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Faraday waves in elongated superfluid fermionic clouds
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We use hydrodynamic equations to study the formation of Faraday waves in a superfluid Fermi gas at zero
temperature confined in a strongly elongated cigar-shaped trap. First, we treat the role of the radial density
profile in the limit of an infinite cylindrical geometry and analytically evaluate the wavelength of the Faraday
pattern. The effect of the axial confinement is fully taken into account in the numerical solution of hydrody-
namic equations, and shows that the infinite cylinder geometry provides a very good description of the

phenomena.
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I. INTRODUCTION

The term Faraday waves refers to regular surface fringes
that are excited by a vertical oscillatory motion in a nonlin-
ear liquid [1]. The time-dependent spatially uniform driving
leads via the nonlinear interaction between the wave excita-
tions of the system to an instability toward the formation of
spatial structure. Since the Faraday discovery, the phenom-
ena of pattern formation and, more generally, of parametric
amplification have been studied in diversified contexts, in-
cluding convective fluids, nematic liquid crystals, nonlinear
optics, and biology [2]. Recently, Faraday waves have been
experimentally created in a trapped atomic Bose-Einstein
condensate (BEC) by a periodic modulation of the transverse
confinement [3]. Nonlinearity in ultracold gases can be
driven either by varying the scattering length, e.g., via Fes-
hbach resonances, as proposed in this context by Staliunas
et al. [4], or by varying the trap parameters as experimentally
realized by Engels er al. [3]. Several phenomena connected
to parametric amplification of excitations have been theoreti-
cally investigated in atomic BECs [5-7], and very recently,
the properties of Faraday waves in confined BECs have been
also explored [8,9]. In all these cases, the periodic modula-
tion of the nonlinearity leads to a parametric excitation of
sound waves in the transverse direction with respect to the
modulation.

In this paper, we study the Faraday pattern formation in a
superfluid Fermi gas in the BCS-BEC crossover at zero tem-
perature. The physics of Faraday waves in a superfluid Fermi
gas is richer than in an atomic Bose-Einstein condensate be-
cause the nonlinearity may also drive the microscopic fea-
tures of the superfluid as described by its equation of state.
This leads to strong variations in the pattern along the cross-
over.

We adopt the experimental conditions of Engels et al. [3]
where the radial confinement of an elongated trap is periodi-
cally modulated in time. By using a hydrodynamic descrip-
tion of the superfluid Fermi gas, we first treat the case of an
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infinite cylindrical gas to obtain an analytical expression for
the spatial modulation of the Faraday pattern as a function of
the driving frequency (), for small frequencies Q<w |, w,
being the transverse trap frequency. Then we numerically
solve the three-dimensional hydrodynamic equations taking
into account the axial confinement and investigate the forma-
tion of Faraday waves at higher frequencies (Q~2w ),
where the fringes in the density profile can be experimentally
visualized in cigar-shaped traps. Finally, we compare the
analytical prediction for the infinite cylinder with the nu-
merical results and find that our analytical formula provides
a good estimate of the pattern modulation even at ) ~2w .

The manuscript is organized as follows. Section II intro-
duces the hydrodynamic description of the gas and derives
the low-frequency solution of the spatial pattern formation.
In Sec. III, we present the numerical results for the dynamics
in a cigar-shaped trap and compare them with our analytical
prediction. Section IV offers a summary and concluding re-
marks.

II. FARADAY EXCITATIONS IN A CYLINDER:
HYDRODYNAMIC DESCRIPTION

Let us consider a superfluid Fermi gas at 7=0 confined by
a cylindrical potential V| (r) =ma?® r*/2 with r>=(x*>+y?) and
m the atom mass. The dynamics of the density profile n(r,?)
and the velocity field v(r,7) is described by superfluid hy-
drodynamic equations, namely the continuity equation

on+V-(nv)=0 (1)

and the Euler equation

md,v + V| u(n) + Emwirz + Emv2 =0, (2)

where w(n) is the equation of state (EOS) of the gas, which
contains the microscopic details of the superfluid.

A solution of the dynamics for a time-dependent w, can
be obtained by relying on a scaling ansatz. Following Ref.
[10], we introduce the scaling parameter b(r) and write
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1 b(7)
n(r,z,t) = W”o[”/b(f)] and v= %r, (3)

where n(r) is the stationary solution of the Euler equation at
t=0, i.., the Thomas-Fermi (TF) profile defined by
ulny(r)]=[x—V (r)], with @& the chemical potential. The
scaling ansatz in Eq. (3) satisfies the continuity equation for
any form of b(z) and is an exact solution of the Euler equa-
tion if the EOS follows a power law, wu(n)=Cn”. In this case,
the scaling parameter obeys the differential equation

2
;)

b+ wi(t)b = e

=0. (4)

Notice that if the EOS is not a power law, one can still
introduce an effective exponent y and exploit the same pro-
cedure [12] to find an approximate solution of the dynamics.

To excite Faraday waves, we modulate the transverse trap
frequency as

w, (1)=w,(1+¢sinQr), (5)

where () is the driving frequency and € is a small parameter,
e<1. For Q<w,, Eq. (4) has the solution [11]

b(t) =1 - asin(Qr) (6)

with a=g/[y+1-Q/Q2w,)]=¢&/(y+1) in agreement with
the expression found in Ref. [8] for an ultracold Bose gas
(y=1). For larger (), the solution of Eq. (4) represents a
forced breathing mode which does not adiabatically follow
the forcing frequency. For instance, when the driving
frequency is close to the natural breathing mode
Q=V2y+2w,, the system exhibits the resonant solution

Swit

b(r)y =1+

[
/

cos(Qr) (7)
\ Y
valid for small 7. For larger ¢, the resonant solution can be
seen to exponentially increase.

A. Excited states

The modulation of the nonlinearity excites soundlike
phonons in the z direction, which, in turn, lead to the insta-
bility of the scaling solution (3). These excited states break-
ing the axial symmetry can be investigated by a linear analy-
sis, i.e., by setting n(r,z,0)=ny(r/b)/b*+én(r,z,t) and
linearizing Egs. (1) and (2) in én we arrive at the following

equation:
1 d
m&tzén:TV . n0(£>V e on|l, (8)
b b dn n=n(r/b)

which is valid for small velocity fields, i.e., Q<w,. Equa-
tion (8) is a sound-wave equation for the instantaneous den-
sity. Using the solution Eq. (6) and developing to first order
in a, Eq. (8) gives rise to

PHYSICAL REVIEW A 78, 043613 (2008)
I

611) ]
an a=0

+ 2a sin(Q8) F( 1| geg» (1) gy, ) 9

mU”tzﬁn=V‘|:no|a=0V<

with

d 2 o d
F=V. {'ynOV (—“em) -2y (—”‘&)
on R du on

2 on &
—n0V<r—2—n—l;5n)} , (10)
R o on -

[ r— .
where R, =\2u/mw| is the TF radius of the gas.
The rightmost term in Eq. (9) proportional to sin({)z)
behaves like a source for excitations in the linear-response
regime. Expressing dn in its Fourier components, on
=2;0n;(r,z)cos(w;t+¢;), one can easily demonstrate that the
lowest-frequency Fourier component that is resonant with
the perturbation corresponds to wy,={}/2. This is a general
result for dynamical systems governed by Mathieu-type
equations [13] as Eq. (9). We keep only the resonant term in
Eq. (9) and make the ansatz &ny(r,z)=dny(r)cos(gz), corre-
sponding to counterpropagating axial phonons with momenta
+¢. To find an estimate of ¢, we assume that () is small
enough to consider only the sound mode dn, and therefore
take ong(r)=(du/dn)' evaluated at a=0, i.e., the sound
limit solution for g— 0 and 1 — 0 at r=0 (see Ref. [14]). By
integrating in the radial plane, one obtains

305

which, for a power-law EOS, leads to

ng ’n(y—fl)’ (12)
2V ym

neglecting second-order terms in «. The above expression
can be directly linked to the sound velocity ¢, [14] in an
elongated superfluid by g=Q/(2¢).

By introducing the wavelength of the Faraday pattern
d=21/q, it is possible to evaluate the number of fringes Ain
an elongated superfluid confined by a harmonic potential
Vexi(r,2)=V  (r) +mw§zz/ 2. Given that the axial extent of the
density can be written as L =2R /N, where A=w_/w, and
neglecting edge effects, Eq. (12) yields

-1
) d’r=¢’ f No|=0d’r + O(?) ¢,
a=0

(11)

L 1 +1Q
N=Z=—r /L= (13)
d m\ 2y o,

For y=1, Nis in good agreement with the experimental data
of Engels and co-workers [3] even for large & and (), where
the procedure we used to derive it is not fully justified. Equa-
tion (13) predicts that the number of Faraday fringes varies
by a factor of 2/v5 in the BCS-BEC crossover and thus it
could be easily observed in current experimental setups with
strongly elongated traps [15,16], as discussed in the follow-
ing section.
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FIG. 1. Time evolution of the transverse width Ar for a Fermi
superfluid in the BCS limit (see text). The top panel depicts Ar [in
units of ap,=\%/(mw )] as a function of ¢ (in units of wll) and the
bottom panel depicts its Fourier transform (in arbitrary units and
logscale) as a function of w/w, .

III. NUMERICAL RESULTS

The numerical solution of the superfluid hydrodynamic
equations allows us to fully take into account the role of the
axial confinement and to get over the approximation of small
frequencies. To compute the dynamics, we first map the su-
perfluid density n(r,z) and velocity field v(r,) to the com-
plex field y(r,1)=\ne™, with v=AVS/m. In this way, the
dynamical equations can be cast in a Gross-Pitaevskii-like
equation of motion for . We then discretize this equation in
the (r,z) plane and solve it using a fifth-order Runge-Kutta
method [17]. A mesh of 200 X 400 points in the (r,z) plane
and a time step df=10"%/w, are usually enough to compute
the evolution until =500/ w | .

We consider a Fermi gas with N=5x10° *K atoms
trapped in a cylindrically symmetric trap with
=160.5 Hz and w,=7 Hz, and fix the modulation parameter
£=0.05. The superfluid is described by the EOS developed
by Hu er al. [18] and parametrized in terms of 1/(kga),
where k. is the Fermi wave vector kz=(372n)"3 and a is the
s-wave scattering length. If not differently specified, in the
following we refer to a continuous modulation of the trans-
verse trap frequency at Q=2w .

From the numerical solution of the density profile
n(r,z,t), we have computed the axial and radial rms widths,
and the column densities n,p(z,7)=fdyn(x=0,y,z,). These
are shown in Figs. 1-3 together with their Fourier transforms
for the case of the Fermi gas in the BCS regime (a/ay=
-107!, a, being the Bohr radius). The dynamics of the width
Ar (Fig. 1) is dictated by the driving frequency coupled to
the transverse breathing mode, which for the gas in the BCS
limit is @=110/3w . This reflects the competition between
the forcing and the natural breathing mode. Furthermore,
within the scaling approach of Sec. II, the axial width
evolves in time with b(z), i.e., Ar(t)=Ar(0)b(¢). Indeed, the
numerical solution of the ordinary differential equation (4)
reproduces very well the behavior of Ar for the axially con-
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FIG. 2. Idem Fig. 1 for the axial width Az. The Fourier trans-
form in the bottom panel is displayed in arbitrary units and logscale,
and the frequency w in units of w,.

fined gas before the Faraday instability sets in. As noted
earlier, we would like to emphasize that due to the vicinity of
the natural breathing mode and the driving frequency, Ar
does not simply adiabatically follows w, as clearly shown in
the figure.

The time evolution of the axial width Az and its Fourier
transform are instead illustrated in Fig. 2. Similarly to the
radial width, the evolution of Az is dominated by the > forcing
frequency () and the axial breathing mode, that is, V12/5w |
in the BCS case. The excitation of the axial breathing mode
is a consequence of the coupling of the radial and axial di-
rections imposed by the three-dimensional trap and should
not be expected in the infinitely long cylinder discussed in
Sec. IL.

Although Ar and Az show no evidence of the frequency
/2 in their spectra, the column density at the center of the
trap (Fig. 3) clearly exhibits it. The relative importance of
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FIG. 3. Time evolution of the column density at the trap center
n5=n;p(z=0). The top panel shows n’y (in units of a;!) as a
function of time 7 (in units of w ). The bottom panel displays its
temporal Fourier transform (in arbitrary units and logscale) as a
function of w/w, .
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this frequency in the spectrum of 7, is accentuated with
time as a result of the formation of the Faraday wave; this
effect can be seen by analyzing the Fourier transform for
different time intervals.

A. Onset of Faraday wave formation

The Faraday instability becomes visible when the mo-
mentum distribution develops components at the momenta
*¢g corresponding to pairs of counterpropagating axial exci-
tations of frequency €}/2. In Fig. 4, we display the formation
of a Faraday wave in the density profile of a gas in the
weakly BCS limit with a=—10""a,. After approximately 50
driving periods, the appearance of transverse fringes along
the axis of the cigar is clear, and we can say that the Faraday
instability has been fully set in. For longer times, as the
Faraday waves increase their amplitude, a large number of
modes interacts and the Faraday pattern develops several
complicated spatial and temporal structures, resembling
those of spatio-temporal chaos as expected in confined hy-
drodynamic flows [2]. This regime cannot be accounted for
by the simplified analysis of Sec. II and requires a more
demanding numerical effort.

The onset time of the Faraday waves varies through the
BCS-BEC crossover. The growth rate of the spatial pattern
can be evaluated by computing the fraction

f&ﬁz(z,t)dz) 12
[z, 0)dz

where 7ny(z,f) is the scaled density extracted from
the numerical solution by fitting a TF profile n(z)
:A(ﬁ—mw§z2/2)” to the integrated density n,p(z,7) at each
time z, and &n=np(z,1)—7y(z,1). The magnitude Sy repre-
sents the normalized deviation of the density with respect to
the scaling solution and can therefore be related to the am-
plitude of the Faraday wave. The evolution of dy is illus-
trated in Fig. 5 for three values of @ in the BCS, unitarity,
and BEC regimes. In the BCS and in the unitarity limits, the
growth rates are comparable as the excitation spectra in both

Oy(1) = ( (14)

FIG. 4. (Color online) Density plots
n(x,y=0,z,7) of a Fermi gas in the BCS regime
at several times ¢ during the transverse frequency
modulation.

100 200

regimes are the same. In the BEC limit, instead, the onset is
more rapid since the driving frequency ()=2w, corresponds
to a collective mode of the cloud.

Faraday waves can also be created by driving the trans-
verse confinement for only a few cycles [3]. However, in this
case, the growth rate of the pattern is modified. For instance,
we have found that for a three-cycle perturbation, the rate for
a BCS and a unitarity superfluid Fermi gas increases ap-
proximately by a factor of 2-3, while in the BEC limit it
decreases by a factor of 1.5 approximately. For our choice of
Q), the driving frequency and the breathing modes are in
competition in the BCS and unitarity limits and the continu-
ous excitation may delay the formation of the pattern. In the
BEC limit, )=2w, corresponds to the breathing mode and
the onset of the instability is more rapid by continuously
exciting the system at resonance. Note that the total growth
time of a Faraday wave may also depend on the numerical

0

10

200 300 400 500

o

FIG. 5. Fraction &y (in logscale) as a function of the time 7 (in
units of w') for a/ag=—10" (circles), —10° (triangles), and 10>
(squares). The empty symbols corresponds to the continuous driv-
ing while the full ones to the three-cycle driving. The lines are
guides to the eyes for better visualizing the growth rates.
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FIG. 6. (Color online) Density plots and integrated density n;p, as a function of position (in units of aj,,) after the Faraday instability has
been set in. Top, middle, and bottom panels correspond to a/ay=120, —10°, and =107, respectively.

noise caused by the discrete space-time grids, but the growth
rates in the linear regime should not be modified.

B. Faraday wave vector through the crossover

A further observable, which depends on the crossover, is
the wave vector ¢ of the Faraday pattern, as already outlined
in Sec. II. Experimentally, g can be deduced by measuring
the interfringe distance d at the center of the cloud. The
interfringes obtained in the numerical simulation can be ob-
served in Fig. 6, where the integrated density n;p has been
plotted together with the topview density plots for a/ag=
-107!, =10°, and 120 corresponding to the BCS, unitarity,
and BEC regimes, respectively. It is worth stressing that at
a=120a,, the transverse size displays an impact-oscillator
behavior as observed for an atomic BEC at the breathing
frequency [3,9]. The resulting strong modulation of the non-
linearity speeds up formation of the Faraday waves and im-
poses severe numerical limitations.

Through the crossover, from the BCS to the BEC limits,
at a fixed number of fermions, both the size of the cloud and
the interfringe d decrease since they are both proportional to
N i; however, d decreases less rapidly because of the factor
\y/(1+7) with a corresponding slight modification of the
fringe number. As a result in the BCS and unitary regimes,
the number of fringes are the same, as can be seen in Fig. 6,
i.e., 16 for a=—0.1a, and —10°a,, while in the BEC regime
(a=120ay), the number of fringes diminishes by a factor of
2/45, corresponding to 14 fringes approximately. In more
elongated traps such as that used in the ENS experiments
[16] with A =0.18, the variation of N\ through the crossover

can be more important, from A/'=41 in the BCS limit to A/
=37 in the BEC limit at Q=20 .

In Fig. 7, we compare the Faraday wave vector g=2m/d
as observed in the numerical simulation with that predicted
for a soundlike excitation at {}/ @, =2 and 1.5. Mimicking a
real experiment, d has been measured at the center of the

0.4 T T T T T

Eq. (11) ——

QJw, =2 —a—

S
o

[ Q=15 e |

q anow, /€

=
o

0.1 . . . . .
1/(kpa)

FIG. 7. Comparison of the ratio ¢/{) between the observed Far-
aday wave vector ¢ (in units of a;,,) and the driving frequency Q (in
units of w ) with that predicted for a soundlike excitation [Eq. (11)]
as functions of l/(kga), where k% is the Fermi momentum of the
noninteracting gas at the trap center. The error bars have been esti-
mated from the variance of d during several time steps. The cross
corresponds to a result obtained by modulating at Q/w  =1.5 cor-
rected by taking into account the induced excitation at 2=2w, (see
text). The dashed line corresponds to the prediction of Eq. (11) with
the BCS mean-field EOS.
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density profile and the error bars have been evaluated from
its variance during several time steps. Equation (11) instead
has been evaluated by using the EOS deduced by Hu and
co-workers [18]. The results show that Eq. (11) provides a
good estimate of the function ¢()) through all the crossover,
in particular for 3=2w . On the other hand, for Q=1.5w,
the numerical result for a=103a, lies well above the predic-
tion. Indeed, by analyzing the Fourier transform of n?D in
this case, we found that the transverse modulation at ()
=1.5w, also excites the collective mode of the BEC at ()
=2w, similarly to what was found experimentally in Ref.
[3]. As a consequence, the mode at )=2w, dominates the
generation of longitudinal excitations even when modulating
at Q=1.5w, and thus the numerical result should be com-
pared with the prediction at =2, as shown by a cross in
Fig. 7. For comparison, we have also evaluated the Faraday
wave vector predicted by Eq. (11) using the mean-field BCS
EOS, w(n)=h%kx/2m(1 +%Tkpa). It is worthwhile to remem-
ber that this EOS predicts the collapse of the fermionic mix-
ture for strong attractive interactions, as indicated by the di-
vergence of g shown by a dashed line in Fig. 7.
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IV. SUMMARY AND CONCLUDING REMARKS

In summary, we have studied the formation of Faraday
patterns in an elongated superfluid Fermi gas in the BCS-
BEC crossover. We simulated an experiment where nonlin-
earity is driven by modulating the transverse confinement
and compared the numerical results with an analytical esti-
mate derived neglecting the axial confinement and for low
frequencies. The peculiarity of a superfluid Fermi gas with
respect to an atomic Bose-Einstein condensate is that the
nonlinear term controls the microscopic features of the su-
perfluidity and that the pattern modulation depends on the
crossover itself. Moreover, the pattern growth rate varies
through the crossover as a consequence of the different spec-
tra. Our numerical and analytical predictions may be ob-
served in current experiments with superfluid Fermi gas in
strongly elongated traps [15,16].
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