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A Locally Optimal Soft Linear-Quadratic Scheme

for CR Systems in Shadowing Environments
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Abstract—In this letter, we analyze the problem of detecting
spectrum holes in cognitive radio systems under the Neyman-
Pearson scenario. We consider that a group of unlicensed users
use non-coherent energy detectors to sense the radio signal and
design a soft locally optimal linear-quadratic statistic based on
the deflection coefficient. Each unlicensed user transmits the
processed data to a central entity, where the decision about the
presence or not of licensed users is made. Using the method of
Monte Carlo, we show that the proposed statistic outperforms
previous ones available in the literature in a wide range of
shadow-fading scenarios and it is robust against parameters
errors.
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I. INTRODUCTION

Wireless spectrum is a vital resource required for radio
communications. Worldwide, radio frequency bands are as-
signed to the licensed holders of the bands in large geographic
areas. Within this paradigm, the wireless spectrum is a scarce
resource in high demand for current and future technologies.
However, measurements campaigns have suggested that much
of the licensed spectrum is frequently under-utilized in vast
areas at different times [1]. In recent years, cognitive radio
(CR) systems has emerged as a possible solution for the
spectrum shortage (see [2]–[4] and references therein). In
CR systems, unlicensed, or secondary users (SU), sense the
spectrum in a particular place and time and wish to detect the
presence or absence of the licensed, or primary users (PU),
in order to use the spectrum when it is available. In Fig. 1,
we show a possible scenario of CR. A PU transmits to its
intended receivers located inside the primary range Rp, defined
as the maximum distance between two PUs. The SUs sense
the spectrum and decide if they are out of the protected region
of the primary system which would allow them to use the
spectrum without causing harmful interference to the PUs. Rs

is the interference range of the SUs.
Although each SU may sense the spectrum alone and make

a decision, the typical low signal-to-noise ratio (SNR) of the
PU signal at the SU receiver makes it difficult to develop
reliable detection schemes. Additionally, the so-called hidden-
terminal problem arises in environments with shadow fading:
a SU could receive an undetectable very weak signal from the
PU, decide to transmit and produce interference to the PUs.
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Fig. 1. A CR network with spectrum sensing devices.

A way to tackle these issues is to allow SUs cooperating with
each other to detect the PU signal. While some of the SUs
receivers could be shadowed from the PU signal, it is unlikely
that all of them are in a deep shadow simultaneously.

Several previous works have considered the shadowing
effect in the sensing channel. In [5], the measurements of the
SUs are quantized to 1-bit and sent to the fusion center (FC),
where the final decision is made. A linear-quadratic detector
is proposed as a decision fusion rule, based on the deflec-
tion coefficient (DC), to study its performance in correlated
log-normal shadowing environments. In [6], the performance
degradation of collaborative sensing is characterized due to
correlated shadowing by deriving a lower-bound on the false
alarm probability. In [7], an amplify-and-forward scheme is
analyzed in a correlated log-normal sensing and reporting
channel. Although this kind of schemes have been frequently
used in previous works (see also [8]), the required reporting
channel bandwidth could be prohibitive for CR systems if the
SUs transmit one symbol per each symbol received. In order
to save this valuable resource, the SUs should process locally
a set of measurements and send only a summary of them to
the FC. Respect to small-scale fading environments, in [9] the
authors have developed several cooperative schemes for 1-bit,
multi-bit and soft data fusion based in the likelihood functions
with unknown parameters. In [10] an optimal linear soft fusion
scheme of energy measurements is obtained based on the so-
called modified deflection coefficient (MDC). However, the
scenario with both shadowing and fading effects deserves more
study.

Considering that the SUs in general do not know the
transmission scheme used by the PUs, demodulation of the PU
signal is unfeasible. Therefore, non-coherent energy detectors
are used in the previous mentioned works and they are typically
employed in the SUs receivers. The instantaneous energy of
the signal received by the SUs variates due to either the fading
channel and/or the modulation scheme used by the PU (e.g.,
PAM, QAM or OFDM). This feature of the received signal,
often overlooked, could be beneficially exploited in the SUs to
further improve the detection performance. For example, one
could consider not only linear combinations but also higher
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orders terms of the instantaneous energy to capture fluctuations
of the PU signal energy at the SU.

In this letter, we propose a locally optimal soft linear-
quadratic (LQ) distributed detection scheme to process the
measurements of the SUs, based on the MDC criterion. In this
scheme, the SUs gather a set of measurements delivered by
their non-coherent energy detectors, perform some processing
and transmit the analog result (sometimes called soft decision)
through a noisy communication channel to the FC. The FC
makes a decision about the state of the PU through a threshold
test, and then, broadcasts it to the SUs. Soft decisions typically
produce better performances. It is sometimes argued that using
soft decisions significantly increases the amount of data to be
transmitted and, hence, the required bandwidth. However, this
is not entirely true since there may be significant overhead
related to the protocol used in transmitting the sensing results
to the FC. That overhead will be present even if only binary
decisions are transmitted. Therefore, the difference in the
transmission and bandwidth requirements between hard and
soft decision statistics may be small [2].

Guided by the generalized likelihood ratio test (GLRT),
we propose a LQ scheme whose parameters are selected to
maximize the local MDC. Given that these parameters are a
function of the first two moments of the energy measurements,
we suggest a simple but effective estimation scheme to perform
this task. Monte Carlo numerical experiments show that the
proposed soft distributed scheme has a superior performance in
shadow-fading environments, compared to schemes presented
previously in the literature.

Next, we present the signal model, derive the proposed
statistic, analyze the results and, finally, elaborate the conclu-
sions of this letter.

II. SIGNAL MODEL

The basic task of the FC is to decide if the SUs are located
inside the protected region or not (see Fig. 1). Thus, we have
a binary hypothesis testing problem. Under H1, we consider
that the PU is ON and the SUs are inside the protected region.
In this case, the energy that the SUs measure will correspond
mainly to the PU signal, assumed to be affected by both path
loss and shadow-fading effects. The power received in a given
SU Pr (in dBm) separated from the PU in a distance d is
modeled by [11]

Pr(d) = Pt +KdB − 10p log10(d/d0)− ψdB (1)

where Pt (in dBm) is the transmitted power, KdB is an unitless
constant, p is the path loss exponent, d0 is a reference distance,
and ψdB is a random variable that models the shadow-fading
effect. We adopt the popular log-normal model for the shadow-
fading meaning that the random variable expressed in dB ψdB

is a zero-mean Gaussian random variable with variance σ2
SH.

In a wireless scenario, the signal power measured by two
receivers close to each other presents certain correlation. We
model the correlation between two SUs to decay exponentially
with the distance d between them, validated empirically in
[12]. Thus, the autocorrelation function is R(d) = σ2

SHe
−d/dc

where dc is the decorrelation distance. Under H0, when the

PU is OFF or the SUs are outside the protected region, we
assume that the noise power dominates the behavior, can only
be known with a certain degree of accuracy and is log-normally
distributed with mean m0 and variance σ2

0 [5]. In this work, we
will assume that the measurements at different times at each
SU are independent and identically distributed (iid). Under H1,
we can justify this assumption based on the fact that the small-
scale fast fading will produce uncorrelated fluctuations in the
signal. Additionally, the symbols transmitted by the PU can
be considered uncorrelated, which reinforces the assumption.
Under H0, the measurements are dominated by the thermal
noise which is uncorrelated in time. Consider that each SU
can subtract the mean value1 m0 (in dBm) to its energy
measurements captured in each time slot to obtain the set of
observations {yij}mi=1, where the indexes i and j identify the
time slot, and the SU, respectively, and m is the number of
measurements taken by each SU. Let yj = [y1j , . . . , ymj ]

T

be the vector of observations collected by the j-th SU during
m time slots and define the whole vector of measurements
collected by n SUs as y = [yT

1 , . . . ,y
T
n ]

T . The hypothesis
testing problem selects H0 or H1:

{

H0 : y ∼ N (0, σ2
0Inm)

H1 : y ∼ N (µ⊗ 1,Σ1 ⊗ Im),
(2)

where N (a, B) denotes the Gaussian distribution with mean
a and covariance matrix B, µ = [µ1, . . . , µn]

T , with µj =
Pr(dPU,j) − m0 and dPU,j is the distance between the PU
and the j-th SU receiver; ⊗ is the Kronecker product and
1 is a column vector of m ones. We assume that both
the measurement inaccuracy and the shadow-fading effects
are additive in the dB scale, therefore, Σ1 = σ2

0In + ΣSH,
where In is the identity matrix of dimension n, ΣSH is the
n × n covariance matrix given by the shadow-fading, i.e.,
(ΣSH)ij = σ2

SHe
−dij/dc , and dij is the distance between the

i-th and j-th SU. We also define (Σ1)jj = σ2
1,j .

III. THE PROPOSED LINEAR QUADRATIC STATISTIC

In this section, we first propose a linear-quadratic statistic
motivated by the GLLR statistic and then optimize its param-
eters using the MDC [10] at each SU. The deflection criterion
was used vastly in the literature of detection theory [13].
When the distribution under both hypotheses are Gaussian,
the deflection is proportional the Chernoff distance between
both distributions, which means that a better performance is
obtained if we maximize the deflection. On the other hand,
when the distributions are not Gaussian, the deflection cannot
be related to a true distance although it has been shown using
numerical simulations that a better performance is obtained
for greater deflections. Therefore, the proposed statistic can
also be used in non-Gaussian scenarios. We will show that
the proposed soft distributed detector has a better performance
than previous schemes presented in the literature and exhibits
a robust behavior against parameter estimation errors.

1If m0 is estimated with some error, the same hypothesis testing problem
(2) can be performed considering that the estimation error is absorbed by the
mean under H1.
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We analyze the problem under the Neyman-Pearson frame-
work, which minimizes the miss-detection probability while
satisfying a certain false alarm probability level Pf0. Let Pj(·)
be the probability measure under Hj , j = 0, 1, let Ĥ be the
decision made by the FC and assume that the SUs transmit
their own data if they detect the spectrum to be free. Given
a statistic T , it is compared against a predefined threshold

τ . The FC decides Ĥ = H1 if T > τ , and Ĥ = H0

otherwise. The miss-detection and false alarm probabilities

are, respectively, Pm = P1(Ĥ = H0) = P1(T ≤ τ) and

Pf = P0(Ĥ = H1) = P0(T > τ), where the threshold τ
computed numerically to satisfy Pf ≤ Pf0.

Considering the model (2), and letting Σ̂1 and µ̂ be the max-
imum likelihood estimations (MLE) of the mean and covari-
ance matrix of [yi1, . . . , yin]

T , i = 1, . . . ,m, respectively, the

(normalized) GLRT statistic is TGLRT(y) =
1

nm log p1(y;Σ̂1,µ̂)
p0(y)

,

TGLRT(y) = y
T 1

2

(

σ
−2

0 Inm − Σ̂−1

1 ⊗ Im

)

y + (µ̂⊗ 1)Ty (3)

≈
1

n

n
∑

j=1

[

1

2

(

1

σ2

0

− 1

σ̂2

1,j

)

‖yj‖
2

m
+ µ̂j

1
T
yj

m

]

, (4)

where pj(y) is the probability density function of y under Hj ,
j = 0, 1. In (3) we have omitted the constant terms that do not
modify the statistics performance. To compute this statistic in
the FC, each of the n SUs should employ m channel uses2 to
transmit its whole set of measurements, which is energy and
bandwidth costly. Instead, we propose to transmit a summary
of the set of measurements that uses only one channel use

per SU. In (4) we have approximated Σ̂1 by its main diagonal
matrix diag(σ̂2

1,1, . . . , σ̂
2
1,n), valid if the spatial correlation is

a mild one [7]. In view of (4), we propose the following LQ
local statistic

TLQ,j(yj) = αj
‖yj‖

2

m + βj

(

1
Tyj

m

)2

+ γj
1
Tyj

m , (5)

where the second term appears if µj is unknown and it
is replaced by the sample mean µ̂j , while the third term
models the situation where µj is known. Thus, βj and γj
balance the confidence on the estimation of the mean. Then,
the local parameters (αj , βj , γj) are optimized maximizing

the local MDC defined by D(TLQ,j) =
(E1(TLQ,j)−E0(TLQ,j))

2

Var1(TLQ,j)
,

where Ej(·) and Varj(·) are the expectation and the variance
operators under Hj , j = 0, 1. The MDC can be expressed as

Dj =

(

a
T
xj

)2

x
T
j Bxj

=

(

(

B
− 1

2a

)T x̃j

‖x̃j‖

)2

(6)

where xj = [αj , βj , γj ]
T , a and B are easily computed

and B is a 3 × 3 positive definite symmetric matrix. Calling

x̃j = B
1

2xj , the second equality in (6) is obtained, which

involves a scalar product and is maximized when B− 1

2a
and x̃j are collinear, i.e., the optimum parameter vector is

x̃∗
j = cB− 1

2a, where c is any constant. Returning to the

original vector, x∗
j = cB−1a, whose components are α∗

j = 1,

2A channel use takes place when a symbol is transmitted.

β∗
j = −mµ2

j/σ
2
SH and γ∗j = 2µj(mµ

2
j + σ2

0)/σ
2
SH, and where,

without loss of optimality, we have chosen c such that α∗
j = 1.

Once each SU processes locally its measurements, it sends
the analog result to the FC through orthogonal additive white
Gaussian noise (AWGN) channels: zj = Tj(yj) + wj , where

wj is a zero-mean Gaussian noise with variance σ2
w,j . The

use of AWGN channel model is justified by assumptions on
analog-forwarding schemes and SU-FC channels with high
coherence time relative to the reporting time. Guided by (4),
we build the final statistic averaging the information received
by the FC:

TFC =
1

n

n
∑

j=1

zj =
1

n

n
∑

j=1

TLQ,j(yj) +
1

n

n
∑

j=1

wj . (7)

A. Local Parameters Estimation

The parameters α∗
j , β∗

j and γ∗j depend on σ2
0 , σ2

1,j and
µj , which are typically unknown and must be estimated. To
perform this task, at the beginning of the detection procedure,
the SUs use the LQ statistic with the parameters set to
a fixed value, independent of the required moments, e.g.,
αj = βj = γj = 1, such that the FC makes a decision and
communicates it to the SUs. Then, the SUs are able to classify
and store the current data in a presence or absence vector
for future reference, accordingly to the FC’s decision. Let
Mp,µ, Mp,σ2 and Ma,µ, Ma,σ2 be two presence and absence
first-in-first-out (FIFO) memories of length L, available in
each SU. If the FC decides that the PU is present, each SU
stores the sample mean and the sample variance in Mp,µ

and Mp,σ2 , respectively, otherwise, it stores the corresponding
estimations in Ma,µ and Ma,σ2 . Then, the moments are
estimated averaging the available data as follows. Let l be
the present time, the recursive algorithm of the j-th sensor
is aj(l) = L−1

L aj(l − 1) + 1
L(bj(l − 1) − bj(l − 1 − L)),

where aj(l) =
1
L

∑l−1
k=l−L bj(k) and bj(k) is either the sample

mean µ̂j(k) = 1
Tyj(k)/m or the sample variance σ̂2

j (k) =
‖yj(k)‖

2/m−µ̂2
j(k) recovered from the memories, and yj(k)

is the vector corresponding to the k-th set of measurements.
We will show that, although the arbitrary selection of the LQ’s
parameters is suboptimal, its performance allows to initialize
correctly the memories, and then to switch to the optimal LQ
statistic using the estimated parameters. The size of the block
of measurements to average should be selected considering the
rate of change of the CR system parameters.

IV. ANALYSIS OF THE RESULTS

In this section, we compare the performance of the proposed
LQ statistic against several statistics, which are introduced
as follows: i) an asymptotically GLRT equivalent test called
linear (GLR-L) test proposed in [9], which only needs to
know the mean and variance under H0. ii) a simplified linear
test called GLR-SL derived also in [9]. The GLR-L statistic
is TGLR-L(yj) = (θ̂1,j − θ0)

T ∂ log p1(yj ; θ)/∂θ|θ=θ0
, where

θ̂1,j is the MLE of the unknown parameter vector θ1,j =
[µj , σ

2
1,j ]

T , and θ0 = [0, σ2
0 ]

T is assumed to be known. For

the model (2), it results in TGLR-L(yj) = m
σ2

0

((1Tyj/m)2 +
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(‖yj‖
2/m− (1Tyj/m)2 − σ2

0)(1 + ‖yj‖
2/(mσ2

0))/2) which
involves up to fourth powers of the energy measurements
yij . On the other hand, the GLR-SL statistic is intended for
cases where the MLE estimation θ1 is unfeasible, defined by
TGLR-SL(yj) = 1

T∂ log p1(yj ; θ)/∂θ|θ=θ0
. For the model (2),

it results in a particular case of the LQ statistic proposed
here: TGLR-SL(yj) =

m
σ2

0

(1Tyj/m+‖yj‖
2/(2mσ2

0)+1/2). We

assume that both statistics are transmitted to the FC through
an AWGN channel, and that the FC averages the received
measurements as in (7) to make a decision.

We consider that the SUs are uniformly distributed in a
square of edge 2Rs = 0.1, and that the distance between
the center of this square and the PU is Rp = 1.1. For each
statistic, we compute the sample error probability averaged
with the spatial distribution of SUs using the method of Monte
Carlo. The sensing SNR (in dB) coincides with the difference
of means under H1 and H0, i.e., SNRs,j = µj . The parameters
used are Pt = 1.4 dBm, d0 = 1, dc = 0.1, p = 3.3, KdB = 0
dB, L = 5, n = 6, m = 20, σ0 = 3 dB and SNRc = 5
dB is the SNR of the communication channel. Notice that
the decorrelation distance selected coincides with the edge
of the square, so, we will have relatively high correlated
measurements.

In Fig. 2, we plot the complementary receiver operating
characteristic (ROC) of the three distributed statistics consid-
ered here with perfect knowledge of the parameters and also
with the statistics estimated with the method described in Sec.
III-A. We see that the LQ statistic has significant gains in
terms of miss probability for any target false alarm probability
in the range considered. Notice also the robustness of the LQ
statistics against parameter error estimation.

In Fig. 3 we plot the miss probability against the shadowing
standard deviation σSH for a low sensing SNR. As we can
see, the LQ statistic has a superior performance in the whole
range. It is worth to mention that most empirical studies for
outdoor channels support σSH ranging from 4 dB to 13 dB [11].
This makes the LQ statistic suitable for different shadowing
environments. Notice that in low sensing SNR scenarios as
the tested here, the shadowing effect improves the detection
performance of the PU, given that makes more distinctive the
PU signal from the noise signal.
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Fig. 2. Complementary ROC of the statistics with σSH = 6 dB.

V. CONCLUSIONS

Considering the shadowing effect and based on the de-
flection criterion, we have designed a soft local statistic that
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Fig. 3. Miss probability for Pf0 = 0.01.

optimally combines the linear and quadratic terms of the
energy measurements delivered by the non-coherent receiver
suitable for detecting spectrum holes in cognitive radio sys-
tems. Numerical results show that the proposed statistic is
suitable for a wide range of shadowing scenarios and it is
robust against errors in its parameters.
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