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Abstract

We define a knot/link invariant using set theoretical solutions (X,σ) of the
Yang-Baxter equation and non commutative 2-cocycles. We also define, for a given
(X,σ), a universal group Unc(X) governing all 2-cocycles in X, and we exhibit
examples of computations.

Introduction and preliminaries

The first part of this work consist of a generalization to biquandles and the notion of
non-commutative 2-cocycle given in [AG] for quandles. It is also a generalization to the
non-commutative case of part of the work in [CEGS] for commutative cocycles. In this
way, we obtain in principle new invariants for biquandles that do not come from quandles,
admitting non-commutative 2-cocycles, that is, whose universal group (see section 2 or
3) is non abelian.

In the second section we define a universal group governing all 2-cocycles for a given
biquandle X, that is, a group Unc(X) together with a 2-cocycle π : X × X → Unc(X)
such that if f : X ×X → G is a non commutative 2-cocycles with values in a group G,
then there is a unique group homomorphism f̃ : Unc(X) → G such that f = f̃π. For
instance, if Unc(X) is the trivial group, then every 2-cocycle is trivial. On the opposite, if
Unc(X) is nontrivial, this universal property says that it carries all information that any
group could give using non commutative 2-cocycles.

In the third section, a reduced version of Unc is given, it depends on a map γ : X →
Unc(X). The constructed group is called Uγ

nc(X), in particular it is a group and there
is given a 2-cocycle πγ : X × X → Uγ

nc(X) with the following property (Theorem 24):
if f : X × X → G is a 2-cocycle, then there exists a cohomologous (see definition 7)

2-cocycle fγ : X × X → G and a group homomorphism f̃γ such that fγ = f̃γπγ. Since
the invariant defined in section 1 is unchanged for cohomologous cocycles (Proposition
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14), the invariant produced with f is the same as the one coming from fγ, so we see that
all invariants are governed by the group Uγ

nc, which is, in general, smaller than Unc.
In section 4 we exhibit some examples of computations. Most of them were performed

using [GAP2015]. We wish to heartily thank Leandro Vendramin for teaching us the basic
facts on syntax and GAP programing, and helping us with our first (and not so firsts)
steps implementing the algorithms we needed. An interesting observation on examples
is that, if (X, σ) is a solution of the Yang-Baxter equation, then also is σ := σ−1, and
if σ makes X into a biquandle (see definition below), then also σ gives a biquandle
structure. One may suspect that σ is, in a sense, equivalent to σ and probably gives no
new information, but this is not the case: one may have Uγ

nc(σ) = 1 (so that σ gives always
trivial invariants for any 2-cocycle f) but σ may give non trivial invariants. Section 5
end with concluding remarks.

Before going into section 1 we recall the notion of biquandle and quandle:

Definition 1. A set theoretical solution of the Yang-Baxter equation is a pair (X, σ)
where σ : X ×X → X ×X is a bijection satisfying

(Id× σ)(σ × Id)(Id× σ) = (σ × Id)(Id× σ)(σ × Id)

Notation: σ(x, y) = (σ1(x, y), σ2(x, y)) and σ−1(x, y) = σ(x, y).

Definition 2. A rack is a pair (X, /) where / : X → X verifies

1. for all x ∈ X, the map − / x : X → X (y 7→ y / x) is bijective, and

2. (x / y) / z = (x / z) / (y / z)

A rack is called a quandle if x / x = x for all x ∈ X.

One can easyly see that σ(x, y) = (y, x / y) is a solution of the YBeq if and only if
(X, /) is a rack. A solution (X, σ) is called non-degenerated, or birack if in addition:

1. (left invertibility) for any x, z ∈ X there exists a unique y such that σ1(x, y) = z,

2. (right invertibility) for any y, t ∈ X there exists a unique x such that σ2(x, y) = t.

Given a birack (X, σ), a remarkable map Φ : X × X → X × X can be defined in
the following way (see [S] or [LYZ]). Introduce the notation σ(x, y) = (gx(y), fy(x)), and
define Φ by Φ(x, y) := (x, gxy). Notice that the birack condition means that both gx and
fx are bijective maps for any x, in particular Φ is bijective. This map was considered
in [S], [LYZ], and several places after. One of its properties is that the operation called
derived rack structure on X given by

x / y := x /σ y = gy(fg−1
x (y)(x))

is actually a rack structure and, moreover, the map Φ makes the following diagram
commutative

X ×X Φ //

σ
��

X ×X
c/
��

X ×X Φ // X ×X
where c/(x, y) = (y, x / y), that is, the standard braiding associated to a rack. Using this
map one can see the following:
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Lemma 3. If X is a finite set and σ a birack solution of the YBeq then the following
assertions are equivalent

1) For all y0 ∈ X there exists a unique x0 =: S(y0) such that σ(x0, y0) = (x0, y0).

1)* There exists a function S : X → X such that (X ×X)σ = {(S(y), y) : y ∈ X}.

2) For all x0 ∈ X there exists a unique y0 =: s(x0) such that σ(x0, y0) = (x0, y0).

2)* There exists a function s : X → X such that (X ×X)σ = {(x, s(x)) : x ∈ X}.

3) The derived rack (X, /) is a quandle, that is, x / x = x for all x ∈ X

If one of the above equivalent conditions holds, we say that (X, σ) is a biquandle.
Notice that if this is the case, then function s is necesarily bijective (with inverse S).

Proof. It is clear that 1 is equivalent to 1*, and similarly for 2⇔2*. Let us prove 2⇒ 3.
Using the above commutative diagram on can conclude that Φ induces a bijection

Φ : (X ×X)σ
∼= // (X ×X)c/

But if σ(x0, y0) = (x0, y0) then Φ(x0, y0) = (x0, x0). So, for every x ∈ X, c/(x, x) =
(x, x / x) = (x, x), that is, x / x = x and hence (X, /) is a quandle.

3 ⇒ 2). Assume (X, /) is a quandle. As before, we know that Φ restricts to a
bijection (X × X)σ → (X × X)c/ = {(x, x) : x ∈ X}. But Φ is bijective, with inverse
Φ−1(a, b) = (a, g−1

a (b)), so

(X ×X)σ = Φ−1({(x, x) : x ∈ X}) = {(x, g−1
x x) : x ∈ X}

that is, (X ×X)σ is of the form {(x, s(x)) : x ∈ X}, with s the function s(x) := g−1
x (x).

The proof of 3⇔ 1 is analogous.

The biquandle condition is crutial in relation with the first Reidemeister move; in
section 2 we review some examples of biquandles.

1 Non-abelian 2-cocycles

Let (X, σ) be a biquandle and H a (not necessarily abelian) group.

Definition 4. A function f : X ×X → H is a braid non-commutative 2-cocycle if

• f
(
x1, x2

)
f
(
σ2(x1, x2), x3

)
= f

(
x1, σ

1(x2, x3)
)
f
(
σ2(x1, σ

1(x2, x3)), σ2(x2, x3)
)
, and

• f
(
σ1(x1, x2), σ1(σ2(x1, x2), x3)

)
= f

(
x2, x3

)
are satisfied for any x1, x2, x3 ∈ X.

Definition 5. If f further satisfies f(x, s(x)) = 1 for all x ∈ X then it is called of type I.
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Remark 6. If f is a braided non commutative 2-cocycle and λ : X → H is an arbitrary
function, then

f ′(x, y) = λ(x)f(x, y)λ−1(σ2(x, y))

is also a braided non commutative 2-coycle. If moreover f is of type I, and λ(x) = λ(s(x))
for all x ∈ X, then f ′ is also of type I.

Definition 7. Two cocycles f, f ′ are cohomologous (f ∼ f ′) if there is a function
γ : X → H such that γ(x) = γ(s(x)) and

f ′(x, y) = γ(x)f(x, y)γ−1(σ2(x, y)), ∀x, y ∈ X.

Remark 8. It is easy to see that ∼ is an equivalence relation.

An equivalence class is called a cohomology class. The set of cohomology classes is
denoted by H2

NC(X,H). This definitions, in case (X, /) is a quandle and considering
σ(x, y) = (y, x/y), agree with the ones in [CEGS], since in this case the second condition
of definition 4 is trivial. As in the rack/quandle case, if H is not commutative, H2

NC(X,H)
need not to be a group, it is just a set.

Remark 9. If H happens to be commutative and f : X × X → H is a 2-cocycle in the
non commutative sense, then f is necessarily a (special type of) 2-cocycle with trivial
coefficients in the sense of [CES], but our definition is more restrictive, because we ask
for a set of equations of the form ab = a′b′ and c = c′ (plus being type I), while in the
usual abelian 2-cocycles the equation is of the form abc = a′b′c′ (plus being type I).

Remark 10. The first condition of definition 4 is invariant under inverting σ, namely, f
satisfies it for σ if and only if f does it for σ−1. On the other hand, the second condition
is not invariant under inverting σ. For example, if (X, /) is a rack and σ(x, y) = (y, x/y),
then the second condition is trivially satisfied for any function f (and hence, this definition
is equivalent, in this setting, to the one given in [CEGS]), while for σ(x, y) = (y /−1 x, x)
means that f must be invariant under the action of the Inner group associated to the
rack X.

1.1 Weights

Let X be a biquandle, H a group, f : X × X → H a non-abelian 2-cocyle. Let L =
K1 ∪ · · · ∪ Kr be a classical oriented link diagram on the plane, where K1, . . . , Kr are
connected components, for some positive integer r. A coloring of L by X is a rule that
assigns an element of X to each semi-arc of L, in such a way that for every crossing

x
>>>

��>>>

y

����������

z t

a

��======== b
���

������

c d

we have (z, t) = σ(x, y) if the crossing is positive, and (c, d) = σ−1(a, b) if the crossing is
negative.

Let C ∈ ColX(L) be a coloring of L by X and (b1, . . . , br) a set of base points on
the components (K1, . . . , Kr). Let τ (i), for i = 1, . . . , r the set of crossings such that the
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under-arc is from the component i. Let (τ
(i)
1 , . . . , τ

(i)
k(i)

) be the crossings in τ (i), i = 1, . . . , r

such that appear in this order when one travels Kj in the given orientation.
At a positive crossing τ , let xτ , yτ be the color on the incoming arcs. The Boltzmann

weight at τ is Bf (τ, C) = f(xτ , yτ ). At a negative crossing τ , denote σ(xτ , yτ ) the colors
on the incoming arcs. The Boltzmann weight at τ is Bf (τ, C) = f−1(xτ , yτ )

Bf,τ = f(xτ , yτ ) : xτ
PPPPP

((PP

yτ

vvnnnnnnnn

σ1(xτ , yτ ) σ2(xτyτ )

σ1(xτ , yτ )

((QQQQQQQQQ
σ2(xτ , yτ )

mmm

vvmmmmm

xτ yτ

: Bf,τ = f(xτ , yτ )
−1

We will show that a convenient product of these weights is invariant under Reidemeis-
ter moves.

1.2 Reidemeister type I moves

First notice that σ(x, s(x)) = (x, s(x)) implies σ−1(x, s(x)) = (x, s(x)), so, adding any
orientation to the diagram

x@A BCED s(x)GF
@A

x

x x

the condition f±1(x, s(x)) = 1 assures that the factor due to this crossing do not count.

1.3 Reidemeister type II moves

We consider several cases:

Case 1:

σ1(x, y)

y

��

σ2(x, y)

x

++
σ1(x, y) σ2(x, y)

σ1(x, y)

��

σ2(x, y)

��
σ1(x, y) σ2(x, y)

Case 2:
xOO

σ1(y,x)

y55

σ2(y,x)

x y

xOO yOO

x y
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Case 3: In this case and the following, start naming the top arcs of the diagrams on the
left, the rest of the arcs are known as X is a biquandle.

y

σ1(x,y)

��

σ2(x, y)44

x

y σ2(x, y)

y

��

σ2(x, y)
OO

y σ2(x, y)

Case 4:
σ1(x, y)
OO

y

x

σ2(x,y)

++σ1(x, y) x

σ1(x, y)
OO

x

��
σ1(x, y) x

The product of weights corresponding to the diagrams on the left in cases 1 and 3 is
f−1(x, y)f(x, y) = 1, in cases 2 and 4 is f(x, y)f−1(x, y) = 1.

1.4 Reidemeister type III moves

While there are eight oriented Reidemeister type III moves, only four of them are different.

Case 1: Start by naming the incoming-arcs x1, x2, x3. In case 1, as well as in the rest
of the cases, once chosen three arcs in both diagrams the remaining arcs are respectively
equal as σ is a solution of YBeq.

x2

KKKKKKKKKKKKK

%%KKKKKKKKKKK

x3

yysssssssssssssssssssssssss

x1

++
σ2(σ2(x1,x2),x3)

σ1(σ1(x1,x2),σ1(σ2(x1,x2),x3)) σ2(σ1(x1,x2),σ1(σ2(x1,x2),x3))

x2

HHHHHHHHHHHH

$$HHHHHHHHHH

x3

zzvvvvvvvvvvvvvvvvvvvvvvv

x1 33
σ2(σ2(x1,σ1(x2,x3)),σ2(x2,x3))

σ1(x1,σ1(x2,x3)) σ1(σ2(x1,σ1(x2,x3)),σ2(x2,x3))

The product of the weights following the horizontal under-arc, in the first diagram, is:

I = f(x1, x2)f(σ2(x1, x2), x3)
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and in the second, is:

II = f(x1, σ
1(x2, x3))f(σ2(x1, σ

1(x2, x3)), σ2(x2, x3))

I = II is one of the equalities defining 2-cocycle, the other equation defining 2-cocycle
affirms that the weights given to the other crossings are the same. Notice that in the
quandle coloring this condition is trivial, but in the biquandle coloring it is not.

Case 2: Start by naming the arcs σ2(x1, x2), x2 and σ1(x2, x3) in both diagrams. The
remaining arcs are known using the fact that X is a biquandle and
σ1 (σ1(x1, x2), σ1(σ2(x1, x2), x3)) = σ1(x1, σ

1(x2, x3)) (due to the braid equation).

x2 dd

HHHHHHHHHHHH

HHHHHHHHHHH

σ1(x2, x3)

zzvvvvvvvvvvvvvvvvvvvvvvv

σ2(x1, x2)
++
σ2(x1,σ1(x2,x3))

σ1(σ2(x1,x2),x3) σ2(σ1(x1,x2),σ1(σ2(x1,x2),x3))

x2 dd

HHHHHHHHHHHH

HHHHHHHHHHH

σ1(x2, x3)

zzvvvvvvvvvvvvvvvvvvvvvvv

σ2(x1, x2) 33
σ2(x1,σ1(x2,x3))

σ1(σ2(x1,x2),x3) σ1(σ2(x1,σ1(x2,x3),σ2(x2,x3)))

The product of weights for the horizontal line in the first diagram is

I = f−1(x1, x2)f(x1, σ
1(x2, x3))

and for the second diagram is

II = f(σ2(x1, x2), x3)f−1(σ2(x1, σ
1(x2, x3)), σ2(x2, x3))

The remaining weights in both diagrams are a = f−1(σ1(x1, x2), σ1(σ2(x1, x2), x3)) and
b = f−1(x2, x3). As f is a 2-cocycle, a = b.

Case 3: Name the incoming arcs by a, b and c.

Remark 11. YBeq is equivalent to the following equation, which explains the equality of
the out-coming arcs in both diagrams.

(σ × 1)(1× σ)(σ × 1) = (1× σ)(σ × 1)(1× σ) (1)
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c

>>>>>>>>>

��>>>>>>>>

σ2(σ2(a,σ1(b,c)),σ2(b,c))
@@

��������������������

b
**

σ1(σ2(a,σ1(b,c)),σ2(b,c))

a σ1(a,σ1(b,c))

c

=========

��========

σ2(σ2(a,b),c)
@@

��������������������

b 55
σ2(σ1(a,b),σ1(σ2(a,b),c))

a σ1(σ1(a,b),σ1(σ2(a,b),c)

The product of weights for the horizontal line in the first diagram is

I = f(b, c)f−1
(
σ(σ2(a, σ1(b, c)), σ2(b, c))

)
and for the second diagram is

II = f−1(σ(a, b))f
(
σ1(a, b), σ1(σ2(a, b), c)

)
.

Using (1) in I:

I = f(b, c)f
(
(σ2(σ1(a, b), σ1(σ2(a, b), c)), σ2(σ2(a, b), c))

)
Take te changes of variables (x1, d) = σ(a, b) and (x2, x3) = σ(d, c). Then

I = f(σ2(x1, σ
1(x2, x3)), σ2(x2, x3))f−1(σ2(x1, x2), x3)

II = f−1(x1, σ
1(x2, x3))f(x1, x2)

We see that if f is a non-commutative 2 cocycle then I = II.
The weights that correspond to the other crossings are:

III = f−1(σ(a, σ1(b, c))), IV = f−1(σ(σ2(a, b), c)),

changing variables and composing (1) with 1× δ:

III = f−1(σ1(x1, x2), σ1(σ2(x1, x2), x3)), IV = f−1(x2, x3)

III = IV is verified as f is a 2-cocycle.

Case 4: We only exhibit the diagram corresponding to this case, the computations
are similar to the previous case.
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WW

//////

//////

GG

�������������

##

WW

//////

//////

GG

�������������

;;

This shows, not only, that the product of the weights does not change under Reide-
meister moves but the remaining weights stay the same.

For a group element h ∈ H, denote [h] denote the conjugacy class to which h belongs.

Definition 12. The set of conjugacy classes

−→
Ψ(L, f) =

−→
Ψ (X,f)(L) = {[Ψi(L, C, f)]} 1≤i≤r

C∈ColX (L)

where Ψi(L, C, f) =
∏k(i)

j=1 Bf (τ
(i)
j , C) (the order in this product is following the orientation

of the component) is called the conjugacy biquandle cocycle invariant of the link.

Theorem 13. The conjugacy biquandle cocycle invariant Ψ is well defined.

Proof. The fact that Ψ does not change under Reidemeister moves for fixed base points
was proven earlier. A change of base points causes cyclic permutations of Boltzmann
weights, and hence the invariant is defined up to conjugacy.

Proposition 14. If f, g are two cohomologous non-commutative 2-cocyle functions then
[Ψi(L, C, f)] = [Ψi(L, C, g)].

Proof. Let us suppose f(x1, x2) = γ(x1)g(x1, x2)γ−1(σ2(x1, x2)). There are four cases to
analyse:

(1) x2

��

x3

��

x1
σ2(x1,x2) //

σ1(x1, x2) σ1(σ2(x1,x2),x3)

(2) σ2(x1, x2)
OO

x3

��

x2
σ1(x1,x2) //

x1

(3)

��

OO

x3 //

x1 x2

(4) x3OO σ2(x1, x2)
OO

x2 // σ1(x1, x2)

x1

In case 1), the product of weights for the horizontal line is: f(x1, x2)f(σ2(x1, x2), x3) =

= γ(x1)g(x1, x2)γ−1(σ2(x1, x2))γ(σ2(x1, x2)g(σ2(x1, x2), x3)γ−1(σ2(σ2(x1, x2), x3))
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In case 2): f−1(σ(x1, x2))f(σ1(x1, x2), x3) =

γ(σ2(σ(x1, x2)))g−1(σ(x1, x2))γ−1(σ1(x1, x2))γ(σ1(x1, x2))g(σ1(x1, x2), x3)γ−1(σ2(σ1(x1, x2), x3))

In case 3): f(σ(x1, x3))f−1(σ(x2, x3)) =

γ(σ1(x1, x2))g(σ(x1, x3))γ−1(σ2(σ(x1, x3)))γ(σ2(σ(x2, x3)))g(σ(x2, x3))γ−1(σ(x2, x3))

And finally in case 4): f−1(x2, x3)f−1(σ(x1, x2)) =

γ(σ2(x2, x3))g−1(x2, x3)γ−1(x2)γ(σ2(σ(x1, x2)))g−1(σ(x1, x2))γ−1(σ1(x1, x2))

2 Universal non commutative 2-cocycle

Given a biquandle (X, σ) and a group H, recall a non commutative 2-cocycle is a function
f : X ×X → H satisfying

f
(
x, y
)
f
(
σ2(x, y), z

)
= f

(
x, σ1(y, z)

)
f
(
σ2(x, σ1(y, z)), σ2(y, z)

)
and

f
(
σ1(x, y), σ1(σ2(x, y), z)

)
= f

(
y, z
)

for any x, y, z ∈ X, and is called type I if in addition f(x, s(x)) = 1.

Definition 15. We define Unc = Unc(X, σ), the Universal biquandle 2-cocycle group, as
the group freely generated by symbols (x, y) ∈ X ×X with relations

(Unc1) (x, y)(σ2(x, y), z) = (x, σ1(y, z))(σ2(x, σ1(y, z)), σ2(y, z))

(Unc2) (σ1(x, y), σ1(σ2(x, y), z)) = (y, z)

(Unc3) (x, s(x)) = 1

The following is immediate from the definitions:

Proposition 16. Let X be a biquandle:

• Denote [x, y] the class of (x, y) in Unc. The map

π : X ×X → Unc
(x, y) 7→ [x, y]

is a type I non commutative 2-cocycle.

• Let H be a group and f : X × X → H a type I non commutative 2-cocycle, then
there exists a unique group homomorphism f : Unc → H such that f = fπ.

X ×X
π
��

f // H

Unc
∃! f

;;w
w

w
w

w
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In particular, given (X, σ), there exists non trivial 2-cocycles if and only if Unc is a
nontrivial group.

Proposition 17. Unc is functorial. That is, if φ : (X, σ) → (Y, τ) is a morphism of set
theoretical solutions of the YBeq, namely φ satisfy

(φ× φ)σ(x, x′) = τ(φx, φx′)

then, φ induces a (unique) group homomorphism Unc(X)→ Unc(Y ) satisfying

[x, x′] 7→ [φx, φx′]

Proof. One need to prove that the assignment (x, x′) 7→ (φx, φx′) is compatible with the
relations defining Unc(X) and Unc(Y ) respectively, and that is clear since (φ × φ) ◦ σ =
τ ◦ (φ× φ).

Remark 18. In order to produce an invariant of a knot or link, given a solution (X, σ),
we need to produce a coloring of the knot/link by X, and then find a non commutative
2-cocycle, but since Unc is functorial, given X we always have the universal 2-cocycle
X ×X → Unc(X), and hence, we only need to consider all different colorings.

Also, if φ : X → X is a bijection commuting with σ, then, given a coloring and its
invariant calculated with the universal cocycle, we may apply φ to each color and get
another coloring, and this will produce the same invariant pushed by φ in Unc.

Remark 19. Given a link L of two strands colored using (both) colors {1, 2}, the invariant
obtained is Ψi(L, C, f) = (i, j)ln(i,j) i, j ∈ {1, 2} and i 6= j, where ln(i, j) is the linking
number between the two strands.

Proof. First notice that every component must be colored by a single color.
To every underarc of the component i with itself will correspond a (i, i) = 1 as

weight. Then these crossings will not change the product. Then one can think that each
component is unknoted with itself. It is well known that any two closed curves in space,
if allowed to pass through themselves but not each other, can be moved a concatenation
of the following standard positions:

j

��;;;;;;;; i

��;;;;;;;; j

i

����

AA����

j

���

AA���

i

This diagram will contribute a factor (i, j)1 to Ψi ((j, i) to Ψj) and if trying to calculate
the linking number will add 1 for each pair of crossings. Analogously in the next diagram:

i
;;;;

��;;;;

j
;;;

��;;;

i

j

AA��������
i

AA��������
j

so, the invariant Ψi will be (i, j)
a−b

2 = (i, j)ln(i,j) where a, b are the total amount of positive
and negative crossings

Example 20. The Whitehead link have linking number cero, the same happens taking
the link consisting of two unknots. If you paint these links using Wada(Z3) (see example
below), Whitehead has only 3 possibilities, while there are 9 ways to paint the pair of
unknots.
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2.1 Some examples of biquandles of small cardinality

We first list some well-known general constructions generating biquandle solutions:

1. If (X, /) is a rack, one may consider two different solutions of the YBeq:

σ(x, y) = (y, x / y), and σ(x, y) := σ−1(x, y) = (y /−1 x, x)

these solutions are biquandles if and only if (X, /) is a quandle, namely x / x = x
for all x ∈ X, in this case the function s is the identity: s(x) = x.

When considering n.c. 2-cocycles, condition Unc2 is not preserved (in general) if
one changes σ with σ−1, so it is relevant to see σ and σ−1 as different biquandles.

2. Let τ : X ×X → X ×X denote the flip, namely τ(x, y) = (y, x). Let µ, ν : X → X
be two bijections of X. then

(µ× ν)τ(x, y) = (µ(y), ν(x))

satisfies YBeq if and only if µν = νµ, and this solution is a biquandle if and only if
ν = µ−1, in this case, the function s : X → X is equal to µ−1. In this way, the set
of bijections of X maps injectively into the set of biquandle structures on X, each
conjugacy class of a given bijection maps into an isomorphism class of biquandle
structures. Notice that every biquandle structure obtained in this way is involutive,
namely σ = (µ× µ−1) ◦ τ verifies σ2 = Id.

3. Wada: if G is a group, then the formula σ(x, y) = (xy−1x−1, xy2) is a biquandle,
with s(x) = x−1. As a particular case, if G is abelian and with additive notation
we have σ(x, y) = (−y, x+ 2y).

4. Alexander biquandle or Alexander switch:

Let R be a ring, s, t ∈ R two commuting units, and M an R-module, then

σ(x, y) = (s · y, t · x+ (1− st) · y), (x, y) ∈M ×M

is a biquandle, with function s(x) = (s−1) · x. In the particular case s = −1, t = 1
one gets the abelian Wada’s solution. If s = 1 then one gets the solution induced
by the Alexander rack.

These constructions give a lot of examples, but there are much more. If |X| = 2,
call X = {0, 1}, one have the flip, satisfying s(1) = 1 and s(2) = 2, and this condition
fully characterize this solution. If s(0) 6= 0 then s(0) = 1 and necessarily s(1) = 0; this
forces σ(0, 0) = (1, 1) and σ(1, 1) = (0, 0). This is actually a biquandle coming from the
bijection construction

σ(x, y) = (y + 1, x− 1) : x, y ∈ Z/2Z

We will call this solution the antiflip.

If |X| = 3, we call the elements X = {0, 1, 2} and identify X = Z/3Z. The above
constructions give the following list:

12



1. There are three isomorphism classes of quandles of 3 elements:

(a) the trivial quandle (x / y = x for all x, y), this gives the flip solution.

(b) D3: x / y = 2y − x, for x, y ∈ Z/3Z, which gives two solutions

σ(x, y) = (y, x / y) = (y, 2y − x)

and its inverse
σ(x, y) = (x /−1 y, x) = (2x− y, x)

(c) another quandle which we call Q3, with operation given by − / 0 = (12) (the
permutation 1↔ 2), and − / 1 = − / 2 = Id. The solution

σ(x, y) = (y, x / y)

behaves like the flip for x, y = 1, 2, but

σ(0, 1) = (1, 0), σ(1, 0) = (0, 2)

σ(0, 2) = (2, 0), σ(2, 0) = (0, 1)

One can check that this equalities can be achieved with the formula

σ(x, y) = (y,−x− xy2) = (y,−x(1 + y2)) : x, y ∈ Z/3Z

We also have the inverse solution.

2. If X = {0}
∐
{1, 2}, with σ(0, i) = (i, 0) and σ(i, 0) = (0, i), then the flip on {1, 2}

produces again the flip on three elements, but the other solution produce a new
solution of the YBeq:

σ(1, 2) = (1, 2), σ(2, 1) = (2, 1)

σ(1, 1) = (2, 2), σ(2, 2) = (1, 1)

σ(0, i) = (i, 0), σ(i, 0) = (0, i)

One may check that this equalities are given by σ(x, y) = (y + x2y, x+ y2x).

3. Wada’s construction for Z3 gives the example σ(x, y) = (−y, x− y) and its inverse:
σ(x, y) = (y − x,−x).

4. Bijection biquandles:

(a) Using the bijection µ(x) = −x we have the solution σ(x, y) = (−y,−x),

(b) if µ(x) = x + 1 then we have the solution σ(x, y) = (y + 1, x − 1). One can
check that all bijections 6= Id are conjugated to one of these.
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For M = R = Z3, the units of R are ±1: the Alexander biquandle gives Wada’s for
s = t = −1, the Dihedral quandle solution for s = 1 and t = −1, the flip for s = t = 1,
and the bijection solution σ(x, y) = (−y,−x) when s = t = −1, so we have no new
solution in this small cardinality considering the Alexander biquandle.

In this way, we obtain 10 solutions of the YBeq that are biquandles, three of them
(flip, Q3 and D3) are quandle solutions. In A. Bartholomew and R. Fenn’s classification
list (see [BF]) there are 7 biquandles that are not quandles, but we remark that, in
Bartholomew and Fenn’s list, if a solution σ is listed, then σ is not listed, even thought
σ may not be isomorphic to σ, as solution of the Yang-Baxter equation. For instance,
for every quandle (X, /), the solution with “name” X is σ(x, y) = (y, x / y) but the
inverse solution σ(x, y) = (x/−1 y, x) do not appear in the list. We use the notation BQ3

i ,
i = 1, . . . , 10 for the biquandles solutions of Bartholomew and Fenn, and we denote BQ3∗

i

the inverse solution with respect to BQ3
i .

2.2 Computations of Unc

We begin with an explicit computation of the group Unc for a particular example; Wada:
σ(x, y) = (−y, x− y), which is also BiAlexander with M = Z/3Z, s = −1, t = 1.

The fixed points are (x, s(x)) = (x,−x), that is (0, 0), (1, 2), (2, 1), so (0, 0) = (1, 2) =
(2, 1) = 1. Conditions (Unc1-2) are:

(x, y)(x− y, z) = (x,−z)(x+ z, y − z)

(−y,−z) = (y, z)

From the second equality we get generators a = (0, 1) = (0,−1), b = (1, 0) = (−1, 0) and
c = (1, 1) = (−1,−1).

From the first cocycle equation

(x, y)(x− y, z) = (x,−z)(x+ z, y − z)

if y = sx (using (x, sx) = 1 and also using Unc2) we get a trivial equality. If y = sz we
also get trivial equality, so in principle we have 33− 9− 9 + 3 = 12 equations. If we write
them all in terms of a, b and c we get

1 = 1, a = a, ab = a, ac = ac, b2 = b2, bc = c,

1 = 1, c = c, b = b, 1 = 1, ca = ca, ca = b

of course we can see trivial equations, if we exclude them we get

ab = a, bc = c, ca = b

from the first (and also the second) equation we can see that te generator b is trivial. If
we write again all the equations with the replacement b = 1 we get

ca = 1

We conclude Unc = Free(a, c)/(ac = 1) ∼= Free(a), but also we have described a proce-
dure that can be implemented in a computer program:
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1. Add to the set X×X a new element ”1” and begin to define an equivalence relation
(x, s(x)) ∼ 1.

2. from the second condition, add (y, z) ∼ (σ1(x, y), σ1(σ2(x, y), z)) to the equivalence
relation.

More precisely, given a list of subsets of (X×X)
∐
{1} whose union is (X×X)

∐
{1}

(if this is not the case we add the sets {(x, y)} to the list) one can easily give an
algorithm producing the partition of (X×X)∪{1} corresponding to the equivalence
relation generated by the list of subsets: for each pair of subsets of the list, with
nontrivial intersection, we replace these two subsets by their union, run over all
different pairs, and iterate until saturate. We call classes this list of subsets.

3. From the data classes, choose representatives (if the list of subsets is ordered and
their members are ordered, just pick the first member for each element of the list).
Write down all cocycle equations, in terms of these representatives.

4. Eliminate the trivial equations, and

• for any cocycle equation where 1 appears, in case one found a.1, replace it by
1.a, so we do not count twice the same equation.

• For any cocycle equation of the form ac = bc or ca = cb, add a ∼ b and
recalculate the equivalence relation that it generates.

With the new data classes go to step 3, and iterate the process until it stabilizes.

The set of classes containing 1 is called S, this is a list of trivial elements in Unc.
A set of representatives of the others element of classes give a set of generators of Unc.
The remaining nontrivial 2-cocycle equations, written in terms of these representatives,
give a set of relations. This algorithm produce a relatively small set of generators, and
all the relations between them. For instance, in the example above will produce Unc =
Free(a, b)/(ab = 1). We have implemented this algorithm in G.A.P, and it produces the
following:

For the dihedral quandle D3:
Set of generators: {f1 = [1, 2], f2 = [1, 3], f3 = [2, 1], f4 = [2, 3], f5 = [3, 1], f6 = [3, 2]}.
Trivial elements S: 1 = [1, 1] = [2, 2] = [3, 3]. Relations:

f1f5 = f2, f2f3 = f1, f3f6 = f4, f4f1 = f3, f5f4 = f6, f6f2 = f5

For Wada, the set of generators is {f1 = [1, 2] = [1, 3], f2 = [2, 2] = [3, 3]}. Trivial
elements: 1 = [1, 1] = [2, 1] = [2, 3] = [3, 1] = [3, 2]. Relations:

f2f1 = 1

An important remark on notation: G.A.P. always gives a numbering of the elements of
its objects (and in particular, one can always order them), for instance, Z/3Z = {0, 1, 2}
has three elements, that G.A.P. number as [1, 2, 3], where 1 is the first element, 2 is
the second and so on; in order to identify the element one has to see the label, and
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in this case 1 corresponds to 0, 2 corresponds to 1 and 3 to 2 = −1, so the equation
1 = [1, 1] = [2, 1] = [2, 3] = [3, 1] = [3, 2] means

1 = (0, 0) = (1, 0) = (1, 2) = (2, 0) = (2, 1)

The new element ”1” that we add to X × X is called [ ], so for example the equality
1 = [1, 1] = [2, 1] = [2, 3] = [3, 1] = [3, 2] comes from the fact that the list (of lists) classes
contains the element [[ ], [1, 1], [2, 1], [2, 3], [3, 1], [3, 2]].

In the following we use the notation as in G.A.P.
For the inverse solution to Wada’s: generators {f1 = [1, 2] = [2, 1] = [3, 3], f2 =

[1, 3] = [2, 2] = [3, 1]}, trivial elements: 1 = [1, 1] = [2, 3] = [3, 2], relations:

f2f2 = f1, f1f1 = f2

For the flip on 2 elements {1, 2}: generators {f1 = [1, 2], f2 = [2, 1], }, trivial elements:
1 = [1, 1] = [2, 2], and no equations at all.

For the flip in 3 elements {1, 2, 3}: generators: {f1 = [1, 2], f2 = [1, 3], f3 = [2, 1], f4 =
[2, 3], f5 = [3, 1], f6 = [3, 2]}, trivial elements: 1 = [1, 1] = [2, 2] = [3, 3], relations:
f2f1 = f1f2, f4f3 = f3f4, f6f5 = f5f6.

Taking the list of biquandles of cardinality 3 from Bartholomew and Fenn’s list, adding
the inverse solutions (when they are not isomorphic), we obtain the table below.

We remark that the procedure gives not only the number of generators, but the full
equivalence class, we omit the full data in the table just for space considerations. We
also add to the table the order of σ, and the number of fixed points on the diagonal
∆ := {(x, x) : x ∈ X}, for instance, ∆σ = ∆ if X is a quandle.

name σ generators equations order #∆σ

of Unc of σ
flip BQ3

1 6 f2f1 = f1f2, f4f3 = f3f4, 2 3
f6f5 = f5f6,

a-flip ∪ {1} BQ3
2 3 f3f2 = f2f3, 2 1

BQ3
3 3 − 4 1

BQ3∗
3 3 − 4 1

Wada(Z3) BQ3
4 2 f2f1 = 1, 3 1

inv. Wada(Z3) BQ3∗
4 2 f1f1 = f2, f2f2 = f1 3 1

BQ3
5 3 f2f1 = f1f2, 2 3

Q3 BQ3
6 3 − 4 3

inverse Q3 BQ3∗
6 3 − 4 3

(x, y) 7→ (-y, -x) BQ3
7 3 f3f2 = f2f3, 2 1

D3 BQ3
8 6 f1f5 = f2, f2f3 = f1, f3f6 = f4, 3 3

f4f1 = f3, f5f4 = f6, f6f2 = f5, 3
inverse D3 BQ3∗

8 0 −, 3 3
BQ3

9 2 f2f2 = f1, f1f1 = f2, 3 0
BQ3∗

9 0 − 3 0
involutive(Z3) BQ3

10 2 f1f2 = f2f1 2 0

We remark that for some cases (i.e. BQ4,8,9) the invariant Unc distinguishes between
σ and σ. For BQ3

3, the generators are the same in the strong sense that the equivalent
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classes of generators (as equivalent classes in X ×X) are the same, the relations are also
the same (no relation at all), so they will give the same knot/link invariant, even though
σ and σ are non isomorphic biquandle solutions.

For most of the cases there is no much more to say in order to describe Unc as a group,
for instance Unc(flip) = Unc(BQ

3
1) = Z2 ∗Z2 ∗Z2: the free product of three copies of Z2,

Unc(BQ
3
3) ∼= Unc(BQ

3
6) ∼= F3: the free group on 3 generators, Unc(BQ

3
2) ∼= Unc(BQ

3
5) ∼=

Unc(BQ
3
7) ∼= Free(a, b, c)/(bc = cb), Unc(BQ

3
10) ∼= Z2,. On the other hand, there are

some simplifications for the remaining cases:

Unc(BQ
3
4) ∼= Free(a, b)/(ab = 1) = Free(a) ∼= Z

Unc(BQ
3
9) ∼= BQ3∗

4
∼= Free(a, b)/(a2 = b, b2 = a) ∼= Free(a)/(a3 = 1)

Unc(D3)Unc(BQ
3
8) = F6/(f1f5 = f2, f2f3 = f1, f3f6 = f4, f4f1 = f3, f5f4 = f6, f6f2 = f5)

Call a := f1, b := f5 and c := f4, we have

ab = f2, f2f3 = a, f3f6 = c, ca = f3, bc = f6, f6f2 = b

in particular, we can solve f2, f3 and f6 in terms of a, b, c, so Unc is generated by a, b, c.
In order to know the relations, we replace f2 = ab, f3 = ca and f6 = bc in the above
equations and get

abca = a, cabc = c, bcab = b

or equivalently
abc = 1, cab = 1, bca = 1

whose solution is c = (ab)−1. We conclude Unc(D3) = Free(a, b).
The computer program gives the set of generators and relations in a reasonable human

time for biquandles of cardinality 12 or less. As a matter of numerical experiment, the
groups associated to the inverse solution of biAlexander solution on Zm, for s = −1, and
t = 1, are cyclic of order m (in a non trivial way) if m = 3, 5, 7, 11, 13 (and much more
complicated groups for m = 4, 6, 8, 9, 10, 12). We don’t know if this is a general fact for
all primes p. There are nevertheless some general results that can be proven without
computer:

Inverse quandle solutions

If (X, /) is a quandle then σ(x, y) = (y, x/y) is a biquandle, and condition Unc2 is trivial.
But if we consider the inverse solution: σ(x, y) = (y /−1 x, x) then condition (Unc2) is
not trivial, we have the relations

(x, y)(x, z) = (x, z /−1 y)(x, y)

(y /−1 x, z /−1 x) = (y, z)

(x, x) = 1

We see that, in presence of the second identity, the first one can be modified into

(x, y)(x, z) = (x / y, z)(x, y) (UncQ)
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or also (x / z, y / z)(x, z) = (x / y, z)(x, y). Notice that (UncQ), with x = z, says

(x, y)(x, x) = (x / y, x)(x, y)⇒ (x, y) = (x / y, x)(x, y)⇒ 1 = (x / y, x)

This equation, for x = y, gives 1 = (x / x, x) = (x, x). That is, 1 = (x / y, x) implies the
type I condition. So, we may list a set of relations for Unc(σ) in the following way

(x, y)(x, z) = (x / y, z)(x, y) (UncQ1)
(x / y, x) = 1 (UncQ2)

(x / z, y / z) = (x, y) (UncQ3)

Corollary 21. Let Q be a quandle and consider the biquandle solution σ(a, b) = (b /−1

a, a). If Q is such that for every z ∈ Q there exists y with z = x / y, then Unc(σ) = 1.

Proof. Given (z, x), let y be such that z = x / y, then (z, x) = (x / y, x) = 1.

Example 22. If (X, /) = Dn = (Z/nZ, x / y = 2y − x) with n is odd then Unc(σ) = 1.

3 The reduced Unc

We recall that if f : X × X → G is a (type I) cocycle and γ : X → G is a function
satisfying γ(x) = γ(sx), then fγ(x, y) := γ(x)f(x, y)γ(σ2(x, y))−1 is also a (type I) 2-
cocycle, and the knot/link invariant produce by f is the same as the one produced by f .
In particular, one can consider the universal 2-cocycle π : X ×X → Unc and try to see if
there is a cohomologous one, simpler that π. This procedure leads to a construction that
we call reduced universal group:

Definition 23. Let γ : X → Unc be a (set theoretical) map such that γ(x) = γ(s(x))
and πγ : X ×X → Unc given by

πγ(x, y) = γ(x)(x, y)γ(σ2(x, y))−1

Define S = {(x, y) ∈ X ×X : πγ(x, y) = 1 ∈ Unc} ⊆ X ×X and consider the group Uγ
nc

defined by
Uγ
nc := Unc/ < π(x, y)/(x, y) ∈ S >

Denote [x, y] ∈ Uγ
nc the class of (x, y) and p : X ×X → Uγ

nc the map p(x, y) = [x, y].

Theorem 24. With notations as in the above definition, The map p : X ×X → Uγ
nc has

the following universal property:

• p is a 2-cocycle.

• for any group G and 2-cocycle f : X×X → G, there exists a cohomologous map fΓ

and a group homomorphism fΓ : Uγ
nc → G such that fΓ factorizes through p, that

is fΓ = fγp.
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Proof. The fact that p is a 2-cocycle is immediate. By (16) we obtain the existence of
the unique group morphism f such that

X ×X
π
��

f // G

Unc
∃! f

;;w
w

w
w

w

commutes. Define fΓ := f ◦ πγ; in diagram: X ×X πγ //

fΓ
$$IIIIIIIIII Unc

f
��
G

We have

fΓ(x, y) = f ◦ πγ(x, y) = f ◦ γ(x)f ◦ π(x, y)
(
f ◦ γ(σ2(x, y))

)−1

so fΓ and f ◦ π = f are cohomologous. Using again the universal property of Unc, f
Γ

factorizes through Unc, hence there exists a group homomorphism fΓ : Unc → G such
that fΓ = fΓ ◦ π.

On the other hand, since πγ(S) = 1 we have fΓ(S) = f(πγ(S)) = f(1) = 1, but also

fΓ(S) = fΓ(π(S)), so the group homomorphism fΓ : Unc → G induces a map fγUγ
nc =

Unc/π(S)→ G such that, if p′ : Unc → Unc/π(S) is the canonical group projection to the
quotient (p = p′ ◦ π), then fΓ = fγ ◦ p′. In diagram:

X ×X

fΓ

$$HHHHHHHHHH
π //

p

%%
Unc

∃!fΓ

��

p′ // Unc/π(S)

∃fγ
yyt

t
t

t
t

Uγ
nc

G

Clearly fΓ = fγ ◦ p.

For a given γ, the associated Uγ
nc is called the reduced universal group.

Corollary 25. Given a biquandle X, if there exists γ : X → Unc such that Uγ
nc = 1 then

every 2-cocycle in X is trivial.

A general example of the above situation is given by some Alexander biquandles.

3.1 The Alexander biquandle

Let A = Z[s, t, s−1, t−1], X an A-module and σ : X ×X → X ×X given by the matrix(
0 t
s (1− st)

)
equivalently σ(x, y) = (sy, tx+ (1− st)y). The condition of being a fixed point is x = sy:

σ(sy, y) = ((sy), t(sy) + (1− st)y) = (sy, y)
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Cocycle conditions are
(x, y)(tx+ (1− st)y, z) = (x, sz)(tx+ (1− st)sz, ty + (1− st)z)

(sy, sz) = (y, z)
(sy, y) = 1

Following M. Graña, we can adapt to the biquandle situation the proof for the quandle
case (see Lemma 6.1 of [G]). Consider γ : X → Unc given by γ(x) = (0, cx), where
c = (1 + st)−1. Notice that c is an endomorphism commuting with s, and (sy, sz) =
(y, z) ∈ Unc, so

γ(x) = (0, cx) = (s0, scx) = (0, csx) = γ(sx)

hence, we can use γ in order to get another 2-cocycle, cohomologous to π. Recall

πγ(x, y) := γ(x)(x, y)γ(σ2(x, y))−1

where σ(x, y) = (sy, tx+ (1− st)y), so

πγ(x, y) = (0, cx)(x, y)
(
0, c(tx+ (1− st)y)

)−1

in particular

πγ(0, y) = (0, 0)(0, y)(0, c(1− st)y)−1 = (0, y)(0, y)−1 = 1

so, the class of (0, y) is trivial in Uγ
nc.

Lemma 26. Let X be an Alexander birack such that (1− st) is invertible in End(X). If
we define γ as above, then, the following identities hold in Uγ

nc:

1. (x, 0) = 1 for all x, and

2. (a, b) = (a, b+ a) for all a, b ∈ X.

Proof. 1. From the cocycle condition,

(x, y)(tx+ (1− st)y, z) = (x, sz)(tx+ (1− st)sz, ty + (1− st)z)

taking x = 0 = z we get

(0, y)((1− st)y, 0) = (0, 0)(0, ty)

but we know that (0, ∗) = 1 in Uγ
nc, so ((1− st)y, 0) = 1, and because (1− st) is a unity

we conclude (x, 0) = 1 for all x.

2. Using the cocycle condition

(x, y)(tx+ (1− st)y, z) = (x, sz)(tx+ (1− st)sz, ty + (1− st)z)

and clear z from tx+ (1− st)sz = 0, that is, set z = −t
(1−st)sx, then

(x, y)
(
tx+ (1− st)y, −t

(1− st)s
x
)

=
(
x, s

−t
(1− st)s

x
)

(0, ty + (1− st)z)
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or

(x, y)
(
tx+ (1− st)y, −t

(1− st)s
x
)

=
(
x,

−t
(1− st)

x
)

(∗)

clearing y = −t
1−stx, get(
x,
−t

1− st
x
)

(0, z) = (x, sz)
(
tx+ (1− st)sz, t −t

1− st
x+ (1− st)z

)
or (

x,
−t

1− st
x
)

= (x, sz)
(
tx+ (1− st)sz, −t

2

1− st
x+ (1− st)z

)
(†)

in particular, using RHS of (*) = LHS of (†) with y = sz we get

(x, sz)
(
tx+ (1− st)sz, −t

(1− st)s
x
)

= (x, sz)
(
tx+ (1− st)sz, −t

2

1− st
x+ (1− st)z

)
so (

tx+ (1− st)sz, −t
(1− st)s

x
)

=
(
tx+ (1− st)sz, −t

2

1− st
x+ (1− st)z

)
Now we simply change variables. Call a = tx + (1 − st)sz, then (1 − st)z = a − t

s
x,

replacing (
a,

−t
(1− st)s

x
)

=
(
a,
−t2

1− st
x+ a− t

s
x
)

or (
a,

−t
(1− st)s

x
)

=
(
a,

−t
(1− st)s

x+ a
)

Call b = −t
(1−st)sx (notice that (x, y) 7→ (a, b) is bijective) and get (a, b) = (a, b+ a).

Inductively (a, b) = (a, b+ na) ∀n ∈ N; if a generates X additively then

(a, b) = (a, 0) = 1 ∀b ∈ X

Corollary 27. If p is an odd prime, X = Fp, and s−1 6= t ∈ Fp \ {0}, then every cocycle
in the Alexander’s birack in X is cohomologous to the trivial one. In other words, the
reduced Universal group Uγ

nc is trivial. In particular every 2-cocycle in D3 is trivial.

Remark 28. This generalizes the result of Graña in [G] where he proves the quandle case,
that is, the case s = 1.

A biquandle example that is not a quandle is the following:

Example 29. If X=Wada(Z3)=biAlexander(M = Z3, s = t = −1), then 1− st = −1 ∈
Z3 so Uγ

nc = 1 and every non commutative 2-cocycle is trivial. In particular, for any
coloring with this biquandle, the corresponding element in Unc is trivial.

Remark 30. In the previous corollary, the hypothesis |X| being prime was essential, the
smallest case where it fails is X = Z4, as an example of computation we calculate the
reduced universal group for X = Z4 and for Z8 with s = −1 and t = 1.
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3.2 Reduced Unc in computer

It is clear that the procedure that computes Unc in the computer can be trivially adapted
for the reduced version, just adding as input a given set S0 ⊂ X × X, and begin with
S = S0 ∪ {(x, sx) : x ∈ S}, instead of simply S = {(x, sx) : x ∈ S}. The procedure will
actually compute a list of generators and relations of the quotient group Unc/(S0), so it
could be also used to produce other quotients, not only Uγ

nc. The advantage of Uγ
nc is that

it gives the same knot/link invariant as Unc, so in order to find suitable S0’s one can do
the following:

• In order to produce functions γ : X → Unc with γ(x) = γ(sx), consider the equiv-
alence relation on X induced by s, that is the equivalence relation generated by
x ∼ s(x). Denote x the class of x modulo s.

• for all pairs (x, y) ∈ X ×X, consider the coboundary relation

fγ(x, y) = γ(x)f(x, y)γ(σ2(x, y))−1

if x = σ2(x, y) then f(x, y) is conjugated to fγ(x, y), so f(x, y) = 1 ⇐⇒ fγ(x, y) =
1, so it is clear that (x, y) can not be included in S because of γ.

• if x 6= σ2(x, y) then we can choose γ : X → Unc such that γ(z) = γ(sz) for all z
and γ(x)f(x, y) = γ(σ2(x, y)).

By the above considerations, it is useful to list all tuples

(x, (x, y), σ2(x, y))

with x 6= σ2(x, y). For any of these elements, add the pair (x, σ2(x, y)) to a set f “used”
elements, so we continue with the others with (x, (x, y), σ2(x, y)) with x 6= σ2(x, y) but
(x, σ2(x, y)) not “used”. This procedure is easily implemented in G.A.P. For example,
for the Dihedral quandle gives

[0, [0, 1], 2], [0, [0, 2], 1], [1, [1, 0], 2]]

so we can choose γ(0) = 1, γ(2) = [0, 1], γ(1) = [0, 2] and hence define S0 := {[0, 1], [0, 2]}.
With this entry, the procedure computing Uγ

nc gives S = X×X, that is Uγ
nc(D3) is trivial,

in agreement with Corollary 27. We give the list of generators and relations of Uγ
nc for

biquandles of cardinality 3, with the corresponding S0.
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name σ generators equations
of Uγ

nc S0

flip BQ3
1 6 f2f1 = f1f2, f4f3 = f3f4, −

f6f5 = f5f6,
a-flip{2, 3} ∪ {1} BQ3

2 3 f3f2 = f2f3, −
BQ3

3 3 − −
BQ3∗

3 3 − −
Wada(Z3) BQ3

4 0 − {[1, 2]}
inv. Wada(Z3) BQ3∗

4 1 f 3
1 = 1 −

BQ3
5 2 − {[1, 3]}

Q3 BQ3
6 2 − {[2, 1]}

inverse Q3 BQ3∗
6 3 − −

(x, y) 7→ (-y, -x) BQ3
7 3 f3f2 = f2f3, −

D3 BQ3
8 0 − {[1, 2], [1, 3]}

inverse D3 BQ3∗
8 0 − −

BQ3
9 1 f 3

1 = 1, −
BQ3∗

9 0 − −
involutive(Z3) BQ3

10 2 f1f2 = f2f1 −

We exhibit another example of computation using this algorithm:

3.3 Reduced group for Alexander biquandle in Z4

In order to choose a possible γ, we list as above elements of the form (x, (x, y), σ2(x, y))
with x 6= σ2(x, y). without repeating (x, (x, y), σ2(x, y)), this gives only one element

[0, [0, 1], 2]]

so we compute Uγ
nc with S0 = {(0, 1)}. The G.A.P. answer is

4 generators: {f1=[2,1]=[4,1], f2=[2,2]=[4,4], f3=[2,3]=[4,3], f4=[3,2]=[3,4]}, the triv-
ial elements are

1 = [1, 1] = [1, 2] = [1, 3] = [1, 4] = [2, 4] = [3, 1] = [3, 3] = [4, 2]

and relations
f1 = f2f3, f3 = f2f1, f1f2 = f3, f3f2 = f1,

f2f1 = f1f2, f2f3 = f3f2, f3f1 = f1f3

Notice that f4 does not appear in the list of relations. Calling a = f2, b = f3, we get

f1 = ab, b = af1, f1a = b, ba = f1

bf1 = f1b, af1 = f1a, ab = ba

Replacing f1 by ab we get
b = aab, aba = b, ba = ab
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bab = abb, aab = aba,

whose solution is
a2 = 1, ab = ba

so Uγ
nc = Free(a, b, f4)/(a2 = 1, ab = ba) ∼= (Z/2Z⊕ Z) ∗ Z.

3.4 Reduced Universal group of 4-cycles in S4

Another example of application of Uγ
nc is the following: consider the quandle

Q = {(1, 2, 3, 4), (1, 2, 4, 3), (1, 3, 4, 2), (1, 3, 2, 4), (1, 4, 3, 2), (1, 4, 2, 3)}

that is, 4-cycles in S4, with quandle operation x / y = y−1xy. Recall that f : Q × Q →
Unc(Q) is cohomologous to fγ if there exists a function γ : Q→ Unc such that

fγ(x, y) = γ(x)f(x, y)γ(x / y)−1

If we list (x, (x, y), σ2(x, y)) without repeating “used” pairs (x, x / y), we get

[1, [1, 2], 4], [1, [1, 3], 6], [1, [1, 4], 3], [1, [1, 6], 2], [2, [2, 1], 6], [2, [2, 5], 4],

[2, [2, 6], 5], [3, [3, 1], 4], [3, [3, 4], 5], [3, [3, 5], 6], [4, [4, 2], 5], [5, [5, 2], 6]

If we define γ(1) = 1, γ(4) = [1, 2], γ(6) = [1, 3], γ(3) = [1, 4], γ(2) = [1, 6], γ(5) =
γ(2)[2, 6] then S0 = {[1, 2], [1, 3], [1, 4], [1, 6], [2, 6]}. If we compute Unc using our algo-
rithm, it gives 30 generators with with 108 equations, while Uγ

nc has only 5 generators
with 20 equations

1 = f1f3, f2f4 = 1, f3f1 = 1, f5f1 = 1, f1f5 = 1,

f1f1 = f2, f1f1 = f4, f1f1 = f3f5, f5 = f1f4, f1 = f2f5,

f1 = f3f4, f2f1 = f3, f4f3 = f1, f4f1 = f5, f5f2 = f1,

f1f2 = f3, f1f2 = f2f1, f1f3 = f3f1, f1f4 = f4f1, f1f5 = f5f1,

Call a := f1, then f3 = f5 = a−1, f2 = f4 = a2, and replacing these values into the 20
equations, the only remaining condition is a4 = 1, we conclude Uγ

nc = 〈a : a4 = 1〉
This quandle is interesting because it distinguish (using Uγ

nc and its canonical cocycle)
the trefoil from its mirror image: there are 30 colorings, 6 of them give trivial invariant
both for the trefoil and its mirror (these are the 6 constant colorings), but the other 24
colorings gives a−1 for the trefoil and a for its mirror, and clearly a 6= a−1 in 〈a : a4 = 1〉.

4 Some knots/links and their n.c. invariants

There are 3 quandles of size 3, none of them give nontrivial invariant for knots up to 11
crossings. On the other hand, using the biquandle BQ3

2=aflip
∐
{1}, from the list of 84

knots with less or equal to 10 crossings, all of them have exactly 3 different colorings, but
there are 44 with nontrivial invariant. For instance, figure eight has nontrivial invariant
for tree biquandles of size 3: BQ3

2=aflip
∐
{1}, BQ3

7: σ(x, y)=(−y,−x), and BQ3
9.
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We illustrate in next table the number of colorings (denoted by c) and nontrivial
invariants, for knots up to 6 crossings and biquandles from Bartholomew and Fenn’s list:

31 41 51 52 61 62 63

c c c c c c c
BQ3

1 3 3 3 3 3 3 3
BQ3

2 3 3 f3, f3 3 f−1
3 , f−1

3 3 3 3 3 f3, f3,
BQ3

3 3 3 3 3 3 3 3
BQ3

4 9 1 1 3 9 3 1
BQ3

5 3 3 3 3 3 3 3
BQ3

6 3 3 3 3 3 3 3
BQ3

7 3 3 f3, f3 3 f−1
3 , f−1

3 3 3 3 3 f3, f3

BQ3
8 9 3 3 3 9 3 3

BQ3
9 9 3 f1, f1, f1 3 f−1

1 , f−1
1 , f−1

1 3 9 3 3 f1, f1, f1

BQ3
10 3 0 0 3 3 3 0

We see that using only number of colorings we can separate this list of knots in 3 groups:
{31, 61}, {41, 51, 63} and {52, 62}, and using the invariant we can also distinguish 51 from
all others. One interesting remark is that, using only quandles, there are always the
trivial constant colorings, but using biquandles it may happens that a knot admit no
coloring at all, as we see with biquandle BQ3

10.

4.1 Alexander biquandle on Z4 and Z8

The Borromean link has trivial linking number, but has only 3 colorings using D3, so we
distinguish from three separated unknots. The Unc invariant are trivial for all biquandles
of size 3.

On the other hand, for the biAlexander biquandle on Z4 with s = −1 and t = 1, even
though there are 64 colorings, they give non trivial invariants:

Recall Unc=Free(a, b, f4)/(b2 = 1, ab = ba), the invariant for the Borromean link is
trivial in 40 colorings, but gives twice (α, α, 1), (α, 1, α), (1, α, α), (1, α, α−1), (α, 1, α−1),
(α, α−1, 1) on the others, with α = a and α = a−1.,

In a similar way, Whitehead’s link has trivial linking number, give trivial invariant for
all biquandles of size 3 (even though non-trivial number of colorings), with bialexander on
Z4 also give trivial invariant, but with with biAlexander on Z8 one has non trivial invari-
ants. First we compute Uγ

nc for Z8, t = 1, s = −1, with subset S0 = {[1, 2], [1, 3], [2, 2]}
(it may be seen that this is a subset corresponding to a convenient γ). The algorithm
gives as answer that Uγ

nc has 4 generators:

f1 = (2, 1) = (2, 7) = (4, 1) = (4, 7) = (6, 1) = (6, 3) = (8, 1) = (8, 3),

f2 = (2, 3) = (2, 5) = (4, 3) = (4, 5) = (6, 5) = (6, 7) = (8, 5) = (8, 7),

f3 = (2, 4) = (2, 6) = (4, 2) = (4, 4) = (6, 6) = (6, 8) = (8, 4) = (8, 6),

f4 = (3, 2) = (3, 4) = (3, 6) = (3, 8) = (7, 2) = (7, 4) = (7, 6) = (7, 8),
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Trivial elements are

1 = [1, 1] = [1, 2] = [1, 3] = [1, 4] = [1, 5] = [1, 6] = [1, 7] = [1, 8] = [2, 2] = [2, 8] = [3, 1]

= [3, 3] = [3, 5] = [3, 7] = [4, 6] = [4, 8] = [5, 1] = [5, 2] = [5, 3] = [5, 4] = [5, 5] = [5, 6]

= [5, 7] = [5, 8] = [6, 2] = [6, 4] = [7, 1] = [7, 3] = [7, 5] = [7, 7] = [8, 2] = [8, 8]

with relations
f1f3 = f2, f3f1 = f2, f3f2 = f1, f3f3 = 1,

f2f1 = f1f2, f2f2 = f1f1, f2f3 = f1, f3f1 = f1f3, f3f2 = f2f3

Calling a := f1, b := f3, we get

ab = f2, f2a = af2, f2f2 = aa, f2b = a, ba = f2, ba = ab, bf2 = a, bf2 = f2b, bb = 1

so b2 = 1, and f2 = ab = ba. we conclude Uγ
nc = Free(a, b, f4)/(b2 = 1, ab = ba).

If we use this biquandle with Whitehead’s link we get 64 colorings, 32 of them give
trivial invariant, 16 colorings give (b, 1) and 16 colorings give as invariant (1, b).

5 Final comments

In the examples we saw, very often the group Uγ
nc is non commutative, but we haven’t

found a knot/link with genuine non commutative invariant, that is, for example a commu-
tator of two non commuting elements of Uγ

nc. Also, sometimes Uγ
nc have pairs of commut-

ing elements and other non commuting, for instance, Uγ
nc(biAlex(Z8)) = Free(a, b, f4)/(b2 =

1, ab = ba), but using this biquandle, computing the invariants for knots and links with
less than 11 crossings, the elements a and b do not “mix” with f4. We don’t know if
this is a general fact or not, that is, if the invariant obtained is the same if we use the
abelianization of Uγ

nc.
If Uγ

nc happens to be abelian, then the information we get with the non commutative
invariant is essentially the state-sum invariant for the canonical cocycle πγ : X×X → Uγ

nc.
If this is the case (or if one consider the abelianization of Uγ

nc), then our construction can
be seen as a natural and nontrivial way to produce interesting 2-cocycles, so that sate-
sum invariant becomes a procedure with input only a biquandle, and not a biquandle plus
a 2-cocycle, because a natural 2-cocycle is always present when one gives a biquandle.

Another natural question about state-sum invariant for biquandles is how to generalize
it for 2-cocycles with values in nontrivial coefficients, which is known for quandles, but
unknown for biquandles. In order to answer this question, it should be convenient to
have an action of some group (to be defined) into the abelian group of coefficients where
the 2-cocycle takes values, and if one imitates the quandle case, one should define, for
each crossing, an exponent (in this group) that twist the value of the cocycle at that
crossing. If the exponent is well-define, that is, for instance it remains unchanged under
Reidemeister moves of other crossings, then essentially it must be a non commutative
2-cocycle. The group Unc was the candidate, and in fact this was origin of the present
work. In the quandle case there is a natural map Unc(X)→ GX , where GX is the group
generated by X with relations xy = zt if σ(x, y) = (z, t); the map Unc(X)→ GX is simply
determined by (x1, x2) 7→ x2. So, for quandles, GX-modules are natural candidates for
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coefficients (see [CEGS]), or also Unc(X)-modules, or quandle-modules as considered in
[AG]. We hope 2-cocycles with values in Unc-modules will allow to define more general
state-sum invariants, but at the moment we don’t know how, we end remarking that for
biquandles, there is no general well-defined map Unc(X) → GX , and Unc(X) sometimes
is the trivial group.

In [FG] one can found the GAP programs computing colorings, Uγ
nc, and invariants

for knots and links given as planar diagrams.
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