First Report of Hemiclitores in Females of South American Liolaemid Lizards

Author(s): Soledad Valdecantos and Fernando Lobo
Published By: The Society for the Study of Amphibians and Reptiles

BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at www.bioone.org/page/terms_of_use.

Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.
First Report of Hemiclitores in Females of South American Liolaemid Lizards

SOLEDAD VALDECANTOS1 AND FERNANDO LOBO

IBIGEO-Universidad Nacional de Salta-CONICET. A. C. A. Bolivia 5150-Salta-Argentina

ABSTRACT.—Studies about copulatory organs in Squamata were restricted to the morphology of hemipenes until Böhme reported homologous paired structures in females of a species of Varanus, which he called hemiclitores. We report the presence of hemiclitores in females of Phymaturus and of two species of Liolaemus and describe observations on the interspecific variation in hemipenis morphology in Phymaturus, Phymaturus and Liolaemus belong to Liolaemidae, a species-rich family of lizards; research about hemipenis morphology is scarce and limited to a few species of those genera. We found the retractor clitoridis magnus in all of the species analyzed; however, the transverse penis was not present in all of them. The general structure of hemiclitores of Phymaturus and Liolaemus females resembled that described for other squamate species; they were smaller than hemipenes and exhibited a sulcus spermaticus. The variation found in different features of these organs (shape, size, pigmentation), as well as the general morphology of hemiclitores, should be studied more extensively in more species. These results contribute to the description of structures that are still poorly known in the large groups of Squamata and support the idea that hemiclitores should be considered an apomorphy of Squamata.

RESUMEN.—Los estudios de los órganos copuladores de Squamata estuvieron restringidos a la morfología de los hemipenes hasta que Böhme reportó la presencia de estructuras pareadas homologas a la de los machos, a las que llamó hemiclitores. Nosotros reportamos la presencia de hemiclitores en las hembras del género Phymaturus y en dos especies del género Liolaemus así como observaciones sobre la variación interespecífica en la morfología de los hemipenes de Phymaturus, Phymaturus y Liolaemus pertenecen a Liolaemidae, una familia de lagartijas muy diversa, para los cuales las investigaciones en la morfología de los hemipenes son escasas y limitadas a unas pocas especies. En todas las especies revisadas encontramos el músculo retractor clitoridis magnus pero no el transversus penis. La estructura general de los hemiclitores de las hembras de Phymaturus y Liolaemus, se asemeja a la descrita para otras especies de Squamata; son más pequeñas que los hemipenes y exhiben un sulcus spermaticus. La variación encontrada en diferentes características de estos órganos (forma, tamaño, pigmentación), así como la morfología general de hemipenes, debe ser estudiada más extensamente incluyendo un mayor número de especies. Estos resultados contribuyen con el reporte y la descripción de estructuras que son aún poco conocidas en los grandes grupos de Squamata, y soporta la idea que los hemiclitores deben ser considerados una apomorfia de Squamata.

During an embryological study of Phymaturus, we found paired structures in the cloaca of females that have not been described previously. Hence, we revisited the cloaca in adult specimens and confirmed that these structures were constant in these lizards and, thus, merit description.

The morphology of the hemipenes is of great taxonomic interest and an excellent source of information for the study of phylogenetic relationships (e.g., Arnold, 1986a,b). These copulatory organs have been studied since the 19th century (Lereboullet, 1851; Cope, 1896), and numerous works focusing on several lizard and snake families and amphisbaenids have been published (e.g., Presch, 1978; Böhme, 1989; Guo and Zhang, 2001). The comprehensive anatomical study of musculature of the hemipenis region (Arnold, 1984) is a useful guide to all structures related to these organs. Böhme (1988) revised the hemipenis morphology in representatives of all lizard families and provided original terminology for the structures and ornamentation. Hemiclitores were first described by Böhme (1995) for a species of Varanus as structures present in squamate females homologous to hemipenes; however, the presence of a structure similar to hemipenes in the cloaca of female lizards and snakes was mentioned previously but without giving them any relevance or even providing names (Gadow, 1887; Minton and Minton, 1973; Honegger, 1978; Gasc and Renous, 1979; Arnold, 1984; Davis and Phillips, 1991; King and Green, 1993). The occurrence of hemiclitores seems to be common across different lizard and snakes families (e.g., Ziegler and Böhme, 1997) and amphisbaenids (Kaspereviczus et al., 2011), but the structure and variation in shape and size are poorly known, except for varanids, helodermatids, and lanthanotids (Ziegler and Böhme, 1997). Recent investigations, aiming to address the functional reproductive morphology of the hemiclitores, have analyzed the hormonal influence and the neuromuscular complex as a whole in species of Anolis and Eublepharis (Lovern et al., 2004; Holmes et al., 2005). The variation found in these studies indicates that muscles associated with hemipenes and hemiclitores can be present in both sexes of Eublepharis (Holmes et al., 2005) or restricted only to males in Anolis carolinensis (Lovern et al., 2004).

The family Liolaemidae contains three genera of lizards, Liolaemus, Ctenoblepharys, and Phymaturus. The last is an endemic genus inhabiting the arid southwestern region of South America that includes at least 40 species (Lobo et al., 2012). The systematics (e. g., Lobo et al., 2012), reproductive biology (e.g., Cruz and Ramirez Pinilla, 1996), and behavior and thermoregulation (e. g., Labra et al., 2007; Valdecantos et al., 2013) have been studied in Phymaturus and Liolaemus. However, there are only two studies describing hemipeneal morphology, the description of Phymaturus palluma by Böhme (1988) and the report of Lobo (2000) of 18 species of Liolaemus and Phymaturus dorsimaculatus, who provided a preliminary overview of the diversity in this clade. We report the presence of hemiclitores in females of both Phymaturus and Liolaemus and report observations on the interspecific variation found in hemipenis morphology within Phymaturus.

MATERIALS AND METHODS

The cloacal region was observed in females and embryos of 20 species of Phymaturus belonging to both groups: palluma and patagonicus (Lobo et al., 2012). To standardize the observations, only embryos belonging to stages 34 and 35, according to Lemus et al. (1981), and hatchlings were included. Embryos and hatchlings were sexed by direct observation of gonads.

1Corresponding Author. E-mail: solevaldecantosp@gmail.com
Also, we reviewed the hemipenes of 18 other species representative of both groups (Appendix 1). All descriptions were made following the nomenclature of Arnold (1984) and Ziegler and Böhme (1997). We also observed one male and one female of two species of Liolaemus, Liolaemus irregularis and Liolaemus umbrifer, each belonging to the two subgenera, to check the hemiclitoris presence in Liolaemus, the sister taxon of Phymaturus. In almost all male embryos, we detected hemipenes with the naked eye because they were already everted, but in a few cases, we everted them by manually pressing behind the posterior border of the cloaca. Hemiclitores in the females are in the same position as the hemipenes in males, also everted, and in most cases are associated with the same musculature.

RESULTS AND DISCUSSION

Description of Hemiclitores in Adult Females of Phymaturus.—Retracted hemiclitores lay behind the vent, in the same position as that of the hemipenes (Fig. 1A). By contrast, the hemiclitores were superficial and not always covered by the transversus penis. The retractor lateral posterior was not observed in all species, whereas the retractor clitoridis magnus was always present, as in males (Figs. 1A,B).

The general morphology of the hemiclitoris was similar to that described by Ziegler and Böhme (1997); it was composed of an apex, a truncus having a sulcus spermaticus, and a basal region called pedicel. In Phymaturus patagonicus, the hemiclitoris (Figs. 1C,D) was pigmented all along its truncus and only barely over the apex, similarly to other 11 species of the genus, whereas the remaining eight species lacked any kind of pigmentation. We did not observe any kind of ornamentation in hemiclitores. Only in Phymaturus ceii, female did the hemiclitoris structure show the apex divided into lobes (Fig. 1A). This character exhibited a remarkable variation between embryo and adult, because the adult female of Phymaturus verdugo showed no bilobed apex, but it was bilobed in the embryo (Fig. 2C).

Observations of Embryos and Hatchlings of Phymaturus.—The embryos studied (stages 34 and 35) exhibited everted hemipenes or hemiclitores (Figs. 2A,C). Because hemiclitores were smaller than hemipenes, they were observed mostly by opening the vent with tweezers. Hatchlings did not have everted copulatory organs; they were sexed by looking at gonads and in the case of males, hemipenes were everted by manually pressing behind the posterior border of the cloaca. Everting the hemiclitores was much more difficult than everting the hemipenes because of their reduced size. In both male embryos and hatchlings, two structures, testicles and mesonephros (the epididymis), were well developed (Fig. 2B), whereas in females, three structures were well developed (ovary, mesonephros, and oviduct) (Fig. 2D). Male and female embryos of P. verdugo had hemipenes and hemiclitores with bilobed apex, although hemiclitores were clearly smaller than hemipenes of males at the same stage (Figs. 2A,C). Hemiclitores of this species showed ontogenetic variation; in adult females, this structure lacked this bilobed shape.

Description of Hemipenes of Adult Males of Phymaturus.—In males, the retracted hemipenes were located behind the vent and were observed forming cloacal diverticula. In ventral view, the
hemipenis was covered by conspicuous transverses penis muscle (cut and displaced in Fig. 1D). Both retractor muscles of the hemipenis were present (retractor penis magnus and retractor lateralis posterior). This condition is similar to that described by Arnold (1984) for *P. palluma*, indicating a widespread condition for iguanids but pointing out a difference: “*Phymaturus* approaches this but the retractors laterals are closely applied and, in addition to its attachment at the dorsal confluence of the hemipenis and cloaca, the retractor lateralis posterior has a well defined fleshy insertion on the side of the basis of the hemipenis (instead of one that is less clearly defined, tendinous or absent).”

Everted hemipenes in adults of *Phymaturus* species exhibited very limited variation (as was described for *Liolaemus*, Lobo, 2000) and were similar to the main characteristics described by Böhme (1988) for *P. palluma* from Chile. The hemipenis had a wide trunk and a bilobed apex. The only kind of ornamentation found was limited to calices spread out on both sides of the organ (Figs. 1E,F) and was restricted to the distal half of its body; basal calices were larger and became smaller to the top of apices. The sulcus spermaticus (Fig. 1F) had its basal borders conspicuously widened, similar to *Liolaemus* (Lobo, 2000). The sulcus was pigmented along its entire length in *P. dorsimaculatus, P. verdugo* and *Phymaturus roigorum*. In species belonging to the puna clade (*Phymaturus demotatus, Phymaturus laurenti, and Phymaturus punae*), this pigmentation was extended over apical surfaces of lobes, which may be an additional apomorphy for this subclade (Lobo et al., 2012). The everted hemipenis of *P. patagonicus* and other representatives of the *patagonicus* group were completely white, lacking any kind of pigmentation on its sulcus and lobes.

Observations on Liolaemus Species.—The presence of hemiclitores in *L. irregularis* and *L. umbrifer* females was confirmed. Variation in size and pigmentation between them was evident, and the morphology of this organ within the genus deserves further investigation. The transversus penis was not found in either species of *Liolaemus* examined, although the retractor clitoridis magnus was present. Arnold (1984) found a difference between *Phymaturus* and the related genera *Liolaemus* and *Ctenoblepharys*, with the latter two exhibiting insertion of retractor lateralis posterior more strongly developed than in *Phymaturus*. Additionally, the retractor lateralis anterior did not extend backward beyond the level of the vent in *Phymaturus* and originated from a fascia below the anterior caudofemoralis muscle.

Final Considerations.—In hemipenes and hemiclitores we did not observe hemibacula as described for varanids (Böhme, 1988; Card and Kluge, 1995). Variation in the degree of development of muscles associated with the hemiclitoris was reported by Arnold (1984). This author emphasized that muscle arrangement behind the vent “is often surprisingly like that found in males.” He clearly described the variation found in those “diverticula” and associated muscles among several genera of lizards, reporting differences among males and females in lacertids, varanids, and teiids. These diverticula reported by Arnold (1984) were formally recognized as homologous to hemipenes in females by Böhme (1995) and Ziegler and Böhme (1997). In the case of *Liolaemus*, we confirmed the presence of hemiclitores and associated muscles only in two species, but this genus is one the most diverse within Iguania (more than 250 species). The present research poses several questions that deserve further investigation. For example,
is there the same kind of variation in the presence of hemiclitores within liolaemids, similar to the variation reported by Bethrops (Marques et al., 2002)? Is there the same variation of the whole associated musculature? How does reduction in certain muscles affect the function of eversion in hemiclitores given the variation found among adult females of different liolaemid species?

In conclusion, the anatomy of the hemipesmes/hemiclitores complex is one of the most striking apomorphies of Squamata and deserves deeper analysis because of its phylogenetic and functional implications.

Acknowledgments.—We thank G. Perry, E. Muths, and an anonymous reviewer for their useful suggestions. This work was funded by Universidad Nacional de Salta (CIUNSA N° 1663), and CONICET (PIP N° 2841) to FL.

LITERATURE CITED

LITERATURE CITED

Acknowledgments.—We thank G. Perry, E. Muths, and an anonymous reviewer for their useful suggestions. This work was funded by Universidad Nacional de Salta (CIUNSA N° 1663), and CONICET (PIP N° 2841) to FL.

LITERATURE CITED

LITERATURE CITED

Acknowledgments.—We thank G. Perry, E. Muths, and an anonymous reviewer for their useful suggestions. This work was funded by Universidad Nacional de Salta (CIUNSA N° 1663), and CONICET (PIP N° 2841) to FL.

LITERATURE CITED

