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Abstract
In a typical introductory course on quantum mechanics the student has to face
two quite different operator products. One of them leads to, for example,
commutators and the uncertainty principle, and the other appears when one
goes from a one-particle system to a multi-particle one. The latter gives rise to
the direct or tensor product of operators and vector spaces, and to the Kro-
necker product of the matrix representations of the operators. We illustrate the
practical utility of the Kronecker product by means of two spin systems
commonly discussed in introductory courses on quantum mechanics and also
by means of a simple model for the interpretation of the NMR signal produced
by two interacting protons.

Keywords: Kronecker product, spin systems, NMR spectrum, fine structure,
operator product, matrix product

1. Introduction

In quantum mechanics every measurable physical quantity is described by an Hermitian
operator defined on the state space of the system [1, 2]. Thus, the student of an introductory
course on quantum mechanics should become familiar with concepts like the sum, product,
commutator, etc, of linear operators. In particular, the student should deal with at least two
operator products: one is given by the composition of two operators defined on the same
vector space and the other is the direct or tensor product of operators. The former product
yields an operator defined on the common vector space of the factor operators, while the latter
leads to an operator defined on a different vector space: the direct or tensor product of the
vector spaces of the factor operators. These products are commonly discussed in most text-
books on quantum mechanics [1, 2]. However, the special symbol for the tensor product is
typically omitted in many textbooks (in particular, it rarely appears in quantum chemistry
ones [3]). Although this omission is clearly indicated in most good textbooks [2] it may
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nevertheless lead to some misunderstanding when one starts the discussion of composite
systems. In particular expressions of the form ˆ ˆ ˆ= +H H H1 2, where Ĥi is the Hamiltonian
operator for the system i, are misleading because they appear to suggest that we are adding
two operators defined on different vector spaces (the state space of system 1 and the state
space of system 2). The origin of this confusion can be traced back to the abandonment of the
symbol for the tensor product just mentioned.

In some specialized scientific textbooks the tensor product is introduced rigorously,
discussed in detail and applied systematically to problems that involve composite systems.
Illustrative examples are those aimed at the study of quantum computation and information
[4–6].

The purpose of this paper is to show, in a simple, pedagogical way, why it is convenient
to keep the notation of the tensor product explicitly in some particular cases (one can abandon
it later if desired) to avoid the misunderstanding mentioned above. In addition, we will also
show that the explicit application of the tensor product of operators and the resulting Kro-
necker product of matrices is quite useful for solving quantum-mechanical problems in a
simple, straightforward way. In section 2 we outline the operator products just mentioned.
Section 3 shows the practical application of the Kronecker product of matrices to a two-
electron spin system. In section 4 this treatment is extended to the case of three electrons to
illustrate that the application of the technique to a larger number of particles is straightfor-
ward. In section 5 we briefly discuss a model of two interacting spins that simulates the
problem posed by two protons in a magnetic field that give rise to an NMR signal with fine
structure [7]. Finally, in section 6 we discuss the main results of the paper and draw
conclusions.

2. Product of operators

In this section we outline some well known concepts commonly discussed, with varying
degrees of rigour, in most textbooks on quantum mechanics [1, 2] and quantum chemistry [3].
For simplicity we consider a linear operator Â defined on an N-dimensional vector space S̄f

and let { }= ¼S f f f, , ,f N1 2 be an orthonormal basis set for S̄f . We will resort to the standard
quantum-mechanical notation ⟨ ∣ ⟩ d=f fi j ij for the scalar product in S̄f . The elements Aij of the

matrix representation A of Â in the basis Sf are given by

( )å=
=

Af A f . 1j
i

N

ij i
1

If B̂ is another linear operator defined on S̄f we can define the product ˆ ˆAB in the following
way: ( ˆ ˆ) ˆ ( ˆ )=AB f A Bf for every ¯Îf Sf . This product is similar to the function composition
( ◦ )( ) ( ( ))=F G x F G x but we simply write ˆ ˆAB (as is custommary in quantum mechanics)
instead of ˆ ◦ ˆA B. If ( )= BB ij is the matrix representation of B̂ in the basis Sf then

ˆ ˆ ˆ ( )å å å å å= = =
= = = = =

⎛
⎝⎜

⎞
⎠⎟ABf A B f B A f A B f , 2j

m

N

mj m
m

N

mj
i

N

im i
i

N

m

N

im mj i
1 1 1 1 1

shows that AB is the matrix representation of ˆ ˆAB.
The sum ˆ ˆ+A B of two linear operators is defined as ( ˆ ˆ) ˆ ˆ+ = +A B f Af Bf for every
¯Îf Sf . It therefore follows from the arguments given above that the matrix representation of

ˆ ˆ+A B is simply +A B.
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The operator product outlined above is not the only one that we commonly use in
quantum mechanics. Suppose that the linear operator B̂ is defined on a different vector space
S̄g with orthonormal basis { }= ¼S g g g, , ,g M1 2 . In order to treat the composite system given
by two operators defined on different vector spaces we define the vector space ¯ ¯ ¯= ÄS S Sfg f g

and the orthonormal basis { }= = Ä = ¼ = ¼S u f g i N j M, 1, 2, , , 1, 2, ,fg ij i j , whereÄ is
commonly known as the direct or tensor product [1, 2, 4–6]. Any vector f in S̄fg can be written
as a linear combination of the elements of this basis set

( )åå=
= =

f c u . 3
i

N

j

M

ij ij
1 1

The scalar product in this vector space is given by

⟨ ∣ ⟩ ⟨ ∣ ⟩⟨ ∣ ⟩ ( )d d= =u u f f g g . 4ij mn i m j n im jn

In this case we define a different operator product ˆ ˆÄA B in the following way

( ˆ ˆ) ( ˆ ) ( ˆ ) ( )Ä = ÄA B u Af Bg . 5ij i j

Therefore

( ˆ ˆ) ( )åå ååÄ = Ä =
= = = =

A B u A B f g A B u , 6ij
n

N

m

M

ni mj n m
n

N

m

M

ni mj nm
1 1 1 1

shows that the matrix representation of ˆ ˆÄA B is given by the NM×NM matrix with
elements A Bni mj, = ¼n i N, 1, 2, , = ¼m j M, 1, 2, , . The resulting larger matrix is known
as the Kronecker product of the matrices A and B and is denoted by ÄA B.

In order to construct the Kronecker product ÄA B we just follow a simple and
straighforward rule: substitute A Bij for every element Aij of A; for example:

( )Ä =
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
A A
A A

B B
B B

A B A B A B A B
A B A B A B A B
A B A B A B A B
A B A B A B A B

. 711 12

21 22

11 12

21 22

11 11 11 12 12 11 12 12

11 21 11 22 12 21 12 22

21 11 21 12 22 11 22 12

21 21 21 22 22 21 22 22

It is not difficult to verify that in general, Ä ¹ ÄA B B A. The Kronecker product also
applies to rectangular matrices. For example, if A and B are M×N and P×Q matrices,
respectively, then ÄA B is a MP×NQ matrix that one obtains by means of the simple rule
just mentioned. Throughout this paper we will apply it to some illustrative examples and will
refer to it as the Kronecker-product rule. It satisfies the following properties:

( )
( )

( ) ( ) ( )
( ) ( ) ( )

Ä + = Ä + Ä
+ Ä = Ä + Ä

Ä = Ä = Ä
Ä Ä = Ä Ä

C
k k k

A B C A B A C
A B C A B C

A B A B A B
A B C A B C

,
,

,
, 8

where k is a complex number. We will not prove these equalities here but will use them in the
applications discussed in the following sections.

3. Spin operators and matrices for one and two electrons

In nonrelativistic quantum mechanics the spin of the particles (electrons, nuclei, etc) is
introduced as an additional intrinsic angular momentum with components ( ˆ ˆ ˆ )s s s, ,x y z (or
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( ˆ ˆ ˆ )I I I, ,x y z for nuclei) [1–3]. Since the components of the spin angular momentum do not
commute it is custommary to describe the properties of the system by means of the eigen-
vectors (spin states) of ˆ ˆ ˆ ˆ= + +s s s sx y z

2 2 2 2 and ŝz. The spin states of a particle are commonly
denoted by ∣ ⟩s m, s (or ∣ ⟩I m, I ) and in the particular case of the electron ( =s 1 2) they are also
written [3]

∣ ⟩ ∣ ⟩ ( )a b= = -1 2, 1 2 , 1 2, 1 2 , 9

which satisfy

( )a a b b a a b b= = - = =s s s s
1

2
,

1

2
,

3

4
,

3

4
. 10z z

2 2

In the case of two electrons the spin components are commonly written in the form

ˆ ˆ ( ) ˆ ( ) ( )= +S s s1 2 , 11q q q

where =q x y z, , and ˆ ( )s iq refers to electron i. The possible spin states of the two-electron
system are linear combinations of the four new vectors

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )a a a b b a b b1 2 , 1 2 , 1 2 , 1 2 , 12

where it is understood that

ˆ ( ) ( ) [ ˆ ( ) ( )] ( ) ( ) ˆ ( ) ( ) ( )a a a a a a= +S s s1 2 1 1 2 1 2 2 . 13q q q

The two-electron spin vectors (12) are eigenvectors of Ŝz but they are not eigenvectors of

ˆ ˆ ˆ ˆ ( )= + +S S S S . 14x y z
2 2 2 2

Therefore, we should find suitable linear combinations of the vectors (12) that satisfy the
latter requirement. One can do it easily by means of straightforward inspection or, more
systematically, by means of suitable ladder operators [3]. Although this notation is widely
used and does not give rise to any serious difficulty we think that it is more instructive to use
the direct or tensor product outlined above and write

∣ ⟩ ∣ ⟩ ∣ ⟩ ( )= Äm m m m1 2, , 1 2, 1 2, 1 2, , 15s s s s1 2 1 2

or, for example, ( ) ( )a aÄ1 2 instead of ( ) ( )a a1 2 . Within this more explicit notation we
should write

ˆ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )= Ä + ÄS s s1 1 2 1 1 2 , 16q q q

where ˆ ( )i1 is the identity operator defined on the spin vector space of the electron i. The
application of this operator to, for example, ( ) ( )a aÄ1 2 leads to equation (13) in a
straightforward an possibly clearer way. A criticism of equation (11) is that it appears to
suggest the sum of two operators defined on two different vector spaces (one for electron 1
and the other for electron 2). On the other hand, equation (16) explicitly indicates the sum of
two operators defined on the common spin state space of the two-electron system.

What we have outlined above is not merely a change of notation to describe the same
treatment of a two-electron system in a more elegant way. It enables us to obtain useful results
in a straightforward and systematic way. To appreciate this statement more clearly we con-
sider the well known dimensionless spin matrices (in units of  )
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( ) ( ) ( ) ( )
( ) ( )

= = - =
-

=

= + + =

i
i

s s s I

s s s s

1

2
0 1
1 0

,
1

2
0

0
,

1

2
1 0
0 1

, 1 0
0 1

,

3

4
1 0
0 1

, 17

x y z

x y z
2 2 2 2

to which we added the 2×2 identity matrix I for completeness (note that =s Iq
2 1

4
). The

corresponding eigenvectors of s2 and sz are

( ) ( ) ( )a b= =1
0

, 0
1

. 18

If we apply the Kronecker-product rule discussed at the end of section 2 we easily obtain
the 4×4 matrices Sq for the two-electron system

( )

= Ä + Ä =

= Ä + Ä =

- -
-
-

= Ä + Ä =

-

= + + =

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

i i
i i
i i

i i

S s I I s

S s I I s

S s I I s

S S S S

1

2

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

,

1

2

0 0
0 0
0 0

0 0

,

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

,

2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

. 19

x x x

y y y

z z z

x y z
2 2 2 2

Note that Sz is diagonal because the direct products

( )a a a b b a b bÄ = Ä = Ä = Ä =

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

1
0
0
0

,

0
1
0
0

,

0
0
1
0

,

0
0
0
1

, 20

are its eigenvectors; but they are not eigenvectors of S2 which, for this reason, is not diagonal.
From the diagonal elements of Sz we conclude that its eigenvalues are = -M 1, 0, 0, 1S

(note that there are two eigenvectors,a bÄ and b aÄ , with the same eigenvalue =M 0S ).
It is not difficult to obtain the eigenvalues and eigenvectors of the matrix S2. Its char-

acteristic polynomial ∣ ∣ ( )l l l- = - =S I 2 02 3 , where I is the 4×4 identity matrix,
shows that there is one eigenvector with eigenvalue l = 0 and three eigenvectors with
eigenvalue l = 2. On solving the equation ( ) l+ =S S 1 we realize that the posible spin
values are S=0 (singlet state) and S=1 (triplet state). This result is consistent with the well
known formula that yields the possible spins S of a system of two particles with spins s1 and
s2 as ∣ ∣ ∣ ∣= - - + ¼ +S s s s s s s, 1, ,1 2 1 2 1 2. In the present case, = =s s 1 21 2 leads to
S=0, 1. Besides, the eigenvalue l = 2 (S = 1) appears three times because = -M 1, 0, 1S

whereas l = 0 (S = 0) is related to only one eigenvector with =M 0S .
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It is not difficult to verify that the eigenvectors of S2 are

∣ ⟩ [ ]

∣ ⟩

∣ ⟩ [ ]

∣ ⟩ ( )

a b b a

a a

a b b a

b b

= = =
-

= Ä - Ä

= = = = Ä

= = = = Ä + Ä

= = - = = Ä

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

S M

S M

S M

S M

0, 0
1

2

0
1
1
0

1

2
,

1, 1

1
0
0
0

,

1, 0
1

2

0
1
1
0

1

2
,

1, 1

0
0
0
1

. 21

S

S

S

S

4. Three-electron system

Although the Kronecker product of spin matrices may not be the most practical way for the
systematic treatment of much larger systems of particles (see, for example, [3] for some cases
of many-electron atoms and molecules) it is nonetheless instructive for few electrons because
of its conceptual simplicity. In the case of three electrons the spin operators are given by

ˆ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )= Ä Ä + Ä Ä + Ä ÄS s s s1 1 2 1 3 1 1 2 1 3 1 1 1 2 3 . 22q q q q

Therefore, the problem reduces to the application of the Kronecker-product rule to each of the
terms in the right-hand side and then adding the resulting expressions. For example, for the
first term we should calculate Ä Äs I Iq . A straighforward calculation leads to

( )=

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

S
1

2

0 1 1 0 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 1 0 0 1 0
0 1 1 0 0 0 0 1
1 0 0 0 0 1 1 0
0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 1
0 0 0 1 0 1 1 0

, 23x

( )=

- - -
- -
- -

-
- -

-
-

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

i i i
i i i
i i i

i i i
i i i

i i i
i i i

i i i

S
1

2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

, 24y
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( )= -

-
-

-

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

S
1

2

3 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 3

, 25z

( )=

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

S
1

4

15 0 0 0 0 0 0 0
0 7 1 0 1 0 0 0
0 1 7 0 1 0 0 0
0 0 0 7 0 1 1 0
0 1 1 0 7 0 0 0
0 0 0 1 0 7 1 0
0 0 0 1 0 1 7 0
0 0 0 0 0 0 0 15

. 262

As in the two-electron case the matrix Sz is diagonal but S2 is not; however, we can
diagonalize the latter quite easily. The characteristic polynomial ∣ ∣ ( )l l- = --S I 4 4 32 8 4

( )l - =4 15 04 , where I is the 8×8 identity matrix, shows that there are two eigenvalues:
l = 3 4 ( =S 1 2) and l = 15 4 ( =S 3 2), each with four degenerate eigenvectors. The
occurrence of four eigenvectors in the former case is due to the fact that the spin =S 1 2
appears twice. On the other hand, the four eigenvectors with spin =S 3 2 come from the fact
that = - -M 3 2, 1 2, 1 2, 3 2S as is well known. This result is also in agreement with the
application of the abovementioned formula for the coupling of angular momenta to the
coupling of the singlet S=0 and triplet S=1 two-electron spins with the spin =s 1 2 of
the remaining electron that yields =S 1 2 in the former case and =S 1 2, 3 2 in the latter.
The spin eigenvectors are

∣ ⟩ =

-

-

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

1 2, 1 2
1

2

0
1
1

0
0
0
0
0

,
1

6

0
1
1
0
2

0
0
0

,

∣ ⟩- =

-
-

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

1 2, 1 2
1

2

0
0
0
1
0
1

0
0

,
1

6

0
0
0
1
0
1
2

0

,
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∣ ⟩ ∣ ⟩= =

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

3 2, 3 2

1
0
0
0
0
0
0
0

, 3 2, 1 2
1

3

0
1
1
0
1
0
0
0

,

∣ ⟩ ∣ ⟩- = - =

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

3 2, 1 2
1

3

0
0
0
1
0
1
1
0

, 3 2, 3 2

0
0
0
0
0
0
0
1

.

The meaning of these eigenvectors is easy to understand if one simply compares them with all
the Kronecker products of three one-electron spin eigenvectors; for example:

( )a a a a a b a b bÄ Ä = Ä Ä = Ä Ä =

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

1
0
0
0
0
0
0
0

,

0
1
0
0
0
0
0
0

,

0
0
0
1
0
0
0
0

, 27

etc.

5. Two interacting spins

As a final illustration of the utility of the Kronecker product we briefly discuss a simple model
of two coupled spins given by the Hamiltonian

ˆ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )
[ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )] ( )l

= Ä + Ä
+ Ä + Ä + Ä

H as b s
s s s s s s

1 1 2 1 1 2
1 2 1 2 1 2 . 28

z z

x x y y z z

This model is similar to the one used in the interpretation of the NMR signal produced by two
protons (nuclear spin =I 1 2) that experience two different local magnetic fields (the first
two terms on the right-hand side) and are coupled by an interaction proportional to

( ) · ( ) 
s s1 2 (the third term on the right-hand side). The coupling term comes from the
interaction of the magnetic momenta of the two nuclei that are proportional to the
corresponding spin angular momenta and gives rise to the well known fine structure in the
NMR spectrum [7].
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In order to obtain the eigenvalues of this Hamiltonian we simply diagonalize the matrix

[ ]

( )

l= Ä + Ä + Ä + Ä + Ä

=

+

-

-

- +

l

l l

l l

l

+

-

-

+

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

a bH s I I s s s s s s s

0 0 0

0 0

0 0

0 0 0

, 29

z z x x y y z z

a b

a b

b a

a b

2 4

2 4 2

2 2 4

2 4

where I stands for the 2×2 identity matrix. Note that the application of the Kronecker-
product rule is considerably more straightforward than the explicit calculation of the matrix
elements of the Hamiltonian Ĥ in the tensor-product spin basis set [7]. The eigenvalues and
eigenvectors are

( )

( ) ( )

l
l

l

l
l l

=-
+

+ = - - + -

= - + + =
+

+

E
a b

E a b

E a b E
a b

2 4
,

1

2 4
,

1

2 4
,

2 4
30

1 2
2 2

3
2 2

4

and

( )( )

( )

( )

( )

= = = =- +
-

- +

+ +

+

+ +

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
v v v v

0
0
0
1

,

0

0

,

0

0

,

1
0
0
0

, 31
u v

v u

u v

u v

v u

u v

1 2

1

1

1

3

1

1

1

4
2

2

2

2

respectively, where

( )
( )

l
l l

=
- +

=
-

u
a b

v
b a

, . 32
2 2

Note that b b= Äv1 and a a= Äv4 while v2 and v3 are linear combinations of a bÄ
and b aÄ . The energy differences -E E4 3, -E E4 2, -E E3 1 and -E E2 1 yield the
frequencies of the two doublets in the NMR signal. These are the only transitions
allowed by a well known selection rule [7]. Within the notation chosen for the present
model the transition probability between the states vi and vj is proportional to
∣ · ∣v S v.i

T
x j

2, where T stands for transpose. One can verify that ⟷v v1 4 and ⟷v v2 3 are
forbidden.

If ∣ ∣ ∣ ∣ l-a b we can apply perturbation theory to first order and obtain

∣ ∣ ∣ ∣ ( )l l
» -

-
- »

-
+E

a b
E

a b

2 4
,

2 4
. 332 3

This approach is equivalent to just keeping the diagonal terms in the Hamiltonian matrix H
and the linear combinations of direct products of spin vectors just mentioned reduce to the
simple tensor products a bÄ and b aÄ (eigenvectors of order zero). Thus, the NMR
transitions mentioned above are approximately given by ⟷a a a bÄ Ä ,
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⟷a a abÄ Ä , ⟷b b baÄ Ä and ⟷b b abÄ Ä ; in other words, only one
spin ‘flips’ in a transition [7].

6. Further comments and conclusions

One of the purposes of this paper is to show that in quantum mechanics it is customary to use
two different operator products. One of them is the composition of two operators defined on
the same vector space and the resulting operator is also defined on the same vector space. This
product gives rise to the commutators [ ˆ ˆ] ˆ ˆ ˆ ˆ= -A B AB BA, that appear in the discussion of
compatible observables, uncertainty principle, etc [1–3]. The matrix representation of the
operator product in a given basis set is the product of the matrix representations of the factor
operators in the same basis set.

The other product is the direct or tensor product of two operators defined on different
vector spaces. The resulting operator is defined on a new vector space that is the direct or
tensor product of the vector spaces of the factor operators. This tensor product is necessary
when we move from a one-particle system to a multiparticle one. The most important property
in this case is that the matrix representation of the resulting tensor-product operator is given
by the Kronecker product of the matrix representations of the factor operators. The basis set is
the tensor product of the basis sets for the vector spaces associated to each of the factor
operators. The construction of the matrix representation of the tensor-product operator is
given by a simple formula suitable for an introductory course on quantum mechanics that the
students may easily apply to a wide variety of problems. Throughout this paper we have
discussed three simple examples of the application of the Kronecker product that clearly show
how to solve some quantum-mechanical problems in a systematic and straightforward way.
We have selected spin problems because they are naturally given in terms of finite matrices
(finite basis sets) but the procedure can be also applied to the case of infinite basis sets
provided that we restrict to a finite subspace where we define finite matrices. In this case the
results would be approximate and will give rise to, for example, the well known Rayleigh–
Ritz variational method [3]. Many other interesting applications of the Kronecker product are
available elsewhere [4–6].

The application of the Kronecker-product rule is simple and can be easily carried out by
hand. However, it presents a good opportunity to introduce some elements of computer
programming in quantum-mechanical courses. We suggest resorting to one of the many
available computer algebra systems that are extremely powerful and useful for pedagogical
purposes. They enable the student to construct the Kronecker product either interactively or
by means of a suitable program, and diagonalize the resulting matrix in exact analytical way if
it is possible or numerically in more complex cases. In the present case we have used the
computer algebra system Derive (https://education.ti.com/en/us/home) and one of the
Kronecker-product programs contributed to the Derive User Group (http://www.austromath.
at/dug/).
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