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Abstract: A recent paper [1] claims that topologically massive gravity contains only chiral

boundary excitations at a particular value of the Chern-Simons coupling. On the other

hand, propagating bulk degrees of freedom with negative norm were found even at the chiral

point in [2]. The two references use very different methods, making comparison of their

respective claims difficult. In this letter, we use the method of [1] to construct a tower of

physical propagating bulk states satisfying standard AdS boundary conditions. Our states

have finite norm, with sign opposite to that of right-moving boundary excitations. Our

results thus agree with [2] and disagree with [1].
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Recently, interest in pure AdS gravity has been revived following Witten’s work [3],

which seemed to offer a chance of finding an exact solution to a quantum gravity (albeit a

particularly simple one). Shortly afterward [1, 4] appeared, which argued for the existence

of a theory even simpler than pure gravity. The claim was that in topologically massive

gravity (TMG) [5, 6] at a special value of the Chern-Simons coupling the only boundary

degrees of freedom are chiral. If true, the theory could solve some of the problems with

Witten’s original proposal [7, 8].

However in [9] a propagating mode was found even at the special, “chiral” point µl =

1 (defined in eq. (13) below). This is not by itself in contradiction with [1], since the

mode mode does not respect standard Brown-Henneaux boundary conditions [10]: near the

boundary it diverges linearly in the AdS radius. On the other hand, propagating modes

obeying Brown-Henneaux boundary conditions were found in [2, 11].1 Those papers work

in the Poincaré patch of AdS, which only covers a part of the space; ref. [1] instead uses

global coordinates. This difference between coordinate systems makes direct comparison of

the Poincaré patch modes with the global-coordinate ones difficult. Among other things,

the Poincaré patch energy does not coincide with energy in global coordinates. One is an

element of the Lorentz subgroup of AdS3 isometries: SO(1, 2) ⊂ SO(2, 2); the other is the

(cover of) one SO(2) in the subgroup SO(2) × SO(2) ⊂ SO(2, 2). In the Poicaré patch the

global energy appears as the generator of dilatations. Finally, the Poincaré patch energy

has a continuous spectrum while the global energy spectrum is discrete.

In this letter we will work in global coordinates and analyze the spectrum of of topo-

logically massive gravity at the chiral point using the same method as ref. [1]. By apply-

ing appropriate generators of the AdS3 isometry group SO(2, 2) ∼ SL(2, R) × SL(2, R)

to the linearly-divergent mode of ref. [9], we find modes that obey standard Brown-

Henneaux boundary conditions. They are all descendant of a field that is not quite pri-

mary: it transforms into a locally pure gauge mode when hit by the L+1, L̄+1 generators

of SL(2, R) × SL(2, R). This gauge mode has zero norm [1] and it is pure gauge under

diffeomorphism that act on the boundary as left-moving conformal transformations. After

using this larger diffeomorphisms group to factor out the zero norm state, the new modes

fall into a standard discrete representation of SL(2, R) × SL(2, R). The representation is

spanned by SL(2, R)×SL(2, R) descendants of a primary of weights h = 2, h̄ = 1, and thus

carries an intriguing — though as yet mysterious — kinship with the topologically massive

spin-one field that TMG reduces to at the chiral point [2].

By factoring out all diffeomorphisms that act on the boundary as left moving conformal

transformations one can define a theory where only the right moving boundary Virasoro

algebra acts nontrivially on physical states [14]. However this theory cannot be unitary,

since the bulk state is still not pure gauge and its norm is negative.

The action of topological massive gravity is

S = +
1

2π

∫

d3x
√−g

(

R+
2

l2

)

+
1

4πµ

∫

d3x εαµν

(

Γβ
ασ∂µΓσ

νβ +
2

3
Γβ

ασΓσ
µγΓγ

νβ

)

, (1)

1See also [12, 13] for a canonical analysis of TMG, which also shows a propagating degree of freedom at

the chiral point.
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where Λ = −l−2 and µ is the coupling constant of the Chern-Simons term. We choose a

positive sign for the Einstein-Hilbert term. With this choice, BTZ [15] black holes have

positive energy for µl > 1, while massive gravitons have negative energy.

The equations of motion are

Rµν − 1

2
Rgµν − 1

l2
gµν +

1

µ
Cµν = 0. (2)

The Cotton tensor Cµν is defined as:

Cµ
ν =

1

2
εµαβ∇αRβν +

1

2
εαβ
ν ∇αR

µ
β. (3)

The Cotton tensor is the three-dimensional analog of the Weyl tensor in the sense that

Cµν = 0 if and only if the metric is conformally flat. The Cotton tensor vanishes for any

solution to Einstein gravity, so all GR solutions are also solutions of TMG.

In this note we want to determine whether TMG possesses degrees of freedom prop-

agating on an AdS background. In other words, we are interested in the perturba-

tive spectrum, i.e. linearized fluctuations around empty AdS space. Thus we expand

gµν = gµν + hµν + O(h2), with gµν the AdS3 metric.

The perturbation must leave the metric asymptotically AdS3. This fixes the asymp-

totics to be [10]:

gtt = −r2/l2 + O (1) , grr = l2/r2 + O
(

r−4
)

, gφφ = r2 + O (1)

grφ = O
(

r−3
)

, grt = O
(

r−3
)

, gtφ = O (1) . (4)

Here we have used a global coordinate system in which the AdS3 metric is

ds2 = gµνdx
µdxν = −(1 + r2/l2)dt2 +

dr2

(1 + r2/l2)
+ r2dφ2. (5)

φ is the angular direction, and the radial direction is r ≥ 0. The boundary is located at

r = ∞.

It is convenient to write the AdS3 metric in the following form:

ds2 = l2
(

− cosh2 ρ dt2 + sinh2 ρ dφ2 + dρ2
)

. (6)

where we defined r = l sinh ρ and rescaled t → lt. This coordinate system also covers the

whole space, with the boundary at ρ = ∞. In these coordinates the asymptotics (4) become

hρρ ≃ O
(

e−2ρ
)

, hρt ≃ O
(

e−2ρ
)

, hρφ ≃ O
(

e−2ρ
)

,

htt ≃ O (1) , hφφ ≃ O (1) , htφ ≃ O (1) . (7)

The isometry group of AdS3 space is SL(2, R)×SL(2, R), and its generators are realized

on scalar fields by

L0 = i∂u, L±1 = ie±iu

(

cosh 2ρ

sinh 2ρ
∂u − 1

sinh 2ρ
∂v ∓

i

2
∂ρ

)

, (8)

L0 = i∂v , L±1 = ie±iv

(

cosh 2ρ

sinh 2ρ
∂v −

1

sinh 2ρ
∂u ∓ i

2
∂ρ

)

. (9)
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The two light-like variables introduced here are defined by u = t+ φ and v = t− φ.

In the linear approximation about the solution gµν , and in the harmonic gauge ∇̄µh
µν =

0 and hµ
µ = 0, the graviton equations of motion take the form

(

D+D−DMh
)

µν
= 0 (10)

where the metric is gµν = gµν + hµν + O(h2), and where

(

D±
)ν

µ
= δν

µ ∓ lεαν
µ ∇α,

(

DM
)ν

µ
= δν

µ +
1

µ
εαν
µ ∇α. (11)

The covariant derivative ∇α is defined using the background metric gµν .

Since D−, D+ and DM commute with each other, one can obtain all linearized solutions

in terms of three functions h±µν and hM
µν which obey2

(

D+h+
)

µν
=

(

D−h−
)

µν
=

(

DMhM
)

µν
= 0 (12)

We want to analyze the theory at the “chiral” point

µl = 1, (13)

which could yield a chiral gravity, i.e. a theory in which only boundary modes of definite

chirality and black holes exist. According to ref. [1], the theory at the chiral point is

consistent because all negative energy modes disappear. A first observation is that, at the

point µl = 1, DM = D−.

In [9] an additional solution — not considered in [1]—was found. It is proportional to

∂µhµν |µ=1/l, which manifestly solves eq. (10). Its explicit form is

h(new)
µν = Reψ(new)

µν , with ψ(new)
µν = y(t, ρ)ψ−

µν = e−2iuy(t, ρ)Hµν(ρ). (14)

The function y(t, ρ) is

y(t, ρ) = − i

2
(u+ v) − log (cosh ρ) , (15)

while the Hµν(ρ) are the components of the tensor (in the t, φ, ρ basis)

H(ρ) =







tanh2 ρ tanh2 ρ i sinh ρ
cosh3 ρ

tanh2 ρ tanh2 ρ i sinh ρ
cosh3 ρ

i sinh ρ
cosh3 ρ

i sinh ρ
cosh3 ρ

− 1
cosh4 ρ






. (16)

Now the crucial observation is that, while ψ
(new)
µν and its descendants, of the form

Ln
L
−1
ψ

(new)
µν diverge linearly in y(t, ρ) near the boundary,3 there also exist descendants

that satisfy the standard Brown-Henneaux asymptotics.4 Here we adopted the standard

2We defined ψR
µν = ψ+

µν and ψL
µν = ψ−

µν .
3That is, linearly in ρ and also linearly in time.
4For quasinormal modes in a BTZ black hole background a similar fact has been independently noticed

in [16].
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notation Lv for the Lie derivative along the vector field v. From now on, to simplify

notations, we shall denote by Ln, Ln both the vector field and the Lie derivative along

it, whenever unambiguous. Also, we must recall that metric fluctuations are not uniquely

defined: two fluctuations that can be mapped into each other by diffeomorphisms that

vanish at infinity as

ζρ = O(e−2ρ), ζt = O(e−4ρ), ζφ = O(e−4ρ), (17)

represent the same physical state. We shall denote equality up to these trivial diffeomor-

phisms by
bh
=.

An example of one such state is obtained as follows: define first of all the tensor

perturbation

Yµν ≡ L−1ψ
(new)
µν =

1

2
e−iv tanh ρψ−

µν + hµν =
1

2
e−i(v+2u) tanh ρHµν(ρ) + hµν . (18)

A simple calculation shows that hρφ = O[y(t, ρ)e−2ρ], hρt = O[y(t, ρ)e−2ρ], hρρ =

O[y(t, ρ)e−4ρ]; therefore, hρφ, hρt do not obey the asymptotics (7), while hρρ does. Inspec-

tion of the AdS metric eq. (6) shows immediately that hρφ and hρt can be canceled up to

terms with proper asymptotics by an infinitesimal diffeomorphism

t→ t+ ζt, φ→ φ+ ζφ, ζt, ζφ = constant e−i(v+2u)−4ρ[y(t, ρ) + O(1)], (19)

which does not spoil the good asymptotics of any other component of the metric.

So, a bulk mode with proper boundary conditions is

Xµν = Yµν + ∇µζν + ∇νζµ = Yµν + Lζgµν . (20)

The field Xµν defined above and its SL(2, R)× SL(2, R) descendants generate a tower

of states with the standard Brown-Henneaux asymptotic behavior.

It is worth mentioning that, while the (2,0)-primary states corresponding to solutions

to (D−ψ−)µν = 0 satisfy

(

L0 + L0

)

ψ− = 2ψ−,
(

L0 − L0

)

= 2ψ−, (21)

the state ψ
(new)
µν is not primary, but it obeys instead the following equation

(

L0 + L0

)

ψ(new) = 2ψ(new) + ψ−,
(

L0 − L0

)

ψ(new) = 2ψ(new). (22)

Since L0−L0 = i∂φ, is the angular momentum, this state carries one unit of angular momen-

tum: if it were a primary, it would generate a spin-one representation of SL(2, R)×SL(2, R).

Xµν too fails to be a conventional primary field because SL(2, R) × SL(2, R) descent

operators do not annihilate it. Instead:

L+1Xµν = L[L+1,ζ]gµν , L+1Xµν = ψ−
µν + L[L+1,ζ]gµν ,

L0Xµν = 2Xµν +
1

2
L−1ψ

−
µν + L[L0,ζ]gµν , L0Xµν = Xµν +

1

2
L−1ψ

−
µν + L[L0,ζ]gµν . (23)
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In writing these equations we have used standard properties of the Lie derivative, the

commutation relations of SL(2, R)×SL(2, R) and the equations L0y = L0y = 1/2, L+1y =

L+1y = 0. We also exploited the fact that ψ− is a (2, 0)-primary and that L+1, L0, L+1, L0

are Killing vectors of the background AdS metric gµν .

The asymptotic form of the vector field ζ defined in eq. (19) is such that [L+1, ζ],

[L+1, ζ], [L0, ζ], [L0, ζ] actually obey Brown-Henneaux boundary conditions and vanish at

the AdS boundary; moreover, L−1ψ
− = L−1L−2gµν

bh
= L−2L−1gµν = 0.5 The first equal-

ity follows from the definition of ψ− [1], the second from Virasoro commutation relations,

the third from L−1 being an isometry of the background metric. So eq. (23) can also be

written as

L+1Xµν
bh
= 0, L+1Xµν

bh
= ψ−

µν , L0Xµν
bh
= 2Xµν , L0Xµν

bh
= Xµν (24)

The second of these equations makes X non-primary. Notice however that ψ−
µν is a pure

gauge excitation. If we define physical states modulo locally pure-gauge states, Xµν would

be a true primary.

We can easily compute the norm of X at the chiral point. Start at a generic value of

µl and consider the mode L̄−1ψM , where ψM is the massive graviton defined e.g in [1]:

L̄−1ψ
M
µν

bh
= L̄−1(ψ

M − ψ−)µν + ∇µ(ζ h̄
ν − ζ0

ν ) + ∇ν(ζ
h̄
µ − ζ0

µ) ≡ h̄X h̄
µν , (25)

where h̄ = µl/2 − 1/2 is the right-moving weight of the massive graviton and ζ h̄
µ ≡ eh̄yζµ

generates a trivial diffeomorphism. The utility of this expression is that it converges point-

wise to X in the limit µl → 1:

X(ρ, u, v) = lim
µl→1

X h̄(ρ, u, v). (26)

We can now easily compute the norm of X:

〈X|X〉 = lim
µl→1

〈X h̄|X h̄〉 = h̄−2〈ψM |L̄†
−1L̄−1|ψM 〉 = 2h̄−1〈ψM |ψM 〉, (27)

where the second equality is true assuming the norm is invariant under Brown-Henneaux-

trivial diffeomorphisms, and the last follows from the Virasoro algebra. With the choice

of sign which gives BTZ black holes positive energy, 〈ψM |ψM 〉 = h̄C with C negative [1].

Hence the norm of X is finite and negative.

Metric fluctuations obeying Brown-Henneaux boundary conditions are completely de-

termined by their asymptotically non-vanishing components. In the case of Xµν , ψ−
µν and

their descendants, the only non-vanishing component is huu. Therefore identification mod-

ulo the diffeomorphisms (17) tells us that a generic physical state takes the form

huu|ρ=∞ =
∑

n,m≥0

xm,ne
−(2+n)iu−(1+m)iv +

∑

n≥0

ψ−
n e

−(2+n)iu + c.c.,

hvv |ρ=∞ =
∑

n≥0

ψ+
n e

−(2+n)iv + c.c. . (28)

5We thank Alex Maloney for pointing this out to us.
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Each of the Fourier coefficients ψ±
n , xn,m is physical, so Xµν is not a standard primary. It

is worth noting here that the asymptotics of this state at large m,n are identical to the

short wavelength asymptotics of the states found in [2].

At the chiral point µl = 1, we can also define a different theory, where states are

identified modulo the larger group [14]

ζu = ǫ(u)+O(e−4ρ), ζv =
1

2
e−2ρ∂2

uǫ(u)+O(e−4ρ), ζρ = −1

2
∂uǫ(u)+O(e−2ρ). (29)

This theory is chiral by construction. Physical states are defined by identifying those in (28)

modulo the Virasoro algebra generated on asymptotic states by eq. (29). A possible gauge

choice is to set all ψ−
n = 0. This leaves yet unfixed the SL(2, R) generated by L±1, L0. We

can use it to fix three real coefficients in xm,n. All other xm,n coefficients define distinct

physical states; by construction, they are chiral primaries of the right-moving Virasoro

algebra surviving factorization by (29).

In conclusion, physical states obeying the standard Brown-Henneax AdS3 asymptotic

exist at the “chiral” point µl = 1. They are descendants of an “improper” primary, ψ
(new)
µν ,

which does not have the right asymptotics. The lowest weight state obeying the Brown-

Henneaux asymptotics is Xµν , given explicitly in eq. (20). It can be promoted to a true

primary by defining physical states modulo the Virasoro algebra (29). Irrespective of the

gauge group used to define physical states, the theory is non-unitary, because states with

negative norm exist. There is a strong case against topologically massive gravity being

chiral and unitary at the chiral point, which we summarize here:

• There is an extra mode X at the chiral point which obeys the Brown-Henneaux

boundary conditions and which is not pure gauge (even with the prescription of [14]).

• Modulo trivial diffeomorphisms X can be obtained as a smooth limit of the L̄−1

descendent of the massive graviton in the limit µl → 1.

• The asymptotic wavefunction for X matches the Poincare-patch results of [2] at short

wavelength.

• Including X, the counting of states matches the canonical analyses of [12, 13, 17].

• The norm of |X〉 is negative.

A still unresolved and intriguing question is how the (2,1) representation we have found

relates to the fact that TMG at the chiral point can be thought of as a topologically mas-

sive spin one field. A better understanding the chiral spectrum of [2] may shed light on

this connection.

A possible way out is if the theory at the chiral point possesses another yet to be

discovered gauge symmetry beyond diffeomorphisms (perhaps akin to the Weyl invariance

of pure Chern-Simons gravity in flat space), which changes the definition of the energy and

renders X pure gauge. Another possibility is that our mode becomes non-normalizable at

higher than leading order.6 However, the absence of local bulk degrees of freedom appears

to be in conflict also with the non-perturbative canonical analyses of [12, 13, 17].

6We thank A. Strominger for suggesting this possibility to us.
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