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The multiplicity problem of limit cycles arising from a weak focus is addressed. The proposed
methodology is a combination of the frequency domain method to handle some degenerate Hopf
bifurcations with the powerful tools of the singularity theory. The frequency domain approach
uses the harmonic balance method to study the existence of periodic solutions. On the other
hand, the singularity theory provides the conditions and formulas for the classification problem
of the unfolding of the singularity in terms of the distinguished and auxiliary parameters. A
classical example introduced by Bautin is shown in which the multiplicity of limit cycles is
recovered by using this type of hybrid methodology and standard software in the continuation
of periodic solutions (LOCBIF and XPPAUT). For small amplitude limit cycles, the proposed
methodology gives accurate results.
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1. Introduction

The appearance of oscillations, also known as limit
cycles in the classical theory, has been an active sub-
ject of investigations due to its stability implications
in engineering systems. The rigorous analytical
characterization of the emergence of oscillations
through a smooth variation of a distinguished
parameter has been possible since the proof of the
well-known Hopf bifurcation theorem [Marsden &
MacCracken, 1976]. This result gives the neces-
sary and sufficient conditions for the appearance of
stable or unstable oscillations when a single pair
of complex eigenvalues of the linearized equations
cross the imaginary axis and change, normally, the
stability of the equilibrium point at criticality. The
theorem also provides a local approximation of the
periodic solutions which is also very useful for engi-
neering applications when looking for quantitative
results. A typical graph considering the amplitude
of periodic solutions versus the variation of the dis-
tinguished parameter gives a parabolic form which
can be located to the left or to the right of the
criticality. If the parabolic form is unstable and
evolves to the left enclosing a stable equilibrium
point, the type of singularity is known as subcrit-
ical Hopf bifurcation. On the other hand, if the
parabolic form is stable and evolves to the right
of criticality enclosing an unstable stationary state,
the type of singularity is called a supercritical Hopf
bifurcation (see Fig. 1). The subcritical Hopf bifur-
cation is dangerous in engineering since the basin
of attraction of the equilibrium point is affected by
the presence of the unstable limit cycle which is
a nonlinear phenomenon. On the other hand, the
supercritical Hopf bifurcation presents an emergent

(a) (b)

Fig. 1. Hopf bifurcation diagram obtained by varying
parameter µ: Solid lines represent stable equilibrium and sta-
ble limit cycles, while dashed-lines represent unstable equi-
librium and unstable limit cycles (top diagrams). Phase por-
trait: (a) supercritical and (b) subcritical Hopf bifurcation
(bottom diagrams).

stable periodic solution immediately after the equi-
librium point loses its stability.

In the classical Hopf bifurcation theorem a
unique limit cycle is involved but if one of the
postulates governing the stability of the periodic
solution at criticality fails, then multiple periodic
solutions can arise. This failure was studied for the
first time in [Bautin, 1952] and [Sibirskii, 1965]
in planar systems with nonlinearities of polyno-
mial type of degrees two and three, respectively.
Later, other authors studied the multiplicity of limit
cycles with other mathematical tools, notably as
Takens [1973] did in his now classical work. Fur-
thermore, complete pictures of bifurcation diagrams
showing nested limit cycles after the variation of
distinguished and auxiliary parameters have been
introduced in [Golubitsky & Langford, 1981] using
the singularity theory. The number of auxiliary
parameters, roughly speaking, is related to the min-
imum number of independent parameters necessary
to describe all the possible bifurcation scenarios
obtained by slight perturbations from the degener-
ate conditions. Furthermore, the mentioned articles
put some preliminary results connecting the appear-
ance of multiple periodic solutions with universal
normal forms and, at the same time, contributed to
enlightening, in certain aspects, of the famous sec-
ond part of the Hilbert sixteenth problem [Li, 2003].
That problem, which is still unsolved, refers to find-
ing a formula relating the maximum number of limit
cycles in planar polynomial-type nonlinear systems
and the maximum degree of the polynomial. The
connection between this famous problem and the
appearance of multiple periodic solutions has been
reported in [Farr et al., 1989]. In simple words, the
singularity theory gives a powerful methodology to
classify different bifurcation diagrams when some
hypotheses of the classical Hopf bifurcation theo-
rem fail. The failing postulates are: (a) the complex
eigenvalues do not cross transversally the imaginary
axis at criticality, (b) some nontrivial coefficients
related with the stability of periodic solutions at
criticality vanish, and (c) a combination of failures
(a) and (b) arises [Golubitsky & Langford, 1981]. In
this article, the focus of the investigation is on fail-
ures of the type (b) in order to compute the bifurca-
tion diagrams using a formalism enrooted in the so-
called frequency domain approach. In this regard,
the contribution classifies regions in which one, two,
three or more limit cycles appear for a certain com-
bination of system parameters. This classification

1250197-2



September 1, 2012 8:47 WSPC/S0218-1274 1250197

Generalized Hopf Bifurcation in a Frequency Domain Formulation

is significant since the coexistence of multiple limit
cycles allow jumps from one stable (maybe small or
large) limit cycle to another stable (maybe large or
small) limit cycle after perturbing the initial condi-
tions or after small excursions of system parameters
[Marzocca et al., 2002]. Furthermore, this classifica-
tion is important in order to control the appearance
of multiplicity (also known as bifurcation control
[Chen, 1999; Calandrini et al., 1999]) since it allows
to determine the dynamic configuration of the sys-
tem and then to choose the most appropriate space
of system parameters to satisfy suitable operating
conditions for engineering systems.

There are several methods to deal with the
problem of multiplicity of limit cycles [Farr et al.,
1989; Yu & Chen, 2008] and each one of them
presents advantages and drawbacks in their imple-
mentations. In particular, in [Yu & Chen, 2008]
three different methodologies (grouped for simplic-
ity as time-domain methods) are used to compute
the leading coefficients to determine the existence
and stability of limit cycles in nonlinear planar
systems.

In the present exposition an improved higher-
order harmonic balance approximation via a fre-
quency domain approach based on [Mees, 1981;
Moiola & Chen, 1996] is presented. More specif-
ically, the novel result of this contribution is
a particular bifurcation equation for which the
methodology presented in [Golubitsky & Schaeffer,
1985] is applied and then an efficient symbolic com-
putation is implemented. By using this methodol-
ogy it is possible, at least locally, to delimit the
regions with different limit cycle multistability in
the parameter space and also trace the continua-
tion of periodic solutions. The classical system pro-
posed by Bautin is studied under this hybrid combi-
nation of techniques in order to illustrate the main
results. Moreover, an independent verification of the
bifurcation diagrams is included using two differ-
ent continuation programs such as LOCBIF and
XPPAUT (see [Khibnik et al., 1992; Doedel et al.,
2002; Ermentrout, 2002]).

2. State-Space Realization and the
Frequency Domain Approach

In the present section, a formalism is briefly
reviewed in order to deal with a dynamic system S
using a frequency domain approach. In the jargon
of nonlinear feedback systems, let us have a plant in

the direct path modeled as a linear dynamical sys-
tem and a feedback path which is static and non-
linear. By using an input–output representation,
the plant is described through a transfer function
G(s, µ) ∈ C

m×l, while the feedback is given by the
function u = −f(y, µ), where f : R

m × R → R
l;

u is the vector of inputs; y is the vector of outputs
and µ ∈ R is the main (or distinguished) bifurcation
parameter. It is important to determine for which
values of µ a classical (one limit cycle) or degener-
ate (multiple limit cycles) Hopf bifurcation arises.
The block representation comprises a great variety
of autonomous systems such as the Lorenz equa-
tions, Rössler oscillator, van der Pol oscillator, etc.

2.1. Dynamical systems in the
frequency domain

Let D be an n-dimensional dynamical nonlinear sys-
tem described by

ẋ = F (x, µ), (1)

with x ∈ R
n, µ ∈ R is the bifurcation parameter

and F : R
n × R → R

n is a smooth vector field Ck,
with k > 3, with equilibrium point x = 0 satisfying
F (0, µ) = 0.

By choosing the input and output variables
appropriately, it is possible to write the following
representation

S :




ẋ = A(µ)x + Bu,

y = Cx,

u = −f(y, µ),

which verifies that F (x, µ) = A(µ)x − Bf(Cx, µ),
A(µ) ∈ R

n×n is not necessarily the linearization
around the equilibrium point; f : R

m × R → R
l,

is Ck with k > 3 (it can also contain linear terms),
C ∈ R

m×n and B ∈ R
n×l.

By applying the Laplace transform, the fol-
lowing representation is obtained (Ly)(s) =
G(s, µ)(Lu)(s), where G(s, µ) = C[sI − A(µ)]−1 ×
B ∈ C

m×l is known as the transfer function and
s is the Laplace variable.

The realization {A(µ), B,C} associated to
G(s, µ) should be minimal (controllable and observ-
able) and, if possible, with less number of variables
and equations than the original system (m ≤ n,
l ≤ n). The minimal condition assures that both
representations, D and S, have the same dynamical
behavior, i.e. they are topological equivalent (see
[Mees, 1981; Agamennoni et al., 2008]).
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The representation as an autonomous system S
is described by the equation Gf(y, µ)+y = 0 where
G is a linear operator between the input and out-
put space with a proper rational transfer function
G(s, µ).

Let ŷ be the equilibrium solution of

G(0, µ)f(y, µ) + y = 0.

Then, by linearizing around the equilibrium point ŷ,
a gain matrix J = ∂f

∂y |ŷ is obtained and an open-loop
transfer function G(s, µ)J for which the polynomial
det(λ I − G(s, µ)J) = 0 defines λk(s, µ) character-
istic functions, k = 1, . . . , k0. Notice that k0 is the
minimum number between m and l.

It is supposed that the system S satisfies the
following:

(H1)df : there is a simple characteristic function of
the open-loop transfer matrix G(i ω, µ)J ,
noted for simplicity as λ̂(ω, µ), such that for
a unique frequency ω0 and a critical value
of the parameter µ0 the following can be
verified

λ̂(ω0, µ0) = −1.

(H2)df : 〈λ∂µ,λ⊥
∂ω〉 �= 0,

where λ∂µ = (∂�λ̂
∂µ (ω0, µ0), ∂�λ̂

∂µ (ω0, µ0)),

λ⊥
∂ω = (∂�λ̂

∂ω (ω0, µ0),−∂�λ̂
∂ω (ω0, µ0)), � and

� are the real and imaginary parts and 〈·, ·〉
is the scalar real product.

Remark. (H1)df and (H2)df are the classical Hopf
bifurcation conditions in the frequency domain. It
is supposed here that the rest of characteristic func-
tions do not cross the critical value −1 + i0 in the
complex plane.

2.2. Hopf bifurcation theorem in
the frequency domain

In the following, a version of the Hopf bifurca-
tion theorem using higher-order harmonic balance
is presented. Its proof uses an iterative method to
determine the necessary vectors for computing the
main coefficients of the bifurcation equation up to
any order. The previous versions which appeared in
[Mees & Chua, 1979; Mees, 1981; Moiola & Chen,
1996] have used general formulas up to order eight.
The new algorithm can be implemented simply by
using symbolic computations.

By using this methodology that differs sensibly
from [Moiola & Chen, 1996], a scalar bifurcation
equation is obtained as a corollary relating the
amplitude of the periodic solution and the main
bifurcation parameter. This relationship gives use-
ful characteristics of the mechanism of Hopf bifur-
cation. The scalar equation is also equivalent to
other bifurcation equations obtained with differ-
ent methods, such as the center manifold approach
[Kuznetsov, 2004; Marsden & MacCracken, 1976;
Sotomayor et al., 2006] or the Lyapunov–Schmidt
reduction [Farr et al., 1989; Golubitsky & Schaef-
fer, 1985]. Moreover, this scalar equation has the
additional advantage that can be analyzed using
the powerful results of the singularity theory [Gol-
ubitsky & Schaeffer, 1985] making possible the
treatment of different cases of Hopf degeneracies
[Golubitsky & Langford, 1981]. Then, the proposed
methodology is very useful not only for general
results but also for specific examples of interest.

Theorem 1. Let S be a system that verifies (H1)df ,
then the bifurcation equation of periodic orbits of
higher-order in the frequency domain is

θ

(
λ̂(ω, µ) + 1 +

q∑
k=1

θ2kξk(ω, µ) + O(θ2q+2)

)
= 0.

(2)

The nonzero solutions of (2) are one-to-one in cor-
respondence with the periodic solutions of small
amplitude θ of the system S with period close to
2π/ω0.

The system S admits approximate oscillations
of the form

y(t) = ŷ +
2q∑

j=−2q

ej(ω, µ) exp(ijωt)

+O(θ2q+2). (3)

The expressions of ξk(ω, µ) and ej(ω, µ) are ob-
tained in the proof of the theorem.

Observations. (i) The complete proof requires
previous (important) results which were given in
[Mees, 1981], as the justification of the harmonic
balance method to search for the oscillations and
the abandonment of much higher-order harmonics
in the approximation of the periodic solutions.

(ii) A general idea, in which the algorithm is based,
is provided in the proof below.
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Proof. An approximation of the periodic solution
up to order 2q with frequency ω is given by,

ỹ(t) = ŷ +
2q∑

j=−2q

ej(ω, µ) exp(ijωt),

and an expansion up to order 2q of f(y, µ) ≈
f(ŷ, µ) + J(y − ŷ) +

∑2q
j=−2q fj exp(ijωt), is

equated using a harmonic balance. From∑2q
j=−2q fj exp(ijωt) =

∑2q+1
j=2 Fj(ỹ(t) − ŷ, ỹ(t) −

ŷ, . . . , ỹ(t) − ŷ)/j!, where Fj(y − ŷ, . . . , y − ŷ) is a
multilinear function of j arguments evaluated in
ỹ(t), the expressions of fj = fj(e, µ) have been
obtained, e = (e−2q, . . . , e−1, e0, e1, . . . , e2q) where
ej = ej(ω, µ) ∈ C

m, e−j = ej, ∀ j.
The harmonic balance method consists of

equating the input of the nonlinear part f(y, µ) with
the output of the linear one G(s, µ) for each one of
the harmonics to be considered in the expansion.
Then, it must be solved for all j,

ej = −G(ijω, µ)(Jej + fj). (4)

It is enough to consider only 2q equations
(j �= 1) and 2q + 1 variables. Then, the expressions
of ej can be computed for all j �= 1 in terms of e1.

For j = 1, the following must be solved

(I + G(iω, µ)J)e1 + G(iω, µ)f1 = 0. (5)

Let L̂ = −λ̂(ω, µ)I + G(iω, µ)J and L = I +
G(iω, µ)J , which are singular in the bifurcation
point. Then, a reduction method must be applied
at this stage. Let v ∈ Ker(L̂) and w ∈ Range(L̂)⊥
verifying wT v = 1. Consider

C
m = Ker(L̂) ⊕ M, C

m = N ⊕ Range(L̂),

then it can be written e1 = v + v⊥ with v ∈ Ker(L̂)
where dim(Ker(L̂)) = 1. It is verified also that
v⊥ ∈ M such that vT v⊥ = 0. A projection Q :
C

m → Ker(L̂) is defined orthogonal to Range(L̂).
Equation (5) is rewritten as



(i) (I − Q)(L(v + v⊥)

+ G(iω, µ)f1(e(v + v⊥), µ)) = 0

(ii) Q(L(v + v⊥)

+ G(iω, µ)f1(e(v + v⊥), µ)) = 0.

(6)

Since (I − Q)L : M → Range(L̂) is invert-
ible in (ω0, µ0), the implicit function theorem can
be applied to (6)(i) and it yields v⊥ = v⊥(v, ω, µ)

around (ω0, µ0). By replacing in the second equa-
tion, we get

QL(v + v⊥(v, ω, µ))

+QG(iω, µ)f1(e(v + v⊥(v, ω, µ)), µ) = 0. (7)

Observations. (i) Lv = v + λ̂(ω, µ)v. (ii) (I −
Q)Lv = (1 + λ̂(ω, µ))(I − Q)v = 0.

The choice of the basis in Ker(L̂) and Ker(L̂T )
leads to essentially equivalent equations, and then
the formulation is translated to other convenient
coordinate systems.

Let us suppose that v1 is a base of Ker(L̂) of
module 1 and w is a base of Range(L̂)⊥ = Ker(L̂T )
verifying wT v1 = 1 and wT v1 = 0 (biorthogonality
of the right and left eigenvectors of L̂). Any ele-
ment of Ker(L̂) can be written in a unique form as
v = θv1 with θ ∈ R and Qz = v1w

T z is defined for
z ∈ C

m.
Then, Eq. (7) in coordinates results in

θ(wT v1 + λ̂(ω, µ)wT v1) + wT v⊥(1 + λ̂(ω, µ))

+ wT G(iω, µ)f1(e(θv1 + v⊥(θv1, ω, µ)), µ) = 0.

The expansions in θ are obtained in recursive
form from ej(ω, µ)∈C

m. It yields e0(ω, µ)= e02θ
2 +

e04θ
4 + e06θ

6 + · · · + e02qθ
2q, e1(ω, µ) = v1θ +

e13θ
3 + e15θ

5 + · · · + e12q−1θ
2q−1, e2(ω, µ) =

e22θ
2 + e24θ

4 + e26θ
6 + e22qθ

2q, e3(ω, µ) = e33θ
3 +

e35θ
5 + e32q−1θ

2q−1, . . . , e2q(ω, µ) = e2q2qθ
2q. Fur-

thermore, by replacing them in wT (v⊥(1+λ̂(ω, µ))+
G(iω, µ)f1(e)), where the coefficients of θ2k+1 give
the expressions of ξk(ω, µ) for k = 1, 2, . . . q, the
bifurcation equation (2) is finally obtained. �

Corollary 2.1. If the conditions (H1)df and (H2)df
are verified, from (2) for θ �= 0 sufficiently small, it
gives

µ = µ0 + µ2θ
2 + µ4θ

4 + · · · , (8)

ω = ω0 + ω2θ
2 + ω4θ

4 + · · · . (9)

Proof. The equations which form the real and
imaginary parts of (2) verify (H2)df . By using
implicit differentiation, it yields (8) and (9). �

Observations. (i) Equation (8) is the expression of
the bifurcation of periodic solutions since it relates
the main bifurcation parameter µ and the ampli-
tude θ, characterizing the Hopf bifurcation phe-
nomenon. The expression (9) gives the modification
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of the frequency in terms of the variation of the
amplitude.

(ii) For q = 1, if the conditions (H1)df , (H2)df and
µ2 �= 0 are verified, the classical conditions of the
Hopf bifurcation theorem in the frequency domain
are satisfied and the appearance of oscillations fol-
lows the typical quadratic relation, at least locally,
from the equilibrium.

(iii) It is interesting to notice which is the minimum
power of θ in (8) that characterizes completely the
local bifurcation diagrams and the types of singular-
ities organized around a weak focus (in two dimen-
sions) or near a degenerate Hopf bifurcation (in
three or more dimensions), i.e. a generalized Hopf
bifurcation [Guckenheimer & Holmes, 1983; Takens,
1973; Yu, 1999]. The next sections deal with these
problems.

3. Generalized Hopf Bifurcation

In this section, an adaptation of the formulas in
the frequency domain approach is given in terms
of the singularity theory. A brief introduction of
singularity theory is also included for the notation
and in order to relate the coefficients of the nor-
mal form of the generalized Hopf bifurcation using
the framework of the frequency domain. In this sec-
tion, it is shown how to apply the results in order
to determine the defining conditions of the singu-
larities. With this information and the application
of the singularity theory, the existence and loca-
tion of multiple cycles can be studied rigorously.
This approach unifies the treatment of many diverse
problems related with multiple limit cycles, and
includes the advantage of its practicality as well as
its elegance and rigorousness.

3.1. Normal forms of generalized
Hopf bifurcation

Let us consider a general bifurcation problem given
by a scalar equation in θ,

g(θ, µ) = 0, g : R × R → R, smooth with

parameter µ ∈ R, and g(0, µ0) = 0. (10)

A bifurcation diagram is called to the set D(g) =
{(θ, µ) ∈ R×R : g(θ, µ) = 0}. A normal form is the
simplest polynomial expression equivalent to (10),
equivalent in the sense of singularity theory, which
is noted as gp(θ, µ) = 0.

A dynamical system (1) is represented as an
input–output system S which satisfies (H1)df in
(ω0, µ0), and applying the reduction method in the
frequency domain, the bifurcation equation of peri-
odic orbits is obtained. (2) Using implicit differenti-
ation to the real and imaginary parts of (2), we get a
relationship between the bifurcation parameter and
the amplitude of oscillation θ, that is, a single scalar
equation g(θ, µ) = 0 that verifies g(0, µ0) = 0. In
particular g is odd in θ, so it can be written as
g(θ, µ) = θ r(z, µ), where z = θ2, then the scalar
equation of bifurcation results in

θ r(z, µ) = 0,

where the nonzero solutions correspond exactly to
the existence of nontrivial periodic solutions of S.

The singularity theory applied to the study
of bifurcations has been developed mainly in
[Golubitsky & Schaeffer, 1979, 1985]. In those
references the general conditions for an odd scalar
bifurcation equation (10) to be Z2-equivalent to a
normal form of generalized Hopf bifurcation gp(θ,
µ) = θ(ε zq + δ(µ − µ0)) = 0, where z = θ2, have
been determined.

Now, we find conditions in λ̂(ω, µ) and ξk(ω, µ)
with k = 1, . . . , q, coefficients of (2), for which the
normal form of θ r(z, µ) = 0 in a neighborhood
of µ0 is equivalent to θ(ε zq + δ(µ − µ0)) = 0.
Let ξk = (�ξk(ω0, µ0), �ξk(ω0, µ0)) and λ∂µ =
(∂�λ̂

∂µ (ω0, µ0), ∂�λ̂
∂µ (ω0, µ0)), λ⊥

∂ω = (∂�λ̂
∂ω (ω0, µ0),

−∂�λ̂
∂ω (ω0, µ0)).

Lemma 1. Let S be a system that verifies (H1)df .
In a neighborhood of µ = µ0 and z = 0, the equa-
tion θ r(z, µ) = 0, with z = θ2, obtained from (2) is
Z2-equivalent to the normal form

θ(ε zq + δ(µ − µ0)) = 0, (11)

if it satisfies

(i) for q = 1, nondegeneracy conditions ε = 〈ξ1,
λ⊥

∂ω〉 �= 0 and δ = 〈λ∂µ, λ⊥
∂ω〉 �= 0 (classical

Hopf bifurcation),
(ii1) defining conditions 〈ξk, λ⊥

∂ω〉 = 0 and 〈ξk,
λ⊥

∂µ〉= 0, ∀ k = 1, . . . , q− 1, and nondegener-

acy conditions ε = 〈ξq ,λ⊥
∂ω〉

q! �= 0 and δ = 〈λ∂µ,

λ⊥
∂ω〉 �= 0,

or
(ii2) defining conditions 〈ξk,λ

⊥
∂ω〉 = 0, ∀ k =

1, . . . , q − 1, and nondegeneracy conditions
∂qr
∂zq (0, µ0) �= 0 and δ = 〈λ∂µ,λ⊥

∂ω〉 �= 0.
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Remarks. (i) If q = 1, δ �= 0 and ε �= 0 are the classi-
cal Hopf bifurcation conditions (H2)df and (H3)df ,
respectively.

(ii) The bifurcation diagrams obtained for q > 1
with δ �= 0 ((H2)df ), describe the so-called gen-
eralized Hopf bifurcation, any slight perturbation
on the normal form can change the number of
limit cycles in its surroundings. The singularity the-
ory provides the mathematical tools to classify and
recover them.

3.2. Singularity theory : Some
preliminary definitions

The recognition problem is the procedure which
enables to find this specific normal form. It is
interesting to know all the possible nonequivalent
expressions, with different bifurcation diagrams,
which can be obtained by perturbing the normal
form.

In general, the scalar equation g(θ, µ) = 0 with
g(0, µ0) = 0 is said to be of finite codimension if
there exists a finite set of monomials {θl(µ − µ0)j}
such that each perturbation of g(θ, µ), which satis-
fies g(0, µ0) = 0, is equivalent to one of the following
expressions

gp(θ, µ) +
k∑

i=1

αiθ
li(µ − µ0)ji = 0, (12)

where gp(θ, µ) = 0 is a normal form of g(θ, µ) = 0
and α = (α1, . . . , αk) ∈ R

k is close to the origin and
the values of li and ji depend on each particular
problem.

The minimum number of parameters neces-
sary to describe all the nonequivalent expressions
in the unfolding is known as the codimension.
Equation (12) is known as the universal unfolding
of gp(θ, µ) = 0 if it includes all the nonequivalent
perturbations.

In a finite codimension problem, it is possible
to enumerate all the possible nonequivalent bifur-
cation diagrams D(gp, α) = {(θ, µ) ∈ R × R : gp(θ,
µ, α) = 0}.

The transition varieties are subsets in the space
of the unfolding parameters which separate differ-
ent persistent perturbed diagrams. These varieties
are typified in a general form [Golubitsky & Schaef-
fer, 1985]. In that book, for example, the boundaries
of different multiplicities of limit cycles are shown,
facilitating the classification of diverse regions of
qualitatively similar behavior.

In particular, a universal unfolding of the nor-
mal form (εθ2q + δ(µ − µ0)) = 0 is given by
(εθ2q + δ(µ − µ0) + α1θ

2 + · · · + αq−1θ
2(q−1)) = 0,

where q − 1 is the codimension of the problem, and
α = (α1, . . . , αq−1) are the unfolding parameters.

For example, for q = 3 all the possible pertur-
bations of the equation θ(εθ6 + δ(µ − µ0)) = 0, are
Z2-equivalent to the unfolding

θ(εθ6 + δ(µ − µ0) + α1θ
2 + α2θ

4) = 0, (13)

where δ = ±1 and the two auxiliary parameters
agree with the codimension of the problem. It means
that it is enough to vary α1 and α2 to obtain
all the possible configurations of the limit cycle
multiplicity.

The transition varieties delimit the boundaries
of the limit cycle multiplicity in the plane of param-
eters α1 and α2 of the unfolding of the normal form,
and they are defined as

H0 = {α1 = 0},

H1 =
{

α1 =
α2

2

3
, α2 ≤ 0

}
,

D =
{

α1 =
α2

2

4
, α2 ≤ 0

}
.

In each of these curves the bifurcation diagrams
are not persistent, it means that even a small per-
turbation modifies drastically the shape of the peri-
odic branches (see Fig. 2).

The transition varieties divide the plane (α1,
α2) in three regions: R1 = {α1 < 0}, a zone in which
up to two cycles live; R2 = {α1 > 0 ∩ α2 > 0 ∪
−3α1 +α2

2 < 0}, a zone in which one cycle appears;
and R3 = {α1 > 0 ∪ α2 < 0 ∪ −3α1 + α2

2 > 0},
a region in which up to three cycles appear (see
Fig. 3).

3.3. The bifurcation problem in the
frequency domain

A dynamical system with a bifurcation parameter
µ and auxiliary parameters P, is represented as
an input–output system S which satisfies (H1)df in
(ω0, µ0), and by applying the reduction method in
the frequency domain, the bifurcation equation of
periodic orbits is obtained

θ

(
λ̂(ω, µ,P) + 1 +

q∑
k=1

θ2kξk(ω, µ,P) + O(θ2q+2)

)

= 0. (14)
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(a) (b)

Fig. 2. Nonpersistent diagrams in the transition varieties in the plane (α1, α2), with stable equilibrium for µ < µ0, (a) δ = 1,
(b) δ = −1.

From (14) we get a relationship between the
bifurcation parameter and the amplitude of oscilla-
tion θ,

g(θ, µ,P) = θ r(θ2, µ,P) = 0 : g(0, µ0,P) = 0.

By using this methodology in a particular prob-
lem with a bifurcation parameter µ and auxiliary
parameters, all possible perturbing bifurcation dia-
grams can be achieved, i.e. the expressions of all the
coefficients in the universal unfolding as functions
of the auxiliary parameters of the original problem
are obtained.

Once the defining and nondegeneracy condi-
tions of Lemma 1 are used to characterize P0, where
the normal forms of generalized Hopf bifurcation
g(θ, µ,P0) = 0 is Z2-equivalent to

θ(εθ2q + δ(µ − µ0)) = 0, (15)

then from (14), we obtain a universal unfolding

ε(P)θ2q + δ(P)(µ − µ0) + α1(P)θ2

+ α2(P)θ4 + · · · + αq−1(P)θ2(q−1) = 0,
(16)

from which the expressions of the parameters of the
universal unfolding αk are derived in terms of the
auxiliary parameters P, verifying αk(P0) = 0 for
k = 1, . . . , q − 1.

The transition varieties determine the relation-
ships among the parameters αk(P) which separate
different behaviors, in particular, the coexistence of
multiple limit cycles. Then, the choice of parame-
ters P will allow to control the possible dynamical
behavior of the problem.

Observation. The first q in Lemma 1 where
the nondegeneracy condition is verified determines

(a) (b)

Fig. 3. Regions of persistent diagrams in the plane of (α1, α2) with stable equilibrium for µ < µ0, (a) δ = 1, (b) δ = −1.
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the minimum necessary value in developing the
bifurcation equation, and the number 2q is the nec-
essary order to approximate the periodic solution
by using the Fourier series.

4. Applications

In this section, we show how to apply the results
presented before in order to determine the defining
conditions of the singularities in the Bautin classi-
cal planar system [Bautin, 1952], with this informa-
tion and the application of the singularity theory,
the existence and location of multiple cycles can
be studied. By the end, the results are compared
to those obtained using LOCBIF and XPPAUT
packages.

4.1. A classical Bautin planar
system

A dynamical system proposed by Bautin [1952]
is considered. It is a planar quadratic system
described by

ẋ1 = µx1 − x2 − λ3x
2
1 + (2λ2 + λ5)x1x2 + λ6x

2
2,

ẋ2 = x1 + µx2 + λ2x
2
1 + (2λ3 + λ4)x1x2 − λ2x

2
2,

(17)

where µ is the bifurcation parameter and P =
(λ2, . . . , λ6) are auxiliary parameters.

(I) Formulation in the frequency domain

The following representation S in the frequency
domain is chosen, using the notation of Sec. 2,

A(µ) =

[
−1 0

0 −1

]
, B = C =

[
1 0

0 1

]
,

f(y, µ,P) =


−(2λ2 + λ5)y1y2 − (µ + 1)y1 + y2 + λ3y

2
1 − λ6y

2
2

−(2λ3 + λ4)y1y2 − y1 − (µ + 1)y2 − λ2y
2
1 + λ2y

2
2


.

Let G(s, µ) =
[
1/(s + 1) 0

0 1/(s + 1)

]
, ŷ = (0, 0) be the

equilibrium point and J =
[−1 − µ 1

−1 −1 − µ

]
.

The characteristic function of G(s, µ)J in
s = iω is given by

λ̂(ω, µ) =
−(1 + µ + ω)

1 + ω2
+ i

−1 + ω + µω

1 + ω2
,

which satisfies (H1)df for µ0 = 0 and ω0 = 1, and
is independent of the auxiliary parameters P. Let
L̂ = −λ̂(ω, µ)I+G(iω, µ)J . The system has a trivial
stable equilibrium for µ < 0.

(II) Algorithm: expansions in θ of ej (j = 1, . . . ,
2k), and ξk(ω, µ,P) (k = 1, . . . , q)

Let us suppose that the periodic solution can be
expressed by ỹ(t) = ŷ +

∑2q
j=−2q ej exp(ijωt) after

using a harmonic balance of order 2q with fre-
quency ω. Equating the coefficients of exp(ijωt)
in
∑2q

j=−2q fj exp(ijωt) = F2[ỹ(t), ỹ(t)]/2 (F2 is
a multilinear function defined from the non-
linear terms of f(y, µ,P)), the expressions of
fj = fj(e, µ,P) for j = −2q, . . . , 2q with e =
(e−2q, . . . , e−1, e0, e1, . . . , e2q) where e−j = ej, are
obtained.

We consider v1 = (1/
√

2,−i/
√

2) ∈ N(L̂) and
w = (1/

√
2,−i/

√
2) ∈ N(L̂T ) = Range(L̂)⊥ then,

following the algorithm described before, the expan-
sions in θ of ej are obtained.

The general algorithm uses successively the fol-
lowing expression to find the coefficients of the
expansion in θ of ej ,

for j �= 1,

ej = −(I + G(ijω, µ)J)−1G(ijω, µ)fj(e, µ,P);

(18)

for j = 1 while it uses the orthogonal projection
to find the coefficients of the expansion in θ of v⊥
(e1 = v1θ + v⊥) as solution of

(I − Q)(Lv⊥ + G(iω, µ)f1(e, µ,P)) = 0,

vT
1 v⊥ = 0.

(19)

Then ξk(ω, µ,P) is the coefficient of θ2k+1 in

wT (v⊥(1 + λ̂(ω, µ)) + G(iω, µ)f1(e, µ,P)). (20)

The expansion in θ of each ej defined afterwards
have in bold type the coefficients of the harmonic
expressions necessary to compute for each k the cor-
responding ξk(ω, µ,P) by using (20). These expres-
sions are successively used in (18) and (19) to find
the new coefficients (two larger orders in θ) in the
expansion of the harmonics just considered, and to
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determine the two new harmonics added in each
step.

Let e1 = v1θ, then

A1 = {e = (v1θ, v1θ)}.
If j = 0, 2, e02 and e22 are the coefficients of θ2

in the expansion of e0 and e2, respectively, when the
right-hand side of (18) is evaluated by considering
A1 . Let

A2 = {e = (e22θ
2, v1θ, e02 θ2, v1 θ, e22 θ2)};

e13 is the coefficient of θ3 in the expansion v⊥ in
the solution of (19) when considering A2 . Then

A3 = {e = (e22 θ2, v1 θ + e13θ
3, e02θ

2,

v1θ + e13θ
3, e22 θ2)};

ξ1(ω, µ,P) is the coefficient of θ3 replacing A3

in (20).
If j = 0, 2, 3, 4, e04, e24 and e44 are the coeffi-

cients of θ4 in the expansion of e0, e2 and e4, respec-
tively, when the right-hand side of (18) is evaluated
by considering A3 , and e33 is the coefficient of θ3

in the expansion of e3. Let

A4 = {e = (e44 θ4, e33 θ3, e22 θ2 + e24 θ4,

v1 θ + e13 θ3, e02 θ2 + e04 θ4, v1 θ + e13 θ3,

e22 θ2 + e24 θ4, e33 θ3, e44 θ4)};
e15 is the coefficient of θ5 in the expansion of v⊥ in
the solution of (19) when considering A4 . Then

A5 = {e = (e44 θ4, e33 θ3, e22 θ2 + e24 θ4,

v1 θ + e13 θ3 + e15 θ5, e02 θ2 + e04 θ4,

v1 θ + e13 θ3 + e15 θ5, e22 θ2 + e24 θ4,

e33 θ3, e44 θ4)};
ξ2(ω, µ,P) is the coefficient of θ5 replacing A5

in (20); and so on.
The described algorithm has been implemented

in the symbolic computation framework of Mathe-
matica 6 [Wolfram Research, 2004].

The expressions of ξk(ω, µ,P) for k = 1, . . . , q
are then obtained in order to determine the bifur-
cation equation (14).

Observation. (i) The solution of the equation for
θ = 0 corresponds to the trivial solution while
the nonzero solutions are the periodic orbits with
approximate period 2π.

(ii) In the following, we can see that if we consider
up to the third order, it suffices to enumerate all
possible bifurcation diagrams of periodic orbits by
assuming that they verify (H1)df and (H2)df .

(III) Lemma 1 and P0

Using the information of the real and imaginary
parts of (14), we obtain θ r(θ2, µ,P) = 0. Since
λ∂µ = (−1

2 , 1
2), λ⊥

∂ω = (1
2 ,−1

2), δ = 〈λ∂µ,λ⊥
∂ω〉 =

−1
2 �= 0 (independently of the auxiliary parame-

ters), the condition (H2)df is verified, then by using
the Lemma 1(i) it is obtained:

(i) If ε1 = 〈ξ1,λ
⊥
∂ω〉 = −1

8 λ5(λ3 − λ6) �= 0 the
normal form is Z2-equivalent to

θ

(
ε1θ

2 − 1
2
µ

)
= 0,

then the problem results in a classical Hopf
bifurcation of codimension zero, i.e. there does
not exist multiplicity of limit cycles by small
perturbations, at least locally. In the case that
the coefficient ε1 is zero, a higher-order expan-
sion should be taken and Lemma 1(ii1) for
q = 2 should be used.

(ii) Let

(dc1)




〈ξ1,λ
⊥
∂ω〉 =

−1
8

λ5(λ3 − λ6)

= 0, then consider λ5 = 0,

λ6 − λ3 �= 0,

〈ξ1,λ
⊥
∂µ〉 =

−1
24

(−16λ2
2 − 18λ2

3 − 9λ3λ4

−λ2
4 + 12λ3λ6

+ λ4λ6 − 10λ2
6)

= 0 (with λ5 = 0);

for P0 verifying (dc1) then ε2 = 〈ξ2,λ⊥
∂ω〉

2 =
1
24λ2λ4(λ3−λ6)(5λ3 +λ4−5λ6), if ε2 �= 0 then
the normal form is Z2-equivalent to

θ(ε2θ
4 − 1

2
µ) = 0,

the problem results in a degenerate Hopf bifur-
cation of codimension one, then the universal
unfolding is
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θ

(
ε2(P)θ4 − 1

2
µ + ε1(P)θ2

)
= 0,

and it can have limit cycle multiplicity. In case
the coefficient ε2 is zero, a higher-order expan-
sion should be considered, and Lemma 1(ii1)
for q = 3 should be used.

(iii) Let (dc2){〈ξ2,λ
⊥
∂ω〉 = 1

12λ2λ4(λ3 − λ6)(5λ3 +
λ4 − 5λ6) = 0, then consider λ4 = 5(λ6 − λ3);
for P0 verifying (dc1) and (dc2) then ε3 =
〈ξ3,λ⊥

∂µ〉
6 = −75

48λ2(λ3 − λ6)3(λ2
2 + λ6(−λ3 +

2λ6)), if ε3 �= 0 then the normal form is
Z2-equivalent to

θ

(
ε3θ

6 − 1
2
µ

)
= 0, (21)

the problem results in a degenerate Hopf
bifurcation of codimension two. The universal
unfolding is

θ

(
ε3(P)θ6 − 1

2
µ + ε2(P)θ4 + ε1(P)θ2

)
= 0,

(22)

and it can have limit cycle multiplicity. In the
Appendix, the general expressions of ε1(P),
ε2(P) and ε3(P) are collected.

For P0 verifying (dc1) and (dc2), ε1 = ε1(P0) =
−1
8 λ5(λ3−λ6), ε2 = ε2(P0) = 1

24λ2λ4(λ3−λ6)(5λ3+
λ4 − 5λ6), and ε3 = ε3(P0) = −75

48λ2(λ3 −λ6)3(λ2
2 +

λ6(−λ3 + 2λ6)).

Observations. (i) If 〈ξ3,λ
⊥
∂µ〉 = 0 then 〈ξk,λ

⊥
∂µ〉 =

0 ∀ k ≥ 4. In this case the results developed in [Gol-
ubitsky & Langford, 1981] determine that it suffices
to study the expansion up to q = 3. This is Bautin
result which shows that the singularity transforms
in a center when ε1 = ε2 = ε3 = 0 and then it is not
possible to find four local limit cycles from a sin-
gle equilibrium point when the planar system has a
quadratic nonlinearity.

(ii) The values εk, k = 1, 2, 3 differ from the ones
found by other methods by a positive constant value
[Farr et al., 1989; Gaiko, 2003].

(iii) In the case that ε1 = ε2 = 0 and ε3 �= 0 the
system is said to have a weak focus of third order
(the first nonvanishing coefficient is θ6).

(iv) The sixth order approximation of the periodic
solution is enough to study all the perturbations of
a weak focus of order 3 [Chow et al., 1994; Farr
et al., 1989].

Fig. 4. Bifurcation diagrams for the normal form of a weak
focus of third order.

Let us define P0 = {(λ2, λ3, λ4, 0, λ6) : λ4 =
5(λ6 − λ3), λ2(λ2

2 + λ6(−λ3 + 2λ6)) �= 0 and λ6 −
λ3 �= 0}. The equation θ(r(θ2, µ,P0)) = 0 is Z2-
equivalent to (21), a normal form of the weak focus
of third order. The nonzero solutions of that equa-
tion represent the periodic solutions of the original
system. In Fig. 4, the two possible bifurcation dia-
grams are shown with their respective stability. The
system has a stable equilibrium for µ < 0, then if
ε3 > 0, a stable periodic orbit branch appears while
if ε3 < 0, an unstable periodic orbit branch arises.

(IV) A particular case: λ3 as the control parameter

Consider the bifurcation equation obtained with the
frequency method (22) as a universal unfolding of
(21), for ε3 �= 0. The explicit expressions of the
coefficients in terms of original parameters P, for
a particular case, are used to control the existence
of multiple cycles. A particular case in which λ3

is the control parameter is considered in order to
determine the regions where one, two or three limit
cycles exist. Let us consider

Pλ3 =
(
− 36

100
, λ3,−30 665

10 000
,− 1

1000
,

4
10

)
,

with ε3(Pλ3) �= 0 and ε1(Pλ3) and ε2(Pλ3) being the
parameters of the universal unfolding.

By using the information of the transition vari-
eties it is possible to find several intervals of λ3 in
which there are certain distinctive local diagrams
of limit cycles bifurcations which are valid in a
neighborhood of (µ, θ) = (0, 0). In each of these
curves the bifurcation diagrams are not persistent,
it means that even a small perturbation modifies
drastically the shape of the periodic branches. Some
distinctive sets are separated from the following
transition varieties:

H0 = {ε1(Pλ3) = 0},

H1 =
{

ε1(Pλ3) =
ε2(Pλ3)

2

3
, ε2(Pλ3) ≤ 0

}
,
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Fig. 5. Persistent diagrams corresponding to parameter λ3 ∈ (−4633, 0.652761).

D =
{

ε1(Pλ3) =
ε2(Pλ3)

2

4
, ε2(Pλ3) ≤ 0

}
.

The transition varieties and the sign(ε3(Pλ3))
determine intervals of λ3,

R1(λ3) = {ε1(Pλ3) < 0 ∩ (ε3(Pλ3) > 0

∪ ε3(Pλ3) < 0)},
an interval in which up to two limit cycles can
appear;

R2(λ3) = {((ε1(Pλ3) > 0 ∩ ε2(Pλ3) > 0)

∪−3ε1(Pλ3) + ε2(Pλ3)
2 < 0)

∩ (ε3(Pλ3) > 0 ∪ ε3(Pλ3) < 0)},
a zone in which one cycle appears; and

R3(λ3) = {(ε1(Pλ3) > 0 ∩ ε2(Pλ3) < 0

∩−3ε1(Pλ3) + ε2(Pλ3)
2 > 0)

∩ (ε3(Pλ3) > 0 ∪ ε3(Pλ3) < 0)},
an interval in which up to three limit cycles can
appear.

Then, an induced division of intervals of λ3

is obtained according to the number of limit
cycles and sign(ε3(Pλ3)), where the diagrams
of bifurcation are valid in a neighborhood of
(µ, θ) = (0, 0). These intervals are given by the

following expressions:

R1(λ3) = {0.4 < λ3 < 0.652761 ∪ 1.005999

< λ3 < 1.44686}ε3(Pλ3
)>0

∪{−4633.09 < λ3 < 0.4}ε3(Pλ3
)<0,

R2(λ3) = {1.00479 < λ3 < 1.005999

∪λ3 > 1.44686}ε3(Pλ3
)<0,

R3(λ3) = {0.652761 < λ3 < 1.00479}ε3(Pλ3
)<0.

The persistent bifurcation diagrams of R1(λ3),
R2(λ3) and R3(λ3), which are valid in a neighbor-
hood of (µ, θ) = (0, 0), are shown in Figs. 5–7. The
stability of the limit cycles are determined by using
topological arguments.

(V) Some comparisons using FDM, XPPAUT,
LOCBIF

In the following tables the results are obtained using
the frequency domain method (FDM), XPPAUT
and LOCBIF.

Let us consider λ3 = 0.5, then the bifurcation
diagram corresponds to two nested limit cycles for
certain values of µ. The detection of the saddle-node
bifurcation of cycles using FDM and XPPAUT is
in good agreement compared to LOCBIF, which
clearly fails in obtaining the correct result (see
Table 1).

Fig. 6. Persistent diagrams corresponding to parameter λ3 ∈ (0.652761, 1.00599).

1250197-12



September 1, 2012 8:47 WSPC/S0218-1274 1250197

Generalized Hopf Bifurcation in a Frequency Domain Formulation

Fig. 7. Persistent diagrams corresponding to parameter λ3 ∈ (1.00599, . . .).

Table 1. Values of the saddle-node bifurcation of cycles using FDM, XPPAUT
and LOCBIF for λ3 = 0.5.

FDM XPPAUT LOCBIF

µ −6.60874 × 10−9 −6.61743 × 10−9 0.143785 × 10−5

θ 0.022990772026 — —

x1max 0.0324013 0.0325279 0.08130336

T 6.28391 6.28391 6.2888877

By moving to region R3(λ3) for λ3 = 1 and
λ3 = 0.98, the bifurcation diagrams show up to
three nested limit cycles for certain values of µ. In
this case, the detection of the closest saddle-node
bifurcation of cycles to the equilibrium point is in
good agreement between FDM and XPPAUT com-
pared to LOCBIF (Tables 2 and 4).

On the other hand for the detection of the
farthest saddle-node bifurcation, XPPAUT and
LOCBIF results are in good agreement (see Tables 3

and 5) and clearly the FDM gives a mistaken detec-
tion due to its local nature.

In all the continuation computations, the
results of XPPAUT are considered the most accu-
rate among the used methods. Concerning the
approximations of the maximum amplitude of limit
cycles, it is well-known that LOCBIF results are
dependent on the starting condition so the values
of the tables should be considered with this severe
constraint. Finally, it is important to recognize that

Table 2. Values of the closest saddle-node bifurcation of cycles using FDM,
XPPAUT and LOCBIF for λ3 = 1.

FDM XPPAUT LOCBIF

µ −1.630061 × 10−6 −1.625689 × 10−6 −1.3650 × 10−6

θ 0.151323 — —

x1max 0.211414 0.221542 0.18239

T 6.28215 6.2821 6.28206

Table 3. Values of the farthest saddle-node bifurcation of cycles using FDM,
XPPAUT and LOCBIF for λ3 = 1.

FDM XPPAUT LOCBIF

µ 1.35767 × 10−5 3.125773 × 10−5 3.11091 × 10−5

θ 0.38862 — —

x1max 0.56323 0.820185 0.81181

T 6.27888 6.2787 6.27877
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Table 4. Values of the closest saddle-node bifurcation of cycles using FDM,
XPPAUT and LOCBIF for λ3 = 0.98.

FDM XPPAUT LOCBIF

µ −5.95068 × 10−7 −5.949686 × 10−7 0.621585 × 10−8

θ 0.0909926 — —

x1max 0.127321 0.1312512 0.1114841

T 6.28251 6.2825 6.282310

Table 5. Values of the farthest saddle-node bifurcation of cycles using FDM,
XPPAUT and LOCBIF for λ3 = 0.98.

FDM XPPAUT LOCBIF

µ 0.272415 × 10−3 0.968583 × 10−3 0.9684659 × 10−3

θ 0.5640684 — —

x1max 0.890431 2.3086 1.511434

T 6.26838 6.2798 6.279882

the proximity to a weak focus alerts on the use of
a standard simulation for verification purposes due
to its extremely slow convergence.

5. Conclusions

In the current article, an improved higher-order
harmonic balance approximation via a frequency
domain approach based on [Mees, 1981; Moiola &
Chen, 1996] has been presented. The novel result
is a particular bifurcation equation for which the
methodology presented in [Golubitsky & Schaeffer,
1985] has been applied and an efficient symbolic
computation has been implemented. By using this
approach, it is possible, at least locally, to delimit
the regions with different limit cycle multistabil-
ity in the parameter space and also trace the con-
tinuation of periodic solutions. This approach has
also served to approximate with great precision the
smallest limit cycles arising in the unfolding of a
weak focus in the classical Bautin example and,
at the same time, make comparisons with stan-
dard bifurcation packages such as XPPAUT and
LOCBIF. More specifically, it has been shown from
the results of Tables 1, 2 and 4, that LOCBIF
fails to predict precisely the location of the clos-
est saddle-node of limit cycles to the equilibrium,
while the FDM results agree very well with those of
XPPAUT. On the other hand, the detection of the
farthest saddle-node bifurcations of cycles (Tables 3
and 5) has been proved to be quite tough when

using local approaches such as the FDM. Finally,
the present paper completes previous attempts to
characterize degenerate Hopf bifurcations made by
[Moiola & Chen, 1996] and [Calandrini et al., 1999]
using a combination set of analytical and numerical
techniques.
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Appendix

The general expressions for the coefficients of the
universal unfolding (22) in terms of the original
auxiliary parameters are:

ε1(P) = −1
8
λ5(λ3 − λ6),

ε2(P) =
−1
48

(λ3 − λ6)(32λ2
2λ5 − 4λ2(−5λ2

5 + λ4(5λ3 + λ4 − 5λ6))

+ λ5(12λ2
3 + 5λ3λ4 − λ2

4 + 3λ2
5 + 4λ3λ6 + 3λ4λ6 + 16λ2

6)),

ε3(P) =
−1

9216
(λ3 − λ6)(52224λ4

2λ5 + 16λ2
2λ5(5700λ2

3 + 500λ3λ4 − 485λ2
4 + 1755λ2

5 − 6248λ3λ6

+ 1340λ4λ6 + 7076λ2
6) + 128λ3

2(497λ
2
5 + λ4(−580λ3 − 89λ4 + 580λ6))

− 8λ2(8100λ3
3λ4 + 98λ4

4 − 645λ4
5 − 852λ3

4λ6 − 9124λ2
5λ

2
6 + 30λ2

3(233λ
2
4 − 282λ2

5 − 346λ4λ6)

+ 4λ4λ6(399λ2
5 − 865λ2

6) + 21λ2
4(λ

2
5 + 78λ2

6) + 4λ3(391λ3
4 − 1037λ4λ

2
5 − 1801λ2

4λ6
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+ 2408λ2
5λ6 + 1435λ4λ

2
6)) + λ5(15444λ4

3 − 459λ4
4 + 325λ4

5 + 1678λ3
4λ6 + 108λ3

3(87λ4 − 44λ6)

+ 9057λ2
5λ

2
6 + 25556λ4

6 + 17λ2
4(26λ

2
5 − 175λ2

6) + 3λ2
3(−2397λ2

4 + 4259λ2
5 + 2364λ4λ6 + 6312λ2

6)

+ 2λ3(−2283λ3
4 + 3933λ4λ

2
5 + 4883λ2

4λ6 − 6253λ2
5λ6 + 4894λ4λ

2
6 − 1480λ3

6)

+ λ4(−3906λ2
5λ6 + 3164λ3

6))).
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