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In this article, a multivariate statistical process control (MSPC) strategy, devoted to
bias identification and estimation for processes operating under steady-state condi-
tions, is presented. The technique makes use of the D statistic to detect the presence of
biases. Besides, it uses a new decomposition of this statistic to identify the faulty sen-
sors. The strategy is based only on historical process data. Neither process modeling
nor assumptions about the probability distribution of measurement errors are required.
In contrast to methods based on fundamental models, both redundant and nonredun-
dant measurements can be examined to identify the presence of biases. The perform-
ance of the proposed technique is evaluated using data-reconciliation benchmarks.
Results indicate that the technique succeeds in identifying single and multiple biases
and fulfills three paramount issues to practical implementation in commercial software:
robustness, uncertainty, and efficiency. � 2008 American Institute of Chemical Engineers
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Introduction

Basic and high-level plant activities, such as monitoring,
regulatory and supervisory control, real-time optimization,
planning, and scheduling, provide valuable results only if a
reliable knowledge of current plant-state is at hand. Because
measurements are subject to random and gross errors, a great
effort has been made during the last four decades to reduce
their detrimental effects on the estimation of process varia-
bles. Nowadays, it is a common practice in process industries
to optimally adjust measurements in such a way that the cor-
rected values are consistent with mass and energy balances.
But, to obtain accurate estimates, some action should be
taken to reduce the influence of gross errors, such as mea-
surement biases. They can be caused by many sources, for
instance, poorly calibrated or malfunctioning instruments.

Several model-based approaches have been proposed for
bias detection and identification. They compare the actual
operation of the plant with that predicted by a mathematical
model by means of statistical hypothesis tests. The most
widely used tests are the Global Test, the Measurement Test,
the Nodal Test, the Generalized Likelihood Ratio Test, the
Bonferroni Test, and the Principal Component Test, among
others. Three types of strategies have been developed for
identifying multiple gross errors: (a) serial elimination identi-
fies one gross error at a time and eliminates the correspond-
ing measurement; it goes on until no gross error is detected;
(b) serial compensation isolates one gross error and evaluates
its size and then compensates the measurement and continues
until no gross error is found; (c) simultaneous or collective
compensation proposes the identification and estimation of
all gross errors simultaneously.1,2 Furthermore, the equiva-
lence theory of gross errors3 establishes that two sets of gross
errors are equivalent when they have the same effect in data
reconciliation. Therefore, when a set of biases is identified,
there exists an equal possibility that the true location of gross
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errors is in one of its equivalent sets. This issue introduces
uncertainty in the identification task.

To avoid biased estimations of process variables, other
strategies incorporate the nonideality of the data distribution
in the formulation of the data-reconciliation problem. Thus,
random and gross errors are removed simultaneously based
on their probability distribution. This is usually accomplished
by combining nonlinear programming and the maximum-
likelihood principle, after the error distribution has been suit-
able characterized.4–6

In Statistical Process Control, the Hoteling statistic (D) is
widely used to reliably detect the out-of-control status, but
offers no assistance as identification tool. To perform this
task, different techniques are presented that evaluate the con-
tribution of each variable to the value of the statistic when it
exceeds the critical one. Some strategies work in the space
defined by the original variables and others make use of
latent variables. Regarding this type of methods, Jackson7

proposed the decomposition of the statistic into the sum of
principal components. If they represent a meaningful group-
ing of variables, the identification of out-of-control signals is
readily apparent.8 However, in many examples, it is difficult
to associate a meaning to a principal component. Hence,
Miller et al.9 and MacGregor et al.10 proposed to evaluate
the contribution of each process variable to the scores that
are outside of their confidence limits, and Pullen et al.11 pre-
sented an approach to calculate the variable contributions to
the D statistic instead of to the scores. Furthermore, Wester-
huis et al.12 extended the theory of contribution plots to
latent-variable models with correlated scores. The authors
introduced control limits for variable contributions that help
in finding the measurements, which present a different
behavior with respect to that contained in the reference data
set.

Another approach for calculating variable contributions to
the D statistic is carried out in the original-variable space.
Mason et al.13,14 presented a strategy to decompose the D
statistic into the contributions of each variable, which is
intended to identify the fault source. Because of the combi-
natorial nature of the formulation, a great number of decom-
positions are obtained, increasing the complexity of the iden-
tification procedure. A straightforward method to decompose
the D statistic as a unique sum of each variable contribution
was recently developed by Alvarez et al.,15 which is called
OSS (original-space strategy). It provides a clear understand-
ing of positive and negative variable contributions and esti-
mates a bound for the negative ones.

In this work, a strategy for bias detection, identification
and estimation devoted to process operating under steady-
state conditions is presented. It is based on the multivariate
statistical process control (MSPC) technique developed by
Alvarez et al.15 It is wholly developed using historical pro-
cess data; thus, no fundamental or empirical modeling and
no assumptions about the probability distribution of measure-
ment errors are required. In contrast to the techniques based
on fundamental models, both redundant and nonredundant
measurements can be examined to identify the presence of
biases.

The rest of this work is organized as follows. In the next
section, the decomposition of the D statistic in terms of the
contributions of each variable is briefly reviewed. The pro-

posed strategy for bias identification and estimation is pre-
sented in A Strategy for Bias Identification and Estimation
section. Then, the procedure applied to evaluate the perform-
ance of the strategy is described. In Examples and Results
section, results for some benchmarks extracted from data-rec-
onciliation literature are included. Conclusions are presented
in the last section.

Decompostion of the D Statistic

Let us consider z represents an N dimensional vector of
measurements made on a process operating under steady-
state conditions at time t. Given a reference population con-
taining I vectors of observations, the population parameters
can be estimated using the sample mean vector (z) and the
sample covariance matrix (S).

A multivariate control chart for the process is based on the
D statistic, which has the form

D ¼ ðz� zÞTS�1ðz� zÞ: (1)

As it is shown in Eq. 1, the statistic has a quadratic form,
and its value is always equal or greater than zero considering
that the sample covariance matrix is positive semidefinite.

The D statistic can be formulated as

D ¼
XN

i¼1

XN

j¼1

ai;jxixj; (2)

where ai,j are the elements of the inverse of the covariance
matrix (A 5 S21) and

xk ¼ zk � zk; (3)

for k 5 1, . . . , N.
Alvarez et al.15 reformulated the D statistic in terms of the

variables xk as follows

D ¼
XN

k¼1

ak;k x2k � x�kxk
� �

; (4)

where x�k represents the value of xk for which D is minimum
given the (N 2 1) values of the remaining variables and is
calculated using the following formula

x�k ¼ �

PN

j¼1
j6¼k

ak;jxj

ak;k
: (5)

An important advance over previous works is that the D
statistic can be evaluated as a unique sum of the contribu-
tions of each variable, cDk (k 5 1, . . . , N)

D ¼
XN

k¼1

cDk : (6)

Each contribution has a quadratic form, and its roots are
located at xk 5 0 and xk 5 x�k . Equation 4 provides a
straightforward decomposition of the D statistic into the con-
tributions of each variable. They are obtained in the space of
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the original variables using the same formulation for all of
them.

A Strategy for BIAS Identification
and Estimation

In this work, a MSPC procedure is presented to identify
measurement biases and estimate their magnitudes for a
steady-state process. Bias identification is based on the
decomposition of the D statistic previously presented. First,
the strategy is described, and then some issues with regard to
its application are discussed.

Strategy description

The strategy consists of two stages. The first one, which is
executed offline, provides the in-control parameters of the
process and the critical value of the statistic. They are
obtained from a reference population.

During the second stage, the D statistic is calculated online
at each sample time. If it exceeds the threshold value, the
presence of one or multiple biases is detected. Then, the
evaluation of the contributions of each variable to the statis-
tic allows identifying the faulty sensors. Bias magnitudes are
approximately estimated by calculating the difference
between the measurement vector and the reference-popula-
tion mean vector for the positions related with the faulty sen-
sors. Each stage is composed of the following steps.

Off-Line Stage.
1. The reference population, constituted by I vectors of obser-

vations, is built. Each sample is obtained as an average of the
measurements corresponding to a moving window of lengthH.

2. The population parameters z and S are evaluated.
3. The D statistic is calculated for each member of the ref-

erence population. After that, the probability density function
of D is estimated using a kernel smoothing technique. Given
the significance level of the test, a, the (1 2 a) percentile of
the distribution is selected as the critical value of D (Dcrit).

On-Line Stage.
1. Detection: at each sample time, a new observation znew

is obtained as the average of the measurements included in a
moving window of length H. The D statistic is calculated for
znew using Eq. 1. If it is greater than Dcrit, the presence of biases
is detected. The initial value of Dcrit is used until enough data
are collected in the second stage. Then, that value should be
adjusted to avoid overestimation of the fault signal rate a, as it is
indicated by Chou et al.16

2. Identification: variable contributions to the statistic
value are calculated using Eq. 4. Then, they are compared
with a single threshold value s, which is defined as follows:

s ¼ contþ brcont: (7)

In this equation, cont is the mean of the variable-contri-
bution vector, and rcont is the mean of the standard devia-
tions of variable contributions in the reference population.
Because the average number of Type I errors of the proce-
dure (AVTI) is set equal to 0.1 under the null hypothesis, the
parameter b is calculated by simulation to satisfy this condi-
tion. In this way, the number of false alarms is bounded for
each value of the parameter I.

These contributions that exceed the threshold value are
associated with faulty sensors.

3. Estimation: bias magnitudes are approximated by the
difference between the faulty measurements and their sample
means.

Application issues

In this subsection, particular issues with regard to the
application of the proposed technique are pointed out:

a. The generation of the reference population can be easily
accomplished. The increasing automation of process indus-
tries provides the required information for data-driven techni-
ques as the proposed one. Furthermore, the estimation of in-
control parameters for the reference population can be
updated online by incorporating new unbiased measurements.
This enhances the performance of the strategy for bias identi-
fication and estimation, as it is shown in Examples and
Results section.

b. The formulation of steady-state models (rigorous, em-
pirical, or hybrid) for complex nonlinear processes remains a
difficult and time-consuming task. As an alternative, the
problem of identification of faulty sensors can be dealt with
data-driven procedures, after performing the calibration of
the instruments installed in the process.

c. If a steady-state model of the process is available, it
usually involves redundant and nonredundant measurements.
The last ones cannot be examined to identify the presence of
biases, except using sensor voting or temporal redundancy.
In contrast, the new technique is suitable to identify biases
associated with both types of measurement.

d. As the Equivalency Theory of Gross Errors clearly
states, there exists uncertainty about the results of bias identi-
fication strategies based on first-principle models. The true
set of gross errors may be located on a set, which is equiva-
lent to the predicted one. This problem does not arise when
the proposed strategy is used.

e. No assumptions are required about the probability den-
sity function of measurement errors.

f. Parameter I has a major influence on the performance
of the strategy. For a given process, the increment of I
enhances the identification and estimation capabilities of the
technique. Furthermore, I should be increased for problems
of large size to achieve good performance measures, as it
will be shown in Examples and Results section.

g. The technique provides the report of faulty sensors that
should be inspected by the maintenance sector. During the
interval between the fault identification and the sensor repa-
ration, the value of the faulty measurement can be replaced
by its sample mean and used as input for other software
packages. If a model of the process is available and the faulty
sensor corresponds to a redundant measurement, its value can
be estimated in terms of reconciled measurements.

Simulation Procedure

A simulation procedure was applied to evaluate the per-
formance of the proposed strategy for different benchmarks
extracted from data-reconciliation literature.

One hundred random configurations of biases are tested in
each simulation run. Also one hundred moving windows are
examined for a particular configuration of biases. To form a
moving window, data are generated by adding noise and
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biases to the true values of the variables. A horizon of data
of fixed length H 5 5 is generated and arranged into a ma-
trix. At each sample interval, the oldest vector of observa-
tions is dropped out of the matrix, and the new vector of
measurements is appended as the last row of it.5

Regarding random errors, three different distributions
(Normal, Uniform, and Laplacian) are used to create them.
Kernel density estimation is applied to approximate the
D statistic distribution, and Dcrit is calculated assuming
a 5 0.05.

The number, location, and size of gross errors for each
configuration are selected randomly. The number of simu-
lated gross errors is in the range [1–0.25 3 N]. In contrast to
previous works, their sizes are in the narrow range [4–7r],
where r represents the standard deviation of the measure-
ment errors.

Three well-known measures of identification performance
are used: the Average Number of Type I Errors (AVTI), the
Overall Power (OP), and the Expected Fraction of Perfect
Identification (OPF). They are defined as follows:

AVTI ¼ No: of gross errors incorrectly identified

No: of simulation trials
(8)

OP ¼ No: of gross errors correctly identified

No: of gross errors simulated
(9)

OPF ¼ No: of trials with perfect identification

No: of simulation trials
(10)

Since 100 different configurations of gross errors are simu-
lated in each simulation run, the bias-estimation performance
is quantified using relative errors.

A given configuration is associated with a row of the ma-
trix Er (100, N). The row has zero and nonzero entries. The
first ones correspond to the nonfaulty sensors of the configu-
ration. The nonzero entries are the mean relative errors of
the biases estimated for the moving windows with perfect
identification.

The mean of each column of Er, disregarding its zero
entries, represents the mean relative error of bias estimation
among all configurations for a given measurement, and it
takes part of the vector dr of dimension N. The minimum
and maximum values of dr are reported for each simulation
run.

Examples and Results

Two data-reconciliation benchmarks are used to analyze
the performance of the procedure. One of them is the heat
exchanger network (HEN), originally presented by Swartz,17

and the other one corresponds to a steam metering network
(SMN) for a methanol synthesis plant.18

Example 1

The HEN shown in Figure 1 is devoted to heat stream A
by process streams B, C, and D at various junctions. The
system has 16 measured variables and 14 unmeasured ones,
which are related by 17 equality constraints (mass and
energy balances around the heat exchangers, mixers and
dividers). The standard deviations of flow rates and tempera-
tures are 2% and 0.758C, respectively. A complete descrip-
tion of the example can be found elsewhere.2

Variable classification procedures are applied to determine
the sets of redundant and nonredundant measurements. They
are presented in Table 1, where F means flow rate, T stands
for temperature, R represents a redundant measurement, and
NR indicates a nonredundant observation. It should be
noticed that neither gross error identification nor measure-
ment adjustment is possible for nonredundant measurements,
because they do not participate in a set of redundant equa-
tions.

Table 2 presents the performance measures related to bias
identification and bias estimation for gross errors located on
both redundant and nonredundant observations. Random
errors are generated using Normal, Uniform, and Laplacian
distributions.

The second column of Table 2 indicates the maximum
number of biases that are randomly generated for each simu-
lation. The next two columns present the number of samples
of the reference population (I) and the parameter b used to
calculate the threshold value s. The identification-perform-
ance measures AVTI, OP, and OPF follow. The minimum
and maximum values of vector dr are included in the last
column.

When bias-identification techniques are running on-line in
process industries and the presence of gross errors is
detected, there is only one biased measurement in general.
Table 2 shows that OP values are greater than 0.999 when

Figure 1. Heat exchanger network.

Table 1. Classification of Measurements for the HEN

Stream Variable Classification

A1 F R
A1 T NR
A3 F R
A3 T R
A4 T NR
A5 T R
A6 F R
A7 T R
A8 T R
B1 F NR
B1 T NR
C1 F NR
C1 T NR
D1 T NR
D2 F R
D2 T R
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one gross error is simulated for all random-error probability
distributions. These figures indicate that the strategy success-
fully identifies the bias of the faulty sensor, which is of great
practical importance. Moreover, simulations are performed
reducing in 50% the lowest values of I for all random-error
distributions, and the OP values remain above 0.999 for
Max#B 5 1. When the simulated number of biases increases,
a slight diminution of OP is observed for the same values of
I. Nevertheless, high values of OP are still achieved for
Max#B 5 0.25N.

Parameter I affects the measure OPF, that is, the ability of
the strategy of indicating perfectly the set of faulty sensors;
if I increases, OPF also increases. Thus, the updating of the
reference population online, by incorporating in-control pro-
cess observations, enhances the identification performance
and reduces the number of suspected measurements that
should be inspected by the maintenance sector.

Regarding the value of parameter b, it is adjusted to main-
tain an AVTI equal to 0.1 when the null hypothesis is satis-
fied. Its value decreases for larger samples, because, in these
cases, better estimations of the population parameters are
available.

In general, simulation results show that the maximum val-
ues of the mean relative errors of bias estimates diminish for
large values of I. The same conclusion arises for all probabil-

ity distributions. The highest mean relative errors are
obtained for the Laplacian distribution, which is in agreement
with the fact that it has longer thicker tails than the normal
distribution.

As it is expected, the same performance of the strategy
is achieved when biases are simulated exclusively for
nonredundant measurements, because the MSPC approach
does not distinguish between the two variable catego-
ries.

Example 2

SMN of a methanol synthesis plant involves 28 streams
that interconnect 11 units (see Figure 2). The flow rates of
all streams are measured, thus all measurements are redun-
dant. Random errors are generated considering that the stand-
ard deviations of observations are 2.5% of their true values.
Table 3 presents the performance measures for bias identifi-
cation and estimation.

In this example, the number of measured variables
increases in 75% with respect to the previous one. Therefore,
the number of samples of the reference population is also
increased to achieve high OPFs. Populations made up of 150,
250, 350, and 500 samples are generated assuming Normal,
Uniform, and Laplacian random errors.

Table 2. Performance Measures for Example 1

Distribution Max #B I b AVTI OP OPF Mean (er) (%)

Normal 1 90 9.3 0.0265 1 0.9737 0.40–4.16
1 120 7.7 0.0176 1 0.9825 0.64–2.77
1 180 5.5 0.0125 1 0.9875 0.94–3.69
1 300 4.8 0.0093 1 0.9907 0.61–2.49
2 90 9.3 0.0175 0.9993 0.9814 0.61–4.07
2 120 7.7 0.0107 0.9997 0.9888 1.17–3.06
2 180 5.5 0.0054 0.9992 0.9935 1.13–3.12
2 300 4.8 0.0053 0.9998 0.9944 0.95–2.35
4 90 9.3 0.0130 0.9638 0.8995 1.30–6.00
4 120 7.7 0.0055 0.9796 0.9432 1.29–5.34
4 180 5.5 0.0020 0.9906 0.9742 1.20–3.41
4 300 4.8 0.0025 0.9945 0.9836 0.89–2.65

Uniform 1 90 9.8 0.0315 1 0.9695 1.18–4.33
1 120 7.9 0.0178 1 0.9824 0.80–5.67
1 180 6.2 0.0120 1 0.9881 0.94–4.32
1 300 4.9 0.0048 1 0.9952 0.41–4.35
2 90 9.8 0.0166 0.9996 0.9832 0.98–4.04
2 120 7.9 0.0153 0.9999 0.9848 1.38–4.75
2 180 6.2 0.0068 0.9997 0.9927 1.07–4.37
2 300 4.9 0.0019 1 0.9981 0.96–3.90
4 90 9.8 0.0172 0.9692 0.9108 1.46–4.66
4 120 7.9 0.0095 0.9708 0.9178 0.95–4.27
4 180 6.2 0.0014 0.9861 0.9609 1.12–4.35
4 300 4.9 0.0014 0.9888 0.9702 1.20–4.43

Laplacian 1 90 10.5 0.0634 0.9996 0.9388 0.82–5.24
1 120 8.2 0.0528 0.9994 0.9475 0.75–6.82
1 180 6.5 0.0401 0.9999 0.9603 1.01–5.53
1 300 5.6 0.0373 0.9997 0.9630 1.02–5.97
2 90 10.5 0.0548 0.9854 0.9625 1.17–4.78
2 120 8.2 0.0432 0.9985 0.9562 1.66–5.82
2 180 6.5 0.0320 0.9976 0.9655 1.43–5.35
2 300 5.6 0.0270 0.9994 0.9726 1.31–4.75
4 90 10.5 0.0397 0.9147 0.7763 2.01–12.3
4 120 8.2 0.0260 0.9394 0.8326 1.45–7.51
4 180 6.5 0.0156 0.9602 0.8788 1.49–7.07
4 300 5.6 0.0168 0.9825 0.9408 1.71–5.66
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The effect of the sample size on OP and OPF is con-
firmed. Parameter I affects slightly the OP, but its increment
enhances the perfect-identification capabilities of the tech-
nique for all random-error distributions. As it is expected,
the worst identification performance of the strategy occurs
when Laplacian random errors are used to generate the set of
measurements.

Regarding the bias-estimation capabilities, it can be seen
that the performance enhances, in general, with the number
of samples until some threshold value is reached. No signifi-
cant improvement is achieved above it. For this example, the
best behavior is obtained for a sample size of 350. Also,
measurements generated using Laplacian random errors pro-
vide the worst results.

Table 3. Performance Measures for Example 2

Distribution Max #B I b AVTI OP OPF Mean (er) (%)

Normal 1 150 11.4 0.0637 1 0.9379 0.53–4.13
1 250 8.0 0.0376 1 0.9631 0.12–3.61
1 350 6.8 0.0300 1 0.9705 0.32–2.71
1 500 5.9 0.0280 1 0.9726 0.06–2.98
3 150 11.4 0.0401 0.9999 0.9600 0.72–3.88
3 250 8.0 0.0172 1 0.9827 1.05–2.92
3 350 6.8 0.0142 0.9998 0.9855 0.62–3.18
3 500 5.9 0.0149 1 0.9854 0.94–2.67
5 150 11.4 0.0263 0.9760 0.9009 1.29–3.89
5 250 8.0 0.0138 0.9946 0.9699 1.27–4.40
5 350 6.8 0.0109 0.9979 0.9825 0.59–2.50
5 500 5.9 0.0075 0.9992 0.9901 0.93–2.78
7 150 11.4 0.0209 0.9532 0.8175 1.34–4.07
7 250 8.0 0.0086 0.9831 0.9294 0.94–3.57
7 350 6.8 0.0066 0.9933 0.9707 0.83–2.46
7 500 5.9 0.0038 0.9961 0.9814 0.95–2.29

Uniform 1 150 10.4 0.0559 1 0.9454 0.45–4.22
1 250 7.7 0.0414 1 0.9591 0.36–4.80
1 350 6.4 0.0275 1 0.9728 0.17–3.12
1 500 5.5 0.0258 1 0.9744 0.51–5.98
3 150 10.4 0.0375 0.9998 0.9625 0.33–3.45
3 250 7.7 0.0184 0.9994 0.9804 0.68–2.80
3 350 6.4 0.0129 0.9999 0.9872 0.51–3.14
3 500 5.5 0.0065 0.9999 0.9933 0.78–2.78
5 150 10.4 0.0263 0.9847 0.9297 1.03–3.13
5 250 7.7 0.0157 0.9959 0.9725 0.78–3.14
5 350 6.4 0.0094 0.9988 0.9871 0.75–2.68
5 500 5.5 0.0040 0.9974 0.9876 0.93–2.73
7 150 10.4 0.0187 0.9592 0.8371 0.91–4.48
7 250 7.7 0.0075 0.9807 0.9223 0.94–3.70
7 350 6.4 0.0065 0.9941 0.9710 1.23–2.50
7 500 5.5 0.0022 0.9924 0.9641 1.03–2.56

Laplacian 1 150 12.1 0.0867 0.9987 0.9162 0.69–5.74
1 250 9.0 0.0652 0.9982 0.9352 0.48–6.52
1 350 7.6 0.0659 0.9995 0.9364 0.80–4.33
1 500 6.5 0.0716 0.9997 0.9308 0.02–5.24
3 150 12.1 0.0614 0.9930 0.9269 0.49–4.52
3 250 9.0 0.0424 0.9973 0.9534 0.97–3.28
3 350 7.6 0.0365 0.9972 0.9594 0.68–3.81
3 500 6.5 0.0408 0.9978 0.9561 1.11–4.20
5 150 12.1 0.0529 0.9609 0.8476 1.61–4.74
5 250 9.0 0.0321 0.9773 0.9039 1.02–5.37
5 350 7.6 0.0346 0.9815 0.9129 0.94–4.07
5 500 6.5 0.0238 0.9853 0.9287 1.41–4.33
7 150 12.1 0.0412 0.9351 0.7413 1.96–5.66
7 250 9.0 0.0264 0.9558 0.8372 1.72–5.95
7 350 7.6 0.0247 0.9707 0.8736 1.86–3.84
7 500 6.5 0.0150 0.9721 0.8673 1.21–4.62

Figure 2. Steam metering network.
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Conclusions

In this work, a MSPC strategy devoted to the identification
and estimation of biases for processes operating under
steady-state conditions is presented. The D statistic is applied
to detect the presence of biases in a set of measurements.
Besides, a new formulation of the variable contributions to
the inflated statistic allows identifying the faulty sensors.
Also, an approximate estimation of bias magnitudes is pro-
posed.

The strategy is a data-driven method. The same procedure
can be applied to any steady-state process without knowing
the functional relationships among the variables. The lineari-
zation errors that arise when techniques developed for linear
systems are applied to nonlinear systems are avoided.

Since the process model is not required, the methodology
succeeds in identifying biases for the measurements of any
kind. Therefore, it overcomes the limitation of other wide-
spread strategies, whose use is restricted to measurements
classified as redundant. Furthermore, there is not uncertainty
related to the position of biases in the sense explained by the
Equivalency Theory of Gross Errors.

In contrast to other strategies, results are independent of
the probability distribution assumed for measurement errors.
No assumptions about this distribution are required.

A simulation procedure is carried out to analyze the per-
formance of the new methodology, and the influence of its
parameters is discussed. Results show that it works satisfac-
torily for the examined benchmarks. It should be highlighted
that the strategy fulfills three paramount issues related with
its practical implementation in commercial software: robust-
ness, uncertainty, and efficiency.
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