2.4. Dynamic histone modifications: characteristics of “metastable”
phenotypes

Since histone modifications correlate with the phenotypic
changes in the clonal populations, we speculated that treatment of
non-expressing cell populations with inhibitors of histone deace-
tylation (HDACi) is able to revert the silenced state and to increase
transgene expression. For this purpose, we used HDACi sodium
butyrate (NaB) (Mariani et al., 2003) and Valproic acid (VPA)
(Wulhfard et al., 2010; Boudadi et al., 2013). Interestingly, the five
cell clones responded differentially to the treatment with these
drugs. For clones 31T and 42T, these drugs induced significant in-
creases in the mean fluorescent intensity and in the percentage of
expressing population (Fig. 5A and B). This indicates that the his-
tonemarkswere dynamic in these populations and could be altered
with the treatment. However, there were only slight increase of the
mean fluorescence intensity and the percentage of GFP expressing
cells in the NS population of clone 54T, and the NS populations of
clones 12T and 17T did not significantly revert to the expressing
state (Fig. S4). Of note, when the negative sorted populations of
these clones were subjected to Decitabine, an inhibitor of DNA
methylation, we did not observe any change in GFP gene expression
while endogenous control genes were up-regulated in these con-
ditions (Fig. S5). This suggests that these populations are locked in
an epigenetically silenced state and cannot be reversed by the
epigenetic modulators.

To confirm whether the alteration in expression phenotype in
negative sorted populations of metastable clones upon treatment
with these drugs is reflected by changes in the histonemarks on the
CMV promoter, we performed ChIP assays. The incubated negative
sorted populations of clones 31T and 42T treated with NaB showed
the enrichment of histone H3 acetylation marking and the reduc-
tion in the H3-K27 trimethylation levels (data not shown).
3. Discussion

In this study, we investigated the epigenetic modulation
contributing to the intraclonal heterogeneity of the phenotype in
the human tumor cell line HEK293T. We included GFP as a neutral
reporter and isolated cells by FACS sorting, thereby avoiding any
bias caused by selection pressure. In several cell clones, we
observed pronounced cell-to-cell variation of the phenotype as
measured by a considerable variance in GFP expression within
genetically identical clonal populations of the human cell line.
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To identify the epigenetic mechanism underlying this hetero-
geneity, we evaluated the impact of DNA methylation and histone
modifications. We restricted our study on clones with single-copy
integration events that should reflect human endogenous genes.
Thereby, we could attribute the effects to a specific integration site
and could exclude overlapping effects that would arise from multi-
copy integrations. Thus, we excluded ‘artificial cassette induced
silencing’ which was previously reported to accompany tandem or
multi-copy integrations upon genetic modification (Eszterhas et al.,
2002; McBurney et al., 2002; Ellis, 2005).
In this study, we monitored gene expression upon integrating a

GFP reporter gene in a non-native surrounding. This mimics the
gene translocation upon chromosomal rearrangement which is a
hallmark of tumor cells. Such rearrangements can lead to disrup-
tion of evolutionarily developed chromatin states conferred by
various epigenetic markings and can bring about alteration in
chromatin memory. Such non-native associations result in alter-
ations of the phenotype by overproduction or silencing of endog-
enous genes and even disease progression. Importantly, unlike the
genetic changes, these epigenetic changes can be reversible and
may account for heterogeneous phenotypes encountered within
tumor populations, a fact that tumor heterogeneity severely hin-
ders cancer therapy and also accounts for drug resistance (Feinberg
et al., 2006; Knoechel et al., 2014).

We identified cell clones with large intraclonal phenotypic
heterogeneity as monitored by variations in transgene expression.
To study the underlying mechanism, we isolated subpopulations
displaying high and low/no GFP expression, respectively, from
these heterogeneous clonal populations. In the sorted
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subpopulations of clones 12T, 17T and 54T, the phenotype was
inherited and stably maintained over passaging. In contrast, clone
31T and 42T showed a dynamic (metastable) phenotype with pop-
ulation shifting between the expressing and non-expressing states
(Fig. 2B). Interestingly, in these clones, the expressing and non-
expressing subpopulations merged upon cultivation. Importantly,
even after repeated resorting and culturing, clones 31T and 42T did
not give rise to a stable phenotype as these subpopulations pro-
ceeded with oscillating between expressing and non-expressing
states (data not shown). Thus, these cell clones display a meta-
stable phenotype with continuous stochastic alterations in gene
expression. The shift in the expression might exemplify the plas-
ticity observed in tumor populations. Since the transgenes of other
cell clones do not exhibit such kind of metastable behavior, we
conclude that the surrounding chromatin defines the epigenetic
stability of the gene. As expected from the instability of the states in
clones 31T and 42T during cultivation, these cells were highly sus-
ceptible to treatment with histone modifiers.

Importantly, we could demonstrate that the phenotype of clonal
populations correlates with a specific histone modification pattern.
Histone modifications have been considered to convey dynamic
changes that can be triggered by slight change in the environment
(Smith and Workman, 2012; Weiner et al., 2012). Upon integration
of the reporter gene into the chromosome, de novo establishment of
epigenetic marks were observed. The cell populations that showed
decrease in histone H3 acetylation did not show expression of
fluorescent tag GFP. The decrease of this modification has been
described to result in DNA compaction since these acetyl groups
neutralize the positive charges of histones and thus prevent strong
interaction between histone and negatively charged phosphate
group of DNA (Garcia-Ramirez et al., 1995). Also, markings like
H3K27me3 have been known to lend a stably silenced phenotype in
a DNA methylation independent manner. In agreement with this, a
pronounced enrichment of the H3K27me3 in all the negative sorted
populations was observed. However, H3K4ac marks were more
frequent in all the positive sorted populations (Fig. 3). Surprisingly,
DNAmethylationwas absent in the clonal populations that lost GFP
expression in HEK293T derived clonal populations (Fig. 2B), sug-
gesting that stable silencing is mediated predominantly by histone
modifications. Importantly, complete absence of methylation was
also observed even at late passages (data not shown) which sig-
nifies the stability of histone mediated repression. Further, when
the cells were subjected to Decitabine, a global inhibitor of DNA
methylases, no change in expression of GFP was observed (Fig. S4).
Moreover, the treatment with inhibitors for DNA methylation did
not result in an increase of expression in silenced cell populations
(Fig. S4), suggesting that silencing of the CMV sentinel is not gov-
erned by methylation of chromosomal regions adjacent to the site
of reporter integration.

Many reports have highlighted an important role of DNA
methylation in particular for long term silencing of transcription
(Grassi et al., 2003; Krishnan et al., 2006; Mehta et al.,
2009; reviewed in Miranda and Jones, 2007). However, even in
absence of DNA methylation, transcriptional repression has been
observed for several endogenous genes (Lewis et al., 2004; Umlauf
et al., 2004). Also, it has been demonstrated that histone based
transcriptional repression precedes DNA methylation (Bachman
et al., 2003; Jaenisch and Bird, 2003; Mutskov and Felsenfeld,
2004; Umlauf et al., 2004; Strunnikova et al., 2005; Miranda and
Jones, 2007). Together, this suggests that DNA methylation is not
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necessarily required to mediate transcriptional repression. In the
clones investigated in this study, transcriptional silencing was
devoid of DNA methylation even upon prolonged cultivation times,
indicating that this phenotype is robust. The specific architecture of
the chromosomal integration site and/or crosstalk with the inte-
grated promotermight contribute to the stablemanifestation of the
silenced state in absence of DNA methylation. A more detailed
analysis would be required to elucidate the molecular parameters
important in this setting.

When treating the non-GFP expressing cell populations with
HDACi, clones 12T and 17T did not respond with an increase of the
expression level (Fig. S3). Thus, it seems as if these clones are locked
in an epigenetically silent state. Interestingly, this state was not
associated with a specific pattern of H3K27me3 or H3K4ac marks
(Fig. 4), suggesting that these modifications do not allow differen-
tiating between these expression states. From these experiments,
we further conclude the key factors critically governing this state
are not sensitive to VPA or NaB. Thus, it is tempting to speculate that
the regulation of the histone state in these particular genomic sites
is mediated by epigenetic modifiers such as histone methylase or
by HDACs that are not sensitive to these two drugs (Peters et al.,
2003; Dokmanovic et al., 2007). Further investigations are
required to elucidate the specific epigenetic pattern that charac-
terizes this state.

In the current study, we observed that the heterogeneity can
arise from clonal cell populations that carry a single-copy sentinel
cassette in a particular chromosomal site. We observed expression
heterogeneity in some, but not all clones. We presume that the
heterogeneity in some of the clones is a consequence of the
particular chromosomal integration site and that independent
integration sites have a differential impact on expression hetero-
geneity. Unfortunately, currently there are no available methods to
predict the interaction even if the particular site would be known.
This is because the various regulatory, functional and structural
properties encoded by DNA elements are complex and can barely
be deduced from the DNA sequence. Thus, so far, it is not feasible to
theoretically predict the functional properties of a particular
chromosomal site. Further, the interaction of chromatin areas is not
limited to immediately adjacent chromosomal regions. An
increasing number of reports highlight this complex higher-order
intrachromosomal and even interchromosomal crosstalk which
accounts for modulation of gene expression (Williams et al., 2010;
Falvo et al., 2013).

Cell-to-cell heterogeneity can result from the consequence of
transcriptional bursting. This phenomenon is based on the obser-
vation that many mammalian genes/promoters are not continu-
ously active but rather are episodically transcribed, overall
resulting in large fluctuation in individual protein levels in a single
cell (Dar et al., 2012; Coulon et al., 2013). The burst time can differ
with respect to the chromosomal integration site (Dar et al., 2012),
usually spanning a time period of hours in mammalian cells (Raj
et al., 2006). To exclude transient transcriptional bursting as an
underlying mechanism of cell-to-cell heterogeneity, we based our
study on a reporter with a long half-life time of more than 24 h
(Corish and Tyler-Smith, 1999) which does not allow monitoring of
transcriptional bursting (Dar et al., 2012). Also, we compared
expression of the reporter after establishing a steady state. Thus,
the observed metastability in the phenotype reflects the compa-
rably ‘slow’ chromatin remodeling which is documented by the
distinct histone modification pattern.

Together, the clonal populations identified here represent an
example for cellular heterogeneity arising from genetically iden-
tical cells. Histone modifications were shown to be the underlying
mechanism forming distinct and stable phenotypes. It would be
interesting to speculate how the incoming elements would
influence the homogeneity of expression of neighboring genes.
Single-cell RNA sequencing might help to reveal this crosstalk.

4. Materials and methods

4.1. Mammalian cell culture and vectors

HEK293T cells (ATCC CRL-11268) were cultivated at 37�C in a
humidified atmosphere with 5% CO2. These cells were derived from
HEK293 cells upon stable integration of SV40 T antigen expression
vector. The human cell line was maintained in DMEM (GIBCO, USA).
Culture media were supplemented with 10% fetal calf serum,
2 mmol/L L-glutamine, penicillin (10 U/mL) and streptomycin sul-
fate (100 mg/mL).

In the lentiviral self-inactivating tagging vector pTAG-CMV-GFP,
the human CMV promoter drives eGFP. It was generated by ligating
the Cla I-Nhe I backbone of pJSARGFP (May et al., 2008) (comprising
LTRs, REV responsive element and Woodchuck hepatitis virus
regulatory element (WPRE)) to a reporter cassette encoding the
eGFP reporter gene controlled by the CMV promoter.

4.2. Lentiviral gene transfer

HEK293T cells were used for lentivirus production as specified
by Gama-Norton et al. (2011). Briefly, HEK293T cells were trans-
fected using the calcium phosphate method with four different
plasmid constructs: the tagging vector (pTAG-CMV-GFP), envelope-
encoding plasmid (pLP-VSVG), gag/pol helper plasmid (pLP1) and
REV expressing plasmid (pLP2). After 12 h, the medium was
replaced. After 48 h of transfection, the supernatant containing the
lentiviral particles was harvested and filtered through a 45-mm
filter. The virus supernatant was titered by infecting HEK293T cells
with serial dilutions. For generation of single-copy tagged clones,
1 � 105 HEK293T cells were seeded and infected with 1000 viruses
(MOI 0.01) in the presence of 8 mg/mL protamine sulfate. Theoret-
ically, this gives rise to 99% of single-copy integrations from total
infections. We employed a highly standardized infection protocol
that was previously validated by Southern blot analysis. We
routinely observed single-copy integrations in at least 95% of clones
(data not shown) which is in line with the theoretical calculation
(Schucht et al., 2006; Botezatu et al., 2012).

4.3. Chemical treatment

For the chemical treatment, 1 � 105 cells were seeded in a 24-
well plate format. HDACi NaB (SigmaeAldrich, USA) and VPA
(Sigma Aldrich) were dissolved in PBS and added at a final molec-
ular concentration of 1 mmol/L and 300 mmol/L, respectively.
Treated and untreated control cells were cultivated for 72 h and
then harvested for further analysis.

4.4. Flow cytometry

Flow cytometry was used for the analysis of transgene expres-
sion with FACScalibur (BD, USA). Sorting of the cells was done with
FACSaria, using the 488-nm laser and 525/50-nm filter setting for
GFP. A gating strategywas used to eliminate doublets and dead cells
or debris. Results were quantified with the FlowJo 7.6 software.

4.5. Chromatin immunoprecipitation (ChIP)

ChIP was done using the ChIP-IT High Sensitivity Kit (Active
Motif, USA) according to the manufacturer's instructions using
specific antibodies against H3K27me3 (Millipore, Cat. No. 07-449,
USA) and H3K4ac (Millipore, Cat. No. 07-539). As positive and
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negative controls for H3K27me3, validated primers for MYT1 (Cat.
No. 71007, Active Motif) and the human ACTB gene (Human
Negative Control Primer Set 3, Cat. No. 71023, Active Motif) were
used, respectively. As positive and negative controls for H3K4
acetylation, primers for human ACTB-2 (Cat. No. 71005, Active
Motif) and MYT1 were used, respectively. Further, samples without
antibodies were included as background controls.

For quantitative PCR, the following primers were used for the
CMV promoter region: forward 50-AAGTACGCCCCCTATTGACG-30

and reverse 50-AAACCGCTATCCACGCCCAT-30. PCR reaction
included the followings: 10 mL SYBR green RT-PCR mix (Qiagen,
USA), 1 mL (10 mmol/L) forward primer, 1 mL (10 mmol/L) reverse
primer, 8 mL immunoprecipitated DNA. Real-time PCR was per-
formed on a LightCycler 480 apparatus (Roche, Switzerland). The
reagents, primers and samples were added in a 96-well plate
(Roche). All assays were performed in triplicate. The reaction was
performed according to the following conditions: 95�C for 15 min
followed by 45 cycles of 95�C (15 s), 58�C (20 s) and 72�C (30 s).

4.6. Bisulfite sequencing

Bisulfite sequencing was performed using the EZ DNA methyl-
ation kit (Zymo, USA) according to the manufacturer's instructions.
The CMV promoter was amplified from the converted DNA using
the primer pair: 50-GTATATGATTTTATGGGATTTTTTTATTTG-30 and
50-ATTCACTAAACCAACTCTACTTATATAAAC-30. The following PCR
conditions were employed: 95�C for 15min followed by 45 cycles of
95�C (30 s), 55�C (60 s) and 72�C (60 s), followed by final extension
at 72�C for 7 min. Amplified PCR products were cloned into the PCR
blunt cloning vector (Invitrogen, USA) using the protocol according
to the manufacturer's instructions. Upon transformation and
plating, eight clones were picked and expanded. Miniprep kit
(Qiagen) was used to isolate plasmid DNA. As a positive control, a
CMV based synthetic promoter was used that showed above 90%
CpG methylation (data not shown).
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