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This paper presents an adaptive digital predistorter (DPD) that significantly reduces the
baseband distortion of digital pulse width modulation (PWM), typically used in switching
(class-D) amplifiers. A generalized Hammerstein structure (also known as power filter)
composed by static nonlinearities and FIR filters is used to model the baseband behavior
of PWM. We show that the contribution of the higher order terms of the nonlinearity are
negligible and therefore, for practical applications, only the first three or four odd powers
should be retained. The convergence of the DPD is studied and the performance is
demonstrated and compared with other approaches. Good results are obtained for typical
signals even when using low-order FIR filters in the DPD. Measurement results obtained
using a digital signal processor are also presented aiming to validate the proposed
approach.

& 2015 Published by Elsevier B.V.
1. Introduction

Pulse width modulation (PWM) is a time-encoding
technique which allows to modulate an arbitrary band-
limited signal into a binary signal with pulses having
variable widths. This binary signal can be used to drive
amplifier circuits that have transistors operating as
switches (on-off, rather than in their active region), which
results in a reduced power consumption, typically
achieving an efficiency above 90%. PWM is used in differ-
ent applications, from power electronics [1], to audio
amplifiers [2] and recently, RF transmitters [3]. It is parti-
cularly relevant for portable applications [4], where effi-
ciency is one of the main concerns, e.g. hearing aids [5,6]
that require high efficiency and low distortion. Usually, the
amplified version of the modulating signal is recovered
F. Chierchie).
(demodulated) in the analog domain using a low-pass
filter composed of passive elements [7]. Any baseband
distortion produced by the modulation process will appear
in the demodulated signal since the passive linear filter
cannot distinguish signal from baseband distortion.

Although there are various PWM schemes, ranging
from analog PWM, or natural PWM (NPWM), to discrete-
time implementations, where the most commonly known
is uniform PWM (UPWM) [8], all PWM methods introduce
baseband distortion. In NPWM, the distortion is composed
of sidebands of the carrier frequency, and for practical
applications it can be reduced to negligible levels by
increasing the carrier frequency, but at the expense of a
decreased efficiency. UPWM exhibits greater harmonic
distortion than NPWM, and the distortion is not only
composed by the sidebands of the carrier but also by
harmonics of the modulating signal. Therefore, UPWM
distortion cannot be efficiently reduced by increasing the
carrier frequency [9].
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1 Typically, in UPWM the duty cycles are computed as an scaled
version of the input samples or wn¼xn if 0rxno1. This direct signal-
amplitude to pulse-width conversion introduces some degree of distor-
tion which cannot be eliminated by the low-pass demodulator filter.
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In the majority of current applications, the modulating
signal is available as discrete-time samples, hence digital
PWM is preferred. Research efforts were initially devoted
to obtain digital PWM modulation alternatives with
reduced distortion within the baseband. These efforts were
focused on imitating the NPWM behavior through digital
signal processing and resulted in a method usually known
as pseudo NPWM [10,11] or interpolated PWM, which
involves interpolation between discrete samples and a
crossing-point estimation between the interpolated signal
and the carrier signal. A statistically optimal estimator for
interpolated PWM was reported in [12]. At their best,
these methods can obtain the spectral performance of
NPWM. A different approach is to design a digital mod-
ulation algorithm without distortion components in the
baseband. One of the first attempts was Click modulation
[13,14] which is based on properties of analytic signals.
This complex modulation scheme is capable of repre-
senting band-limited signals using PWM-like waveforms
with zero distortion in the baseband. However, its imple-
mentation in real time is still computationally intensive.

Volterra type models have been widely used for mod-
elling and design of digital predistortion (DPD) compen-
sators for radio frequency (RF) power amplifiers [15–18],
which are typically class-AB amplifiers but they are less
common for switched amplifiers (class-D). The DPD can be
obtained as a pth-order inverse of the model as in [19]. In
general development of the inverse system is not
straightforward and the complexity grows rapidly with the
order-p [20,21,15].

In this work, first a parallel Hammerstein model of the
PWM process (also known as power filter [22]) composed
of the parallel connection of an static nonlinearity fol-
lowed by a discrete-time FIR filter is obtained. It is shown
that the contribution of the higher-order powers are
bounded to negligible levels and, therefore, for practical
applications, only the first three or four odd powers are
required to obtain a reliable model. Secondly, a parallel
Hammerstein structure using FIR filters is used for digital
predistortion. The coefficients of the DPD are obtained
adaptively, requiring a small number of parameters to
reduce the distortion of the PWM to negligible levels. For
the adaptive DPD, the identification problem is linear in
the parameters and the recursive least-squares algorithm
(RLS) is used offline to adapt the coefficients of the DPD at
the training stage. The properties of the mean-square error
convergence of the weights are analyzed. Although the
theoretical results are derived assuming independent
identically distributed (iid) signals, simulation results
show that the proposed DPD achieves a significant
improvement in the signal-to-noise ratio (SNR) also for
non-iid inputs. The performance of the DPD is also tested
using an indirect learning architecture (ILA) where the
parameters are computed online [15,20]. Although the
computational effort is higher, the added benefits are that
exact knowledge of the nonlinear amplifier model is not
required and better SNR levels are achieved.

The reduction of baseband distortion allows for the use
of PWM amplifiers with a low ratio between the carrier
frequency and the maximum frequency of the modulating
signal which contributes to efficiency. The proposed DPD
shows a good performance as compared to other alter-
natives even when relatively short-length FIR filters (with
impulse responses shorter than 40 samples) are used,
reducing the computational complexity and latency
introduced by the DPD.

The organization of the paper is as follows. The
discrete-time parallel Hammerstein model of the PWM is
reviewed in Section 2 and a bound to the contribution of
each power of the nonlinearity is derived. In Section 3, the
DPD architecture is discussed and the convergence in the
mean-square sense is studied. Simulation results, com-
parisons to previous results and experimental validation
are shown in Section 4. Finally, conclusions are drawn in
Section 5.
2. Discrete-time baseband model for PWM

A PWM signal is composed of pulses whose widths
depend on the modulating signal. In this presentation it
will be assumed that the distance T between the center of
the pulses is fixed, and it will be referred as the PWM
period (symmetric PWM). The inverse of the PWM period
is the carrier frequency or PWM frequency f s ¼ 1=T . The
PWM signal can be represented as [9,23]

p tð Þ ¼
X1

n ¼ �1
u t�nTþwn

T
2

� �
�u t�nT�wn

T
2

� �� �
ð1Þ

where u(t) is the Heaviside step function (uðtÞ ¼ 0 if to0;
uðtÞ ¼ 1 if tZ0), and 0rwno1 is the n-th normalized
duty cycle. Eq. (1) represents a two level PWM signal, i.e. a
binary signal with only two possible amplitude values
0 and 1. In digital PWM, the duty cycles wn usually exhibit
an affine dependence on the samples of the modulating
signal: xn ¼ xðtÞjt ¼ nT .

1

To retain the baseband characteristic of the PWM
modulation, p(t) is filtered with an ideal low pass filter.
That is, the baseband signal is obtained as yðtÞ ¼ hLPðtÞ�pðtÞ,
where hLPðtÞ ¼ f ssincðf stÞ is the impulse response of the
low pass filter with cut-off frequency f s=2 and “n” denotes
convolution. Uniform sampling of y(t) at fs yields [19,23]

yn ¼ f 0ðwnÞþ
X1
k ¼ 1

½f kðwn�kÞþ f kðwnþkÞ� ¼
X1

k ¼ �1
f kðwn�kÞ

ð2Þ
with

f kðwÞ9 Si kπþwðπ=2Þ� ��Si kπ�wðπ=2Þ� �� 	
=π; ð3Þ

where SiðzÞ ¼ R z
0 sin ðτÞ=τ dτ is the sine integral function.

In summary, the modulating signal samples xn are used
to derive the duty cycles wn, which in turn allows the
construction of the analog PWM signal p(t) in (1). The
baseband content in the frequency range ½0 f s=2� of p(t) is
represented by the discrete-time samples yn in (2). We call
this model the “PWM baseband model” since it replicates



Table 1
Impulse responses gi;n for the nonlinear PWM model (5).

Sample index g1;n g3;n g5;n g7;n

n¼0 b0 ¼ 1 b1 ¼ �π2=72 b2 ¼ π4=9600 b3 ¼ �π6=2257920
na0 c0 ¼ 0

c1 ¼
ð�1Þnþ1

12n2
c2 ¼

ð�1Þnðn2π2�6Þ
480n4 c3 ¼

ð�1Þnð20n2π2�n4π4�120Þ
53760n6

Fig. 1. Parallel Hammerstein model for PWM.
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the behavior of the PWM modulator in the frequency band
0r f r f s=2.

The objective of zero baseband distortion is accom-
plished if the duty cycles wn are derived in such a way that
yn � xn, for all n, i.e., when the samples of the low-pass
filtered PWM signal are equal to the samples of the
modulating signal.

2.1. Parallel Hammerstein model

Based on (2) and (3), a generalized or parallel discrete-
time Hammerstein model can be derived for PWM. The
function fk(w) in (3) can be expanded in an odd power
series as,

f kðwÞ ¼ b0wþb1w3þb2w5þb3w7þ⋯; if k¼ 0;
c1w3þc2w5þc3w7þ⋯; if ka0:

(
ð4Þ

Replacing (4) in (2) and defining gi;n ¼ bði�1Þ=2 for n¼0 and
gi;n ¼ cði�1Þ=2 for na0, the baseband PWM samples can be
computed as

yn ¼
X1

k ¼ �1
g1;kwn�kþg3;kw

3
n�kþg5;kw

5
n�kþg7;kw

7
n�kþ⋯

� �

¼ g1;n�wnþg3;n�w3
nþg5;n�w5

nþg7;n�w7
nþ⋯ ð5Þ

which results in the computation of several discrete-time
convolutions between the i-th power of the duty cycle
signal wi

n and the filter with impulse response gi;n. Eq. (5)
represents a simplified Volterra-type system with no cross
terms [24]. As shown later, an accurate representation can
be obtained using just a few low-order power terms in (5).
Explicit expressions for impulse responses of order 1, 3,
5 and 7 are described in Table 1.

If the impulse responses described in Table 1 are
truncated to M̂ terms, each gi;n�wi

n term can be thought as
the output of a FIR filter and the output samples can be
computed as

yn ¼
XM̂ �1

k ¼ 0

g1;kwn�kþg3;kw
3
n�kþg5;kw

5
n�kþg7;kw

7
n�kþ⋯

� �
¼ y1;nþy3;nþy5;nþy7;nþ⋯: ð6Þ

A block diagram of such a system is shown in Fig. 1. The
branches of the model are composed of a static non-
linearity followed by an FIR filter that incorporates the
system memory, i.e., each branch contains a Hammerstein
system. The magnitude of the output samples yi;n of each
branch are bounded as stated by the following lemma.

Lemma 1. The contribution yi;n of the i-th power in (6) to
the output yn is bounded by:

yi;nrðBwÞijGiðejπÞj
where Bw is the bound on the duty cycles wnrBwo1, and
jGiðejπÞj is the magnitude of the frequency response GiðejωÞ of
the filter gi;n evaluated at ω¼ π.

Proof of Lemma 1. The contribution of the i-th power can
be bounded using the convolution sum,

jyi;nj ¼ j
X
k

gi;kðwn�kÞijr
X
k

jgi;kjjðwn�kÞijr ðBwÞi
X
k

jgi;kj

¼ ðBwÞijGiðejπÞj: ð7Þ

The last identity is based on the discrete-time Fourier
transform definition and the alternating sign of gi;n due to
the ð�1Þn factor (see Table 1): jGiðejπÞj ¼ jPkgi;kð�1Þkj ¼P

kjgi;kj. This completes the proof.□

Remark. According to Lemma 1, the i-th branch of model
(6) (see Fig. 1) for i47 produces a negligible contribution
yi;n to yn, because wnrBwo1 and hence ðwnÞi⪡1. Fur-
thermore, the associated filter with impulse response gi;k
not only blocks the DC-component for i41, but also
increasingly attenuates ðwnÞi as i grows larger, as depicted
in Fig. 2 where the amplitude jGiðejωÞj of the frequency
responses of the filters are shown. If i¼9 and Bw¼0.6 (see
sampling theorem for PWM signals in [23]) then,
jG9ðejπÞj � 1� 10�4 and ðwnÞ9o0:01. Hence, using Lemma
1, one notices that the contribution of the 9-th power
branch is less than jyi;njr1� 10�6 (less than �120 dB).
From the high-pass characteristic of the frequency
responses shown in Fig. 2 it can be inferred that if the
signal bandwidth is reduced, or if the signals are of low-
pass nature (which is usually the case for audio signals),
the contribution of the higher order powers will be further
reduced.
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3. Adaptive predistortion based on the parallel Ham-
merstein structure

A widespread architecture for digital predistortion is
the indirect learning architecture (ILA) [20]; a block dia-
gram is shown in Fig. 3. In this scheme the DPD should
approximate the inverse of the system (in our case the
PWM baseband model), producing from the input signal xn
a signal wn which is used as input to the PWM block to
generate the output yn � xn [25]. As shown in the block
diagram of Fig. 3 a predistorter training (A) is used to
Fig. 2. Amplitude frequency responses jGiðejωÞj of the filters with impulse
responses gi;n .

Fig. 3. DPD based in the indirect learning architecture (ILA).

Fig. 4. DPD during training (a);
compute the coefficients of the DPD and then these coef-
ficients are used in the actual DPD copy of (A). The output
of the system, yn, is used as the input to the adaptive DPD
training block and then the output zn is compared with
PWM input wn. If the training DPD approximates the
inverse of the nonlinear system, then the difference
between the PWM input and the DPD training output αðnÞ
approaches zero since zn � xn.

For certain applications where the real-time adaptation
scheme of the ILA architecture may be computationally too
expensive and perhaps unnecessary, offline training of the
DPD can be considered. The block diagrams of the struc-
tures used for offline training and real-time operation of
the DPD are shown in Fig. 4. The DPD training is shown in
Fig. 4(a), where the weights of a parallel Hammerstein
structure are computed adaptively (“DPD training”). Once
convergence is achieved, the DPD operates as shown in
Fig. 4(b). The predistorter signal wn at the output of the
DPD is obtained from the input signal xn and it should be
such that yn � xn, with some possible delay due to the
prefilter stage.

3.1. Post-inverse and pre-inverse of nonlinear systems

In both the ILA architecture of Fig. 3, and the offline
training of Fig. 4 the DPD works as a post-inverse during
the training stage and as a pre-inverse during operation.
Care should be taken when considering this approach for
general types of nonlinear systems since the pre-inverse
and the post-inverse may be (very) different. In the pio-
neer work of Eun and Powers [20] authors impose a
restriction to the nonlinear system such that if xnayn
then, wnazn and if xn¼yn then, wn¼zn. With this
restriction, if αn ¼wn�zn approaches zero, thus so does
yn�xn. In this way the post-inverse and pre-inverse issue
is avoided.

Based on the results of Eun and Powers [20], Morgan
et al. [16] proposed a memory polynomial for predistortion
of RF power amplifiers using the ILA architecture. Authors
justify the post-filtering and pre-filtering interchange of
the ILA architecture based on a result by Schetzen [26, Ch.
7] that shows that the pth-order postinverse of a general
Volterra system is identical to the pth-order preinverse. In
general, the aforementioned scheme will work if the input
signal xn is sufficiently close to the signal yn that was used
DPD during operation (b).
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during the offline training [25]. In the case of PWM
applications, this will be satisfied under typical operating
conditions, i.e. when the PWM carrier frequency fs is sev-
eral times higher than the maximum frequency of the
input signal xn and therefore the distortion introduced by
the PWM is mild as shown by Lemma 1 and as discussed in
Section 3.3.1.

One of the advantages of this technique is that it does not
require an exact knowledge of the nonlinearity of the
amplifier. For the PWM application, the model derived in
Section 2 is fairly accurate so the DPD is expected to perform
well in reducing the inherent PWM baseband distortion
when a real PWM modulator is used. Both methods (ILA and
offline training) have the advantage of directly estimating the
inverse and thus avoids the two-step procedure of first
estimating the parameters of the amplifier and, thereafter,
designing the inverse [27]. The following analysis will be
performed for the case shown in Fig. 4, while the ILA will be
considered using simulation in Section 4.

3.2. Adaptive identification of the parallel Hammerstein
structure

With N input-output data pairs, the relation between
the output zn and the input yn of the training DPD in Fig. 4
(a) can be written in matrix form as

z¼ Yh; ð8Þ
with h, the vector of coefficients to be identified, given by

h¼ h1;0;h1;1;…;h1;ðM�1Þ;h3;0;h3;1;…;h3;ðM�1Þ;…;hK ;0;
�
hK;1;…;hK ;ðM�1Þ

�T
; ð9Þ

where M is the number of coefficients of the FIR filters
used for the DPD, K is the maximum power used and hi;j is
the filter coefficient that corresponds to the j-th delay of
the i-th power of the input. Since only odd powers are
considered, the number of coefficients to be estimated is
M � ðKþ1Þ=2. The vector of output samples of the adap-
tive filter is

z¼ ½z0; z1;…; zN�1�T

and Y is the data matrix of the input yn and its odd powers
which can be written as
Y¼

y0 y�1 ⋯ y�ðM�1Þ y30 y3�1 ⋯ y3�ðM�1Þ ⋯ yK0 yK�1 ⋯ yK�ðM�1Þ
y1 y0 ⋯ y�ðM�2Þ y31 y30 ⋯ y3�ðM�2Þ ⋯ yK1 yK0 ⋯ yK�ðM�2Þ
⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋯ ⋮ ⋯ ⋮ ⋮ ⋯

yN�1 yN�2 ⋯ yN�M y3N�1 y3N�2 ⋯ y3N�M ⋯ yKN�1 yKN�2 ⋯ yKN�M

2
66664

3
77775
or, in a more compact form as

Y¼ y1;0;y1;1;…; y1;ðM�1Þ; y3;0; y3;1;…; y3;ðM�1Þ;…; yK;0;
h

yK ;1;…; yK ;ðM�1Þ
i

ð10Þ
where yk;m ¼ ½yk0�m; y
k
1�m;…; ykN�1�m�T . The DPD is a non-

linear adaptive filter but since the estimation error is linear
in the parameters (the coefficients of the impulse
responses), it is possible to derive the least-squares (LS)
optimal solution ĥ as

ĥ ¼ ðYTYÞ�1YTz: ð11Þ
A stable, well-known technique to compute ĥ is the

RLS algorithm [20,28] which is described by the following
expressions:

ĥ nð Þ ¼ ĥ n�1ð Þþk nð Þα nð Þ:

k nð Þ ¼ Pðn�1ÞYðn; : Þ
λþYT ðn; : ÞPðn�1ÞYðn; : Þ

αðnÞ ¼ xn� ĥðn�1ÞYT ðn; : Þ
PðnÞ ¼ λ�1 Pðn�1Þ�kðnÞYT ðn; : ÞPðn�1Þ

h i
ð12Þ

where n is the iteration number, 0⪡λr1 is a forgetting
factor, and Yðn; : Þ denotes the n-th row of Y. The algorithm
is initialized with Pð0Þ ¼ δ�1I, where δ� 0 is a positive
constant and all signals involved are assumed to be real-
valued.

In [22] the same adaptive parallel Hammerstein
structure (referred as power filter) is presented for
acoustic echo cancellation. A DFT-domain imple-
mentation of the nonlinear filter as an extension of
the linear overlap-save method is presented. A Gram–

Schmidt based orthogonalization of the input signal xn
and its powers is also introduced. Although for faster
convergence the orthogonalization may be required in
certain applications [22], the convergence to the
solution is relatively fast in our application and
therefore the orthogonalization process was avoided.
The properties of the convergence of the adaptive
Hammerstein structure are analyzed in the following
section.

3.3. Convergence analysis

The convergence analysis of the parallel Hammer-
stein structure follows the same steps as the standard
recursive least-squares algorithm (RLS) [28] because
the estimation error is linear in the parameters. The
main differences are due to the powers of the Ham-
merstein structure and will be analyzed in this sec-
tion. It is shown that convergence in the mean-square
sense depends on the statistical distribution of the
input signal, as described in [29].
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The RLS based identification of the parallel Hammer-
stein structure is based on the following assumptions:

1. The physical phenomena under identification responds
to a model of the form

zn ¼ enþhT
0Yðn; : Þ ð13Þ

where h0 is the vector of true parameters and en is
additive noise.

2. The noise en is an iid non-observable random process
satisfying E½en� ¼ 0 and has no correlation with any
other signal in the system.

3. The input sequence yn of the adaptive DPD is a zero
mean iid random process with arbitrary (symmetric)
statistical distribution.

4. Only odd power nonlinearities are considered for
the DPD.

Assumptions A1–A3 are typically employed in the analysis
of the linear RLS together with the independence
assumption [28] which, among others, presumes that the
tap-input vectors are statistically independent. The identi-
fication of general Hammerstein systems for non-iid
inputs is still an open problem [30,29]. Regarding the
zero-mean property in assumption A3, the total DC-gain
of some nonlinear systems, represented using Volterra-
type models, may impose an ambiguity issue because it
depends on the product of the DC-gain of the static
nonlinearity and the DC-gain of the linear filter represent-
ing the dynamics of the system. This is not the case for the
nonlinear parallel Hammerstein model of the PWM mod-
ulator because the DC-gain of the system is constant and of
known value (DC-gain¼1). The mean value of the input
signal is preserved by the system and passes unaltered
from the input to the output. This can be verified as
follows: the PWM model shown in Fig. 1 with the
magnitude of the frequency responses of the filters shown
in Fig. 2 reveals that the mean is preserved because the
filters of order higher than one have zero DC-gain and the
linear filter which corresponds to the first branch with
impulse response g1;n (which, as shown in Table 1, is an
impulse) passes the input signal unaltered to the output.
This property can be also interpreted from the physical-
system under analysis: wn ¼ 1=2 for all n represents a fixed
duty-cycle PWM square-wave p(t) with amplitude values
0 and 1 and with 50% duty cycle (1=2 mean) which after
low-pass filtering and sampling yields a discrete-time
signal yn with a mean of 1=2. Since the mean value is
unaffected by the nonlinear system, the DPD also pre-
serves the mean of the signal and therefore the error
signal (αn in Fig. 4(a)) has zero mean thus not affecting the
convergence properties. The iid property in A3 is discussed
in detail in Section 3.3.1.

The coefficients h in (9) of the generalized Hammerstein
system described by (8), which are adapted by the RLS
algorithm defined by (12), converge in mean-square sense
to the desired set of parameters h0 under assumptions
A1–A4. The mean-square error E½jjh0�ĥðnÞjj2� as a function
of the autocorrelation matrix RK ¼ E½Yðn; : ÞYT ðn; : Þ� is [28]:

ξ nð Þ ¼ σ2
0
n

tr R�1
K


 �
: ð14Þ

The properties of the convergence of (14) depend on the
characteristics of the correlation matrix RK .

Theorem 2. Convergence in the mean-square sense depends
on the statistical distribution of the input of the Hammerstein
system, particularly on the even moments up to order 2K:
E½y2Kn �.

Proof. For the parallel Hammerstein structure, the corre-
lation matrix RK of the data vector Yðn; : Þ depends not only
on the tap-input vector but also on the odd powers of the
input. The correlation matrix for Yðn; : Þ is a block matrix of
the form

RK ¼ E½Yðn; : ÞYT ðn; : Þ� ¼ E

B1;1 B1;2 ⋯ B1;q

B2;1 B2;2 ⋯ B2;q

⋮ ⋮ ⋱ ⋮
Bq;1 Bq;2 ⋯ Bq;q

2
66664

3
77775 ð15Þ

where q¼ ðKþ1Þ=2 and Ba;b is a M �M matrix given by
the outer product

Ba;b ¼

y2a�1
i

y2a�1
i�1

⋮
y2a�1
i�Mþ1

2
66664

3
77775 y2b�1

i y2b�1
i�1 ⋯y2b�1

i�Mþ1

h i
: ð16Þ

Since yn is assumed to be an iid random process with zero
mean (A3), each individual element of the matrix RK falls
into one of the following cases:

E½y2a�1
i y2b�1

j � ¼
m2ðaþb�1Þ; if i¼ j;

0; if ia j;

(
ð17Þ

where m2ðaþb�1Þ is the 2ðaþb�1Þ-th order moment of yi,
i.e., m2ðaþb�1Þ ¼ E½y2ðaþb�1Þ

i �. Whenever ia j, y2a�1
i is

independent of y2b�1
j . Since 2a�1 and 2b�1 are odd

numbers, the statistical distribution is symmetric and
E½yn� ¼ 0 then E½y2a�1

i � ¼ 0 and E½y2b�1
j � ¼ 0 and hence

E½y2a�1
i y2b�1

j � ¼ 0. With this simplification, the correlation
matrix RK can be rewritten in terms of the even moments
of the input to get,

RK ¼

m2IM m4IM ⋯ mKþ1IM
m4IM m6IM ⋯ mKþ3IM
⋮ ⋮ ⋱ ⋮

mKþ1IM mKþ3IM ⋯ m2K IM

2
66664

3
77775 ð18Þ

with IM representing the M�M identity matrix. Matrix RK

can be rewritten using Kronecker product as

RK ¼

m2 m4 ⋯ mKþ1

m4 m6 ⋯ mKþ3

⋮ ⋮ ⋱ ⋮
mKþ1 mKþ3 ⋯ m2K

2
66664

3
77775 � IM ¼Θ � IM ð19Þ

where Θ is a Hankel-type matrix, i.e., its skew-diagonals
have constant values. Hankel matrices commonly arise in
problems involving power moments [31], e.g., identifica-
tion problems using Volterra type filters [32].



Fig. 5. Graphical representation of matrix RK when: (a) yn is pseudo-white random noise and (b) yn is colored by the PWM model.

F. Chierchie et al. / Signal Processing 120 (2016) 562–571568
The mean-square error E½jjh0� ĥðnÞjj2� is dependent on
the trace of the inverse of RK , and hence on the sum of the
inverse of its eigenvalues:

ξ nð Þ ¼ E½jjh0� ĥ nð Þjj2� ¼ σ2
0
n

tr R�1
K


 �
¼ σ2

0
n

XqM
i ¼ 1

1
μi

ð20Þ

where μi, i¼ 1;2;…; qM, are the eigenvalues of RK . The
eigenvalues μi can be found using (19) and a known
property of the Kronecker product [33]: if λ1; λ2;…; λq are
the eigenvalues of Θ and γ1; γ2;…; γM the eigenvalues of
IM then μn ¼ λiγj for i¼ 1;…; q and j¼ 1;…;M. Since IM is
the identity matrix γi ¼ 1 for all i and then the eigenvalues
of RK are the eigenvalues of Θ each one with multiplicity
M. Therefore the mean-square error is given by

ξ nð Þ ¼ σ2
0
n

Xq
i ¼ 1

M
λi
; ð21Þ

showing that ξðnÞ-0 when n-1. The convergence is
dependent on the eigenvalues λi of Θ, the matrix of
moments of the input random process given by (19). This
completes the proof.□

3.3.1. A comment regarding the inverse modeling problem
The inverse modelling or inverse filtering problem

depicted in Fig. 4(a) is common in many applications being
channel equalization (deconvolution) in communication
systems a typical example. The idea is to find the best least
square approximation to the inverse of the system, in our
case the nonlinear PWM model. Although the input to the
system xn may be iid, the output yn, which is the adaptive
filter input is correlated by the system; in the case of the
PWM model of Fig. 1 the frequency response GiðejωÞ of the
filters depicted in Fig. 2. Filter g1;n has no memory and the
output sequence is uncorrelated. Certain amount of cor-
relation is introduced by the other filters g3;n, g5;n,…but, as
shown by Lemma 1 this contribution is bounded. An
example is shown in Fig. 5, which depicts a graphical
representation of a numerical simulation of the block
matrix RK in (15), when yn is a pseudo-white random
Gaussian noise sequence (Fig. 5(a)) and when yn is colored
by the PWM model with parameters K¼3 (maximum
power of the model) and length of the FIRs filters M̂ ¼ 59
(Fig. 5(b)). In both cases matrices Ba;b are diagonally
dominant, although in Fig. 5(b) some correlation is
observed in the upper left corner of the matrix
(darker area).

When some correlation is introduced, matrix RK can
be thought as the sum of two matrices: RK ¼ Riid

K þΔ,
where Riid

K is given by (19), when the input to the
adaptive filter is iid and Δ is a perturbation matrix with
a diagonal of zeros. If the eigenvalues of Riid

K are
v1Z⋯ZvqM and the eigenvalues of Δ are ρ1⋯ZρqM
then, based on Weyl's theorem [31, p. 181] the eigenva-
lues μi of RK satisfy the inequality viþρ1rμirviþρqM .
Furthermore, if Δi;j are small, the eigenvalues ρi of Δ can
be shown to lie on a disc of radius jjΔjj1 centred at zero,
by the Geršgorin Disc Theorem [31, p. 344]. In other
words, if the entries of the perturbation matrix are small
then there will only be a small spread of the eigenvalues
of RK compared to those of Riid

K .
4. Simulation and validation experiments

We consider two frameworks. In the first case,
“online DPD”, the parameters are computed in real time
based on the actual input signal as shown in Fig. 3 (ILA
architecture). In the second case, (“offline DPD”) the
predistorter is trained offline with certain signal. The
parameters of the DPD are then fixed and its perfor-
mance is tested with other signals with similar statis-
tical properties. The offline DPD is also tested using a
real-time DSP-based application, and experimental
laboratory measurements are shown.

4.1. Simulation scheme

To evaluate the DPD, the PWM model given by (6)
with FIRs filters having impulse responses of length
M̂ ¼ 999 and with nonlinearity up to order 7 was used.
The sampling and PWM frequency is normalized to fs¼1.
Different band-limited signals (colored noise and music)
were used to test and compare the algorithms. Signal A
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Fig. 6. SNR for Signal B (bandpass noise) as a function of the FIR filters length M. (a) K¼3, (b) K¼5.
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input Signal B, M¼39 and K¼3.
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is low-pass filtered (second order FIR with parameters:
Fpass: 0.023, Fstop: 0.45, Astop: 1� 10�7) noise with
Gaussian distribution Signal B is obtained by band-pass
filtering (85-order FIR with parameters: Fstop1: 0.001,
Fpass1: 0.041, Fpass2: 0.06, Fstop2: 0.1, Astop: 1� 10�5)
noise with Gaussian distribution. Signal C is a segment of
music which is also used for test purposes in [19].
Finally, Signal D is Signal C interpolated at twice the
sampling frequency.

For the offline DPD, Signal A was used to train the
DPD. The identified parameters were then used with the
DPD excited by Signals B, C and D. The signal-to-noise
ratio (SNR) was used as the quantitative index to com-
pare the DPD with other alternatives. The SNR was
computed as

SNR dB
� �¼ 10 log

PN
n ¼ 1 x

2
nPN

n ¼ 1 ðxn�ynÞ2

 !
; ð22Þ

where xn and yn are the input and output signals
according to block diagrams of Figs. 3 and 4 and N is the
length of the signals discarding any edge-effect due to
the transient response of the filters. The results of the
DPD are compared with standard digital PWM methods
(UPWM) and with the Volterra prefilter (pth-order
inverse) [19]. For each simulation the order of the Vol-
terra prefilter is the same as the order of the DPD.

4.2. Simulations

Fig. 6(a) and (b) shows the SNR [dB] as a function of the
length M of the predistorter filters for Signal B. The
simulation was carried out for polynomials up to order
K¼3 and K¼5. The online DPD has the best performance
followed by the offline DPD which has a better perfor-
mance than the pth-order inverse.

The simulations show that no noticeable improvement
is obtained for the offline DPD when the order of the
nonlinearity of the DPD is increased from K¼3 to K¼5. On
the other hand, the online DPD increases its performance
for K¼5. At this point, the Volterra prefilter improves its
performance for high values of M. For M greater than 60
and K¼5 in Fig. 6(b), the Volterra prefilter slightly out-
performs the offline DPD.

The power spectral density of the modulated signal
used in Fig. 6(a) (input Signal B) for M¼39 is shown in
Fig. 7; the PSD of the outputs produced by each algorithm
and the PSD of input signal are superimposed. Clearly, the
standard UPWM method introduces a great amount of
distortion, even for this low-frequency signal. For a signal
with high frequency content the distortion will be even
greater for the UPWM approach. The reduction of the
spectral regrowth produced with each of the algorithms
can be noticed in the figure.

Fig. 8(a) and (b) shows the SNR [dB] for K¼3 as a
function of the length M of the predistorter filters for the
segments of music (Signals C and D). The SNR is higher for
the interpolated Signal D, a result that is in agreement
with the analysis of the modulation nonlinearity per-
formed in Section 2.1 since, as depicted in Fig. 2 the con-
tribution of the nonlinear terms of the PWM is decreased
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Fig. 8. SNR for Signals C and D (music signal without and with interpolation) as a function of the FIR filters length M with K¼3. (a) K¼3 and no
interpolation (Signal C), (b) K¼3 with interpolation (Signal D).

Fig. 9. Block diagram of the experimental setup.
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when the signal bandwidth is reduced. The simulation
with a musical signal shows the good performance of the
DPD under a real-world signal which can actually drive a
class-D switching amplifier in practice.

Simulations show that the DPD has a very good per-
formance under typical finite bandwidth signals even
when its parameters are computed offline. The improve-
ment in the performance is even more remarkable under
short filter length operation (low M), which is a desirable
condition since the computational load and the delay
introduced in the signal path are reduced. The DPD also
shows a good performance using only the linear term and
the cube factor ðxnÞ3 achieving SNR values above 100 dB as
shown in Fig. 7 for M¼39. The offline DPD only requires to
compute two length-39 FIR filters, one for xn and other for
ðxnÞ3. This operating condition was verified experimentally.
4.3. Experimental measurements of the offline DPD

The proposed offline DPD with M¼39 and K¼3 was
tested using a DSP development board (TMS320F28335).
The offline DPD is computed in real-time at a frequency of
50 kHz which is equal to the carrier frequency (PWM fre-
quency). The experimental setup is shown in the block
diagram of Fig. 9. The input signal xn is Signal B (bandpass
noise), generated in real-time by filtering white Gaussian
noise limiting its frequency content between 1.25 kHz and
8.75 kHz. Once xn is processed with the offline DPD to
obtain wn, the actual PWM signal p(t) is generated using an
standard module of the DSP. The PWM signal was mea-
sured with a dynamic signal analyser (SR785) to obtain the
frequency spectrumwith and without the DPD. The results
are shown in Fig. 10 in the frequency range 0 Hz to 25 kHz.
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Fig. 10. Spectral measurement for input Signal B, M¼39 and K¼3.
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The PWM without DPD (UPWM) shows distortion com-
ponents between 8.75 kHz and 20 kHz (within the base-
band) that are not present in the modulating signal,
caused by the nonlinear behavior of UPWM. The DPD
reduces these unwanted frequency components appearing
between 8.75 kHz (3.5 divisions) and 20 kHz (8 divisions).
5. Conclusions

An adaptive predistorter (DPD) for digital PWM was
developed. The proposed DPD reduces the distortion
caused by the nonlinear behavior of the PWM modulation
and is suitable for class-D switching amplifiers for digital
modulating signals with finite bandwidth. The generalized
Hammerstein model for PWM was reviewed and it was
shown that for practical applications preserving up to the
7-th power of the model is enough to capture the non-
linear characteristic of the PWM in baseband. Simulations
were performed for the DPD with online and offline
parameter update. The results show that the SNR can be
greatly increased as compared to standard PWM methods.
The proposed DPD achieves satisfactory performance even
when linear and cubic terms and short FIR filters are used.
The behavior of the DPD with offline update was verified
using a real-time implementation in a DSP showing the
feasibility of the implementation for practical applications.
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