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A B S T R A C T

Parasites usually have strong negative effects on the fitness of their hosts, as in the reduction of host fecundity. We evaluated the female
fecundity of Palaemonetes argentinus Nobili, 1901 from two populations with contrasting levels of parasitism: the population from Nahuel
Rucá (NR), Argentina that was fully parasitized by a larval digenean (Microphallus szidati Martorelli, 1986) and the population from El
Burro (EB) that was completely free of parasites. Realized and actual fecundity (i.e., number of newly spawned embryos and number of
embryos ready to hatch, respectively) were higher in the parasitized females from NR. Moreover, infected females from NR produced
heavier eggs than uninfected ones from EB. Egg loss (estimated as difference between realized and actual fecundity), however, was higher
in the parasitized population (18.6 versus 10%). Higher egg loss is likely a negative effect of parasitism; however, the differences in
fecundity between the two P. argentinus populations may be explained by differences in local ecological conditions. Future studies under
controlled experimental conditions should compare realized and actual fecundity between parasitized and non-parasitized P. argentinus
from a same population. Our results highlight the importance of parasitism as a biotic factor to be considered in analyzing life history traits
in shrimp populations.
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INTRODUCTION

Parasites may affect host characteristics of demographic
importance such as birth and death rates because they
can directly or indirectly cause the death of their hosts
and/or influence their reproduction by the reduction or even
inhibition of their reproductive processes (e.g., Galaktionov,
1993; Zohar and Holmes, 1998; McCurdy et al., 1999;
Ferreira et al., 2005; Baldauf et al., 2007; Vale and Little,
2012; Cézilly et al., 2013). The two fitness components
that are typically considered with regard to parasitism are
host fecundity and survival (Ebert, 2005), and most studies
on the influence of parasites on host fitness generally
conclude that parasites have a strong negative effect on their
hosts (e.g., Sorensen and Minchella, 1998; Bollasche et al.,
2002; Decaestecker et al., 2005). Parasitism is therefore
recognized as a factor that influences the composition and
structure of populations and communities (Minchella and
Scott, 1991; Combes, 1996; Hudson and Greenman, 1998;
Poulin, 1999; Chadwick and Little, 2005; Adamo, 2013).

Parasitic flatworms (Platyhelminthes) belonging to the
subclass Digenea usually requires three hosts to complete
their life cycles: a definitive host (generally a vertebrate), a
first intermediate host (almost always a mollusc), and a sec-
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ond intermediate host that can be an invertebrate or verte-
brate (e.g., molluscs, annelids, crustaceans, fishes, amphib-
ians). The second intermediate host carries the metacercaria
stage, which when ingested by or in contact with the defini-
tive host, completes the life cycle. Digeneans have signifi-
cant effects on the fitness on their intermediate hosts (first
and second), since they are known to cause a decrease in the
competitive ability of males, a diminished attractiveness to
another mate, the prevention of females from attaining sex-
ual maturity, castration, the decrease of the female fecundity,
and a reduction of the reproductive output (e.g., Minchella
and Loverde, 1981; Thomas et al., 1995, 1996a, b; Fredens-
borg and Poulin, 2006; Bartoli and Boudouresque, 2007;
Zbikowska, 2011).

The natantian shrimp Palaemonetes argentinus Nobili,
1901 occurs in limnic inland habitats such as lakes and
streams and also in brackish coastal lagoons connected to
the sea, geographically ranging from Uruguay and southern
Brazil to central eastern Argentina (Spivak, 1997; Ituarte,
2008). Because of its high abundance, this species plays a
key role as predator of zooplankton and as prey of fishes
and birds in coastal lagoons and freshwater environments of
eastern South America (Collins, 1999; López et al., 2001;
González Sagrario, 2004; González Sagrario et al., 2009).

© The Crustacean Society, 2015. Published by Brill NV, Leiden DOI:10.1163/1937240X-00002394

http://dx.doi.org/10.1163/1937240X-00002394
mailto:mjmerlo@mdp.edu.ar
http://dx.doi.org/10.1163/1937240X-00002394


2 JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 00, NO. 0, 2015

The shrimp has been reported in Argentina as second inter-
mediate host for two digenean species belonging to the fam-
ily Microphallidae: Microphallus szidati Martorelli, 1986
and Levinseniella cruzi Travassos, 1920 (Martorelli, 1986,
1988; Parietti et al., 2015). The previous studies involving
these flatworms have been focused on their descriptions, the
elucidation of their life cycle and their seasonal variation
(Martorelli, 1988; Martorelli and Schuldt, 1990; Martorelli
et al., 2006; Parietti et al., 2015). Metarcercariae of mi-
crophalliid parasites usually develop in crustaceans as sec-
ondary intermediate hosts and several species of this family
show high host specificity (Galaktionov and Drobrovolskij,
2003). Despite the ecological significance of P. argentinus
in aquatic environments in eastern South America, there is
so far no information on the effects of metarcecariae on the
fitness of the shrimp.

As a part of ongoing studies on the population dynam-
ics of digenean species from Nahuel Rucá Lake (Buenos
Aires Province, Argentina), we found that P. argentinus was
nearly always heavily parasitized (Merlo, 2014; Parietti et
al., 2015). In contrast, we had no record of such levels of
parasitism for individuals coming from northernmost popu-
lations (RBI, pers. obs.). Since microphalliid metacercariae
have been mainly located in abdominal muscles of P. ar-
gentinus (Parietti et al., 2015), we hypothesized that fecun-
dity is negatively affected in parasitized females. We evalu-
ated female fecundity in P. argentinus from two geograph-
ically isolated populations, one of them heavily parasitized
by one species of digenean larvae and the other completely
free of parasites. We measured realized and actual fecun-
dity, brood loss, and dry mass of eggs in parasitized and
non-parasitized females.

MATERIALS AND METHODS

Sampling Sites

The study sites are located in Buenos Aires Province, Argentina (Fig. 1).
Nahuel Rucá Lake (NR: 37°37′S, 57°25′W) is a shallow-water lake located
in a large wetland area belonging to the Mar Chiquita Coastal Lagoon
Basin, a UNESCO Man and the Biosphere Reserve since 1996. It has a
surface area of about 400 ha and a mean depth of 1.5 m. El Burro Lake (EB:
35°41′S, 57°57′W) is a shallow eutrophic lake that belongs to a system of

Fig. 1. Location of the Palaemonetes argentinus population studied in
Buenos Aires Province, Argentina. A, “Las Encadenadas de Chascomús”
shallow lakes, El Burro Lake in black; B, Mar Chiquita Coastal lagoon
basin, Nahuel Rucá Lake in black.

shallow lakes interconnected by creeks (“Las Encadenadas de Chascomús”)
that are connected to the Salado River (Giovagnoli et al., 2014). It has a
surface area of about 1200 ha and a mean depth of 2 m (Fig. 1).

Sampling Procedures

Collections were made in October and December 2012. Shrimps were
collected using a hand net at randomly chosen spots. In the laboratory,
ovigerous females were sorted in two groups according to the degree of
development of their embryos. The two stages of embryonic development
used correspond to those described by Ituarte et al. (2007): newly spawned
embryos (SI) and embryos ready to hatch (SIII). Realized fecundity (NSI)
was defined as the number of SI embryos per female and actual fecundity
(NSIII) as the number of SIII embryos per female (Ituarte et al., 2007). Dry
weight (W) of SI embryos was determined on a H54 Mettler AR balance
to the nearest 0.01 mg. Embryos were transferred to pre-weighed capsules
of aluminum foil and dried at 90°C to constant weight (at least 24 h). The
size of females was estimated as the carapace length (CL, mm), from the
posterior orbital margin to the dorso-posterior border of the carapace, using
an Olympus SZ40 stereomicroscopy.

Females from both populations were kept alive in individual plastic
beakers (100 ml) until dissection, usually within 24 h of collection. All parts
of the female body were checked for parasites, including the appendages.
After dissection, parasites were identified and the number of metacercarial
cysts was counted.

Statistical Analysis

Three quantitative descriptors of parasite populations were used: 1) preva-
lence (number of parasitized grass shrimp/number of collected grass
shrimp × 100), 2) intensity of infection (number of individuals of a parti-
cular parasite species in a single infected host), and 3) mean intensity (total
number of parasites of a particular species/the number of host infected with
that parasites) (Bush et al., 1997). Difference in mean intensities between
embryonic stages (SI vs. SIII) was tested by Student t-tests.

Least-square regression models were fitted to describe the relationships
between CL and egg production (both NSI and NSIII) in each of the
populations. All variables were logarithmically transformed to satisfy the
assumptions of normality and homogeneity of variances. Either NSI or
NSIII were compared between populations with analysis of covariance
(ANCOVA) using CL as the covariate. The equality of regression lines
was tested using a Parallelism test (Zar, 2009) for all ANCOVA analyses.
When the slopes were equal (homogeneous), ANCOVA was performed to
test differences in mean Y adjusted for differences in X. The Tukey HSD
test was used to test differences among individual Y -intercepts.

Difference between NSI and NSIII was tested within each population
using ANCOVA with CL as covariate. The brood loss was calculated in
both populations as the difference between Y -intercepts using the following
equation (modified from Ituarte et al., 2007): 100(1 − exp(aSIII − aSI)).
Difference in dry weight (W) of SI embryos between populations was tested
by a Mann-Whitney U -test.

RESULTS

A total of 299 bearing females (n = 199 from NR) and (n =
100 from EB) was examined. In NR, 99 females had newly
spawned embryos (SI) and 100 females had their embryos in
an advanced developmental stage (SIII). In EB, 50 females
had SI embryos and 50 females had their embryos in SIII.

All ovigerous females of P. argentinus from NR were
parasitized with Microphallus szidati (Microphallidae). The
prevalence of M. szidati metarcercariae was 100% in females
carrying both embryonic stages (SI and SIII). The mean
intensity was higher in females with advanced (SIII) than
newly spawned embryos (SI) (Student’s t-test: t = 6.97,
df = −0.66, P < 0.0001). The intensity of infection ranged
from 6 to 231 cysts in shrimps with SI embryos (mean
value 35.95 cysts per host, n = 99, SD = 30.78) and from
10 to 225 cysts in shrimps with SIII embryos (mean value
69.44 cysts per host, n = 100, SD = 50.57). We never
found metarcecarial cysts in shrimps from EB during the
collections.
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Table 1. Regression equations describing fecundity in Palaemonetes
argentinus originating from two geographically separated populations:
the parasitized population of Nahuel Rucá (NR) and the non-parasitized
population from El Burro (EB), Argentina. Realized fecundity (number of
stage-I embryos, SI) and actual fecundity (number of stage-III embryos,
SIII) are as functions of female body size (CL, mm; logarithmically
transformed data).

Regression equation r n P

Realized lnSI = 1.68 · lnCL + 1.82 0.55 99 <0.001
fecundity lnSI = 1.45 · lnCL + 1.96 0.55 50 <0.001

Actual lnSIII = 1.68 · lnCL + 1.82 0.32 100 0.001
fecundity lnSIII = 1.77 · lnCL + 1.28 0.57 50 <0.001

The number of newly spawned embryos (NSI, realized
fecundity) and the number of embryos ready to hatch (NSIII,
actual fecundity) increased in both populations linearly and
positively with female CL (Table 1). The NSI differed
between populations (ANCOVA: F1,146 = 30.7, P <
0.001). At equal CL, NSI was higher in females from the
parasitized population (NR, Fig. 2). Similarly, the number
of embryos near to hatch differed also between populations
(ANCOVA: F1,147 = 19.2, P < 0.001) being also higher in
females from the parasitized population (NR, Fig. 2).

Realized and actual fecundity differed within each popu-
lation (ANCOVA NR: F1,107 = 5.6, P = 0.02; EB: F1,97 =
4.7, P = 0.03; Fig. 2) indicating a significant egg loss dur-
ing embryonic development. The percentage of embryonic
loss was higher in the parasitized population (18.6 vs. 10%).

Dry weight of early embryos (SI) differed between popu-
lations (Mann-Whitney U = 1900, P = 0.021). Parasitized

Fig. 2. Comparison of realized (number of stage-I embryos, SI) and actual
fecundity (number of stage-III embryos, SIII) within populations, with
female size (CL; mm) as covariable. A, Parasitized females from Nahuel
Rucá; B, non-parasitized females from El Burro. Embryonic loss is the
difference between Y -intercept within each population. Dashed and entire
lines: regression lines for realized and actual fecundity, respectively.

females from NR produced heavier eggs (0.087 mg W per
embryo, n = 99, SD = 0.008) than those from uninfected
females from EB (0.081 mg, n = 50, SD = 0.01).

DISCUSSION

The impact of parasitism on the host can be assessed
with respect to the probability of contacting the parasite
in the environment, considering its potential effect on
host reproductive success, and the relative cost of host
resistance (Minchella, 1985). Here we report that ovigerous
females from NR were 100% parasitized by a single species
of digenetic trematode, whereas all gravid females from
EB were uninfected. The maximum values of prevalence
and intensity for M. szidati in P. argentinus In NR are
coincident with the values of prevalence recorded in the
first intermediate host, the snail Heleobia parchappii (Merlo,
2014). The abundance of M. szidati metacercariae in the
second intermediate host is therefore influenced in part by
the abundance of the cercaria stages in the environment.
We never found during samplings in EB neither the snail
H. parchappii nor other Heleobia species, as also reported
by Tiezte (2011), suggesting that infections of shrimps were
prevented by the absence of the first intermediate host.

Most studies support a negative relationship between
host fitness and infection levels (e.g., Minchella, 1985;
Sorensen and Minchella, 1998; Bollasche et al., 2002;
Decaestecker et al., 2005). In contrast, we found that
parasitized P. argentinus females laid more eggs and have
more embryos ready to hatch than uninfected ones of the
same size, in spite of parasitized shrimps lost more embryos
through development. High realized and actual fecundity
from parasitized females from NR can be explained to
a large extent by intraspecific variability of life-history
trait in P. argentinus populations (Ituarte et al., 2007).
The fact that the snail H. parchappii was present in NR
but absent in ER indicates that local ecological conditions
differ between sites, which could exert differential selection
pressures in the evolution of the life history of this shrimp
(Ituarte et al., 2007). Shells of H. parchappii can be for
instance fouled with marine diatoms belonging to the genus
Hyalodiscus, and epibiosis levels increase with salinity
concentration when environmental salinity ranging from
3 to 7 psu (Cazanniga, 2011). The higher the level of
epibiosis, the smaller the snail size and the higher the
difficulty of female snails to attach egg capsules to other
snail shells (Cazanniga, 2011). Impairment in the fitness of
fouled snails suggests that epibiosis affects the population
dynamics of H. parchappii in mesohaline habitats (e.g.,
Cazanniga, 2011). Whether parasitism, salinity, or both
factors can account for differences in fecundity between
the two P. argentinus populations should be tested under
experimentally controlled conditions.

It is widely known that parasites can influence the gene-
tics of populations, and thus can affect the selection pres-
sures acting on the parasites themselves (Webster et al.,
2001). The importance of parasites as agents of natural se-
lection becomes evident when their number reaches levels
at which can visibly affect the abundance of a host (Poulin
and Morand, 2004). Mutual selection triggers coevolution
between parasites and hosts. The parasite reduces life ex-
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pectancy or host’s fertility trying to maximize the exploita-
tion thereof and, in turn, the host tries to minimize the loss
of fitness by the parasite. This leads to what has been called
“The Red Queen Hypothesis,” in which the species involved
in an antagonistic coevolution should “run” (evolutionarily)
as fast as they can to avoid extinction (van Valen, 1973;
Hamilton, 1980). The high realized and actual fecundity of
parasitized females from NR could therefore be partly ex-
plained as a coevolutionary process between the parasite and
the host. The higher number and weight of the eggs could
be an evolutionary response to an increased predation rate
caused by digeneans (e.g., Lafferty and Shaw, 2013).

The higher egg loss throughout embryonic development
in parasitized P. argentinus females is most likely a negative
effect of infections. Metacercarial cysts of the parasite M.
szidati usually encyst in shrimp abdominal muscles (Mar-
torelli et al., 2006; Parietti et al., 2015). Larger number of
metacercariae in the abdominal muscles could interfere with
care activities of ovigerous females, preventing enough ven-
tilation and/or cleaning of embryos. Decreasing care activ-
ity that provides protection against hypoxia and pathogens
could therefore be related to higher egg loss during em-
bryonic development. Moreover, care activities in most de-
capods increase through the end of the embryonic develop-
ment (e.g., Baeza and Fernández, 2002; Giovagnolli et al.,
2014). The higher number of cysts in females with advanced
embryos compared to those with newly spawned eggs indi-
cates that shrimp females were actively infected by M. szi-
datis throughout the time of host embryonic development,
which could contribute to a physical disability to effectively
care their embryos.

In addition to a possible physical disability, trophically
transmitted parasites that infected invertebrates are more
likely to increase the host contact with predators by manipu-
lating the behavior of their hosts (Lafferty and Shaw, 2013).
The metacercariae in abdominal muscle along with the egg
mass could increase the predation of P. argentinus, possibly
affecting the swimming stamina and predator avoidance re-
sponse of the shrimp, as it has also been suggested by other
similar host-parasite system (P. pugio – M. turgidus; Kunz
and Pung, 2004). The level of parasites can thus increase
the chances of shrimps to be eaten by a potential predator
through a physical impairment and/or the manipulation of
shrimp behavior. It seems that parasitism can be an impor-
tant factor in the reproduction of P. argentinus and should
be considered in studies that analyze variations in the life
history of other palaemonid shrimps.
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