
1748 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 17, NO. 6, JUNE 2016

A Flexible System Architecture for Acquisition
and Storage of Naturalistic Driving Data

Asher Bender, James R. Ward, Stewart Worrall, Marcelo L. Moreyra, Member, IEEE,
Santiago Gerling Konrad, Favio Masson, and Eduardo M. Nebot

Abstract—Innovation in intelligent transportation systems re-
lies on analysis of high-quality data. In this paper, we describe
the design principles behind our data management infrastructure.
The principles we adopt place an emphasis on flexibility and main-
tainability. This is achieved by breaking up code into a modular
design that can be run on many independent processes. Message
passing over a publish–subscribe network enables interprocess
communication and promotes data-driven execution. By following
these principles, rapid prototyping and experimentation with new
sensing modalities and algorithms are possible. The communi-
cation library underpinning our proposed architecture is com-
pared against several popular communication libraries. Features
designed into the system make it decentralized, robust to failure,
and amenable to scaling across multiple machines with minimal
configuration. Code written using the proposed architecture is
compact, transparent, and easy to maintain. Experimentation
shows that our proposed architecture offers a high performance
when compared against alternative communication libraries.

Index Terms—Intelligent transportation systems, naturalistic
driving data, data acquisition, data storage, visualization, commu-
nication, LCM, ZMQ, RabbitMQ, ROS.

I. INTRODUCTION

R ESEARCH fuels innovations in intelligent transportation
systems (ITS). Careful observation, design and testing en-

able this research to progress. For this progression to be produc-
tive, engineers and researchers need access to high quality data.
As a result, reliable and flexible methods for data acquisition,
storage and analysis are key to progressing innovation.

Maintaining data infrastructure is difficult and time consum-
ing. As data systems grow in scale and complexity, managing
the system becomes increasingly resource intensive and prone
to failure. Developing algorithms or software to handle reading,
processing and storage of new sensing modalities can become
an onerous and risky task. Some algorithms or sensing modali-

Manuscript received October 16, 2014; revised April 22, 2015, July 17,
2015, and November 23, 2015; accepted January 19, 2016. Date of publication
February 24, 2016; date of current version May 26, 2016. This work was
supported by the Australian Research Council Linkage Project under Grant
LP120100700. The Associate Editor for this paper was W.-H. Lin.

A. Bender, J. R. Ward, S. Worrall, and E. M. Nebot are with the Intelligent
Vehicles and Safety Systems Group, Australian Centre for Field Robotics,
The University of Sydney, Sydney, N.S.W. 2006, Australia (e-mail: a.bender@
acfr.usyd.edu.au).

M. L. Moreyra is with Universidad Nacional del Comahue (UNCo),
Q8300IBX Neuquén, Argentina.

S. Gerling Konrad and F. Masson are with the Departamento de Ingeniería
Eléctrica y Computadoras, Universidad Nacional del Sur, B8000CPB Bahía
Blanca, Argentina.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TITS.2016.2524523

ties may prove to be useful and will become integrated into the
system. Others may only provide a small return on the effort
invested in experimentation. In the worst case, an algorithm or
sensor will provide no useful information and will be removed
from the system altogether.

The primary focus of this paper is data acquisition. The data
management infrastructure proposed in this paper has been de-
signed to facilitate research. In a research environment, frequent
experimentation with new sensors and algorithms is common.
Reducing the burden of software and hardware integration in
systems under constant development allows engineers and sci-
entists to focus their energy on research and rapid prototyping.
This consideration places an emphasis on designs that are
flexible, maintainable and reliable.

The main contribution of this paper is a strategy for design-
ing software and hardware for collecting naturalistic driving
data. An overview of the design of our data management
infrastructure is shown in Fig. 1. The system architecture is
split into two broad categories: in-vehicle data acquisition and
off-vehicle data acquisition. The in-vehicle data acquisition
system is illustrated on the left side of Fig. 1. Data collected
from vehicle sensors is automatically logged by an automotive
computer. Any process running on the automotive computer can
access or produce data broadcasts. The off-vehicle data acqui-
sition system is illustrated on the right side of Fig. 1. External
infrastructure is able to opportunistically harvest data from
vehicles and insert the records into a centralized database for
later visualization and analysis. Combined, the in-vehicle and
off-vehicle systems are an effective method for accumulating
big data sets due to their lack of reliance on human operators.

The remainder of the paper is structured as follows. Section II
discusses related work in ITS data acquisition systems. In
Section III we propose a generic software architecture for
acquiring data in ITS applications. In Sections IV–VI our in-
vehicle and off-vehicle data collection systems are described.
In Section VII we briefly describe how data collected from
these systems can be visualized. Our system is evaluated in
Section VIII. Finally, Section IX presents our conclusions.

II. RELATED WORK

Previous research projects have developed sophisticated
mechanisms for data acquisition, storage, analysis and visu-
alization. The capacity and flexibility of these systems has
allowed researchers to push the boundaries of ITS and per-
form state-of-the-art research. Notable examples include Bertha
Benz [1], a car capable of operating autonomously in city traffic

1524-9050 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



BENDER et al.: SYSTEM ARCHITECTURE FOR ACQUISITION AND STORAGE OF NATURALISTIC DRIVING DATA 1749

Fig. 1. Overview of data management architectures.

and the competitors in the DARPA Urban [2] and Grand [3]
Challenge.

In addition to single vehicle systems, there have also been
a number of large-scale vehicle-to-vehicle (V2V) trials. Rather
than focusing on autonomy, these trials investigated the collec-
tion of naturalistic driving data [4] and evaluated V2V tech-
nologies [5]. Analysis of big data from vehicular fleets has also
been performed to extract patterns in trip behavior, temporal
relationships and trip distributions from trajectory data gleaned
from taxis [6], [7].

Although previous research projects overcome the challenges
of maintaining data infrastructure, the strategies behind their
success are often over-looked. Publications documenting these
platforms typically provide a high-level overview of the system
design—including topics such as sensing payloads, perception
routines, mission planning strategies and route management.
Little detail is provided on the architectures that provide log-
ging, processing, analysis and data visualization.

For research groups developing new systems, insight into
the design of existing systems will help ensure successful data
collection, storage, analysis and visualization strategies are
adopted. To the authors’ knowledge, there have been no papers
dedicated to this important aspect of experimental work in the
ITS field. This publication addresses this gap in the literature
and documents the architecture behind the core functionality
of our data management system—acquisition, storage, analysis
and visualization. In discussing the design and philosophy
behind our approach we hope to allow others to benefit from
the lessons learned through our experiences.

III. SOFTWARE ARCHITECTURE

Developing software for managing concurrent and complex
tasks is time consuming and difficult. To ensure the success and
longevity of a system, the software must be extensible, easy
to maintain and reliable. In this section we propose a software
architecture for reading, processing and storing data in ITS
applications.

The proposed software architecture is designed to place
an emphasis on flexibility, maintainability and extensibility.
The ability to add new sensors and algorithms to the system
without requiring large changes to the code-base makes the
system an effective tool for research and development. Two
key concepts underpin the design philosophy of the software:

the publish–subscribe paradigm and inter-process communica-
tion. Section III-A motivates the publish–subscribe paradigm
as a method for writing loosely-coupled, maintainable code.
Section III-B shows how inter-process communication can be
used to make the system efficient and fault tolerant.

A. Publish–Subscribe

By breaking up software into units of functionality, small
portions of code can be independently developed and main-
tained. These units can be loosely coupled by defining how
information is transferred from one unit to another. We pursue
loose coupling by using the publish–subscribe paradigm. The
publish–subscribe paradigm is a design pattern for transferring
data from one object to another. Objects, known as publishers,
can make data available by issuing ‘publish’ events. Other
objects, known as subscribers, can receive data by subscribing
a callback function to publish events.

For the publish–subscribe paradigm to operate effectively,
subscribers must know how to interpret the data they receive
via callbacks. This is done by defining a format for each data
type used by the system. These formats are called messages. An
object that generates publish events may only pass one message
type to its subscribers. Following this restriction, by registering
a callback with a publisher, the subscriber acknowledges that it
will receive a particular message. Although publish events are
limited to one message type, an object may host an arbitrary
number of different publish events. Messages passed around
the system inherit from a base message class. Inheritance en-
sures all messages are formatted correctly and contain common
attributes. Defining new message types becomes a trivial task
of inheriting from the base message class and specifying what
fields of data the message will contain.

The advantage of following the publish–subscribe paradigm
is that publishers do not need to consider how the data will be
manipulated once it has been published. Similarly, subscribers
do not need to consider how the data is generated before it is
published. Apart from promoting loosely coupled and reusable
objects, the publish–subscribe paradigm also allows for event
driven software. Software written to read sensor information
can make the data available and drive activity within the system
by issuing publish events. Callbacks designed to process the
sensor data will only be executed once the data has been made
available via the publish events.



1750 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 17, NO. 6, JUNE 2016

B. Inter-Process Communication

The publish–subscribe paradigm described in Section III-A
allows a collection of loosely coupled objects to share data
within a single process. In a complex system, handling all
functionality within a single process is undesirable as it creates
a single point of failure that is difficult to diagnose. By parti-
tioning the system into well defined asynchronous modules, the
system can become distributed.

Since processes operate in independent memory spaces, the
publish–subscribe mechanism (Section III-A) cannot be applied
directly. Inter-process communication must be used to extend
the publish–subscribe paradigm from the object-level to the
process-level. To transfer data, the processes need to share
a common communication mechanism. Any communication
library which supports many-to-many data distribution such as
multicast [8] or star topologies [9], [10] can be used. In our
proposed framework, IPv6 multicasts are used. This transport
mechanism is discussed in greater detail in Section VI.

Using inter-process communication to link processes to-
gether decentralizes the functionality of the system. The pro-
cesses can run on heterogeneous hosts, hardware architectures,
operating systems and languages. Distributing the system across
multiple processes also allows the software to take advantage
of the ever increasing number of processing cores available for
concurrent execution of code. In addition to being efficient,
the multi-process strategy also enhances the integrity of the
system. Since each process has been isolated and allocated its
own resources, if one process fails, it will not cause the whole
system to crash. Similarly, a resource hungry process will not
block or prevent other processes from accessing a fair share of
the system resources.

The topology of the communication network is structured
such that each message type is associated with a specific uni-
form resource identifier (URI). Again, this one-to-one restric-
tion makes the message passing strategy explicit. By listening
for broadcasts on a particular URI, the listener has acknowl-
edged that it will receive a particular message type. Although
a one-to-one mapping exists between URI and message type,
a many-to-many relationship can exist between broadcasters
and listeners. Multiple processes can broadcast to a single
URI while many processes listen for broadcasts. The ability to
subscribe and publish data to a small set of known URIs makes
creating a many-to-many relationship between broadcasters
and listeners both simple and maintainable. Simplifying the
ability to create complex networks of data traffic promotes the
development of systems capable of collecting big data.

In a system containing multiple message types, processes will
need to identify what messages are available and where to locate
them. The network topology is made available to the system via
a message specification which maps from message type to URI.
Processes wishing to participate in and comply with network
traffic must adhere to the specification. To disambiguate where
messages are generated in a many-to-many topology, broad-
casters and listeners can use topics during transmission to filter
messages. For example, in a vehicle equipped with forward and
rear facing cameras, the image messages could be disambiguated
by associating broadcasts with the topics “forward” and “rear”
respectively.

Fig. 2. Example system using inter-process communication to produce state
estimates. Each block represents an independent process capable of producing
and/or consuming data. The lines connecting the processes represent message
broadcasts. The connections formed between processes illustrate dependencies
within the system. To illustrate the flexibility of this architecture, this example
shows a UKF and EKF running in parallel with a switchable source of data for
speed information. The bottom block represents a logging process recording all
messages in the system.

The inter-process communication strategy is demonstrated in
Fig. 2. Each block in the diagram represents an independent
process. The lines connecting the processes represent message
broadcasts. As the diagram shows, processes can be added
or removed from the system. For instance, vehicle speed can
be provided by either the controller area network (CAN) bus
or encoders on the wheels. The switch from one source of
data to another is transparent to the rest of the system. Simi-
larly, algorithms can be added to or removed from the system
transparently. On the far right of Fig. 2, state estimates are
produced in parallel using an unscented Kalman filter (UKF)
and an extended Kalman filter (EKF). The UKF and EKF
estimates can be disambiguated using topics. Normally only a
single position filter that has been tuned to the particular vehicle
model would be run.

IV. IN-VEHICLE DATA ACQUISITION

In-vehicle data acquisition is performed using the software
architecture described in Section III. The type of data available
for logging is discussed briefly in Section IV-A. The automotive
computer used to run our software architecture and log sensor
data is discussed in Section IV-B. Implementation details of the
logging system are discussed in Section IV-C.

A. Sensors

Modern advanced driver assistance systems (ADAS) are
monitoring increasingly sophisticated driving tasks and provid-
ing support and functionality such as lane departure warnings,
adaptive cruise control and automatic parking. Next generation
ADAS such as detecting pedestrians [11], inferring driver intent
[12], [13] and advanced collision avoidance systems [14], [15]
require complex sensing modalities to gather the data they
require to fulfill their objectives.

Developing next generation ADAS will require experiment-
ing with multiple, possibly novel, sensing modalities. One of



BENDER et al.: SYSTEM ARCHITECTURE FOR ACQUISITION AND STORAGE OF NATURALISTIC DRIVING DATA 1751

Fig. 3. Research vehicle equipped with multiple sensing modalities, includ-
ing LIDAR, RADAR, GNSS and an inertial system (3-axis gyroscopes and
accelerometers).

our research vehicles is shown in Fig. 3 as an example of an
experimental system with many sensing modalities. The sen-
sors itemized in the following list are commonly found in ITS
research programs.

• Inertial measurement unit (IMU)
• Global navigation satellite systems (GNSS)
• LIDAR
• RADAR
• MobileEye
• CAN messages
• Dedicated short-range communications (DSRC) radio

module

Aggregating multiple sources of data commonly found in ITS
research platforms motivates the need for a system designed
to centralize and record all of the sensor data generated by a
vehicle. The automotive computer described in Section IV-B
fulfils this need and acts a flexible central node for processing
sensor data.

B. Automotive Computer

Sensor data in our research vehicles are logged and processed
on a custom assembled automotive computer. The hardware
components of this system are shown in Fig. 4. For the sake
of brevity, we refer to this hardware as the Blackbox.

The Blackbox is based on a mini-ITX, x86 motherboard in
a ruggedized computer housing. The hardware was selected to
fulfill the design criteria of logging sensor data, light processing
and network provision. Consumer grade components are used
internally to reduce the cost, lead times and simplify upgrades
in response to increased computing requirements. Currently the
Blackboxes are equipped with an Intel G3420 processor and
4GB of RAM. Data is logged to a solid-state hard disk drive.

Network connectivity is provided by a gigabit switch and
a WiFi USB dongle. V2V and vehicle-to-infrastructure (V2I)
communication is provided by a Cohda Mk4 DSRC radio
module. The network capability provided by the Blackbox allow
it to act either as a central node for coordinating network traffic
or part of a networked system of computers.

Fig. 4. Automotive computer including a gigabit switch, USB WiFi dongle
and DSRC radio module. This hardware forms an easily deployed system for
logging naturalistic driving data.

C. Data Logging

Data analysis is essential for understanding the characteris-
tics of natural driving scenarios and developing new algorithms.
As a result, collecting quality data is fundamental to facilitating
research and advances in ITS applications. One of the primary
objectives of the Blackbox is to provide a mechanism for log-
ging data. This is done using the flexible software architecture
described in Section III.

As described in Section III-B, it is possible for processes to
identify what messages are available in the system and where to
locate them. This makes it possible for any process to access the
network traffic of the entire system. Since there is a one-to-one
mapping between message type and URI, all of the network
traffic can be logged in real-time by subscribing a listener to
each URI in the system. When a message is received the listener
records the time that has elapsed since logging started, the
broadcast topic and message payload to a plain text file. This
strategy results in a log file for each message type broadcast
within the system. A process logging the network traffic is
shown as the bottom block in Fig. 2.

High frequency or large capacity data such as inertial mea-
surements and images can cause the log files to grow in size
rapidly. Large data files are not conducive to opportunistic data
harvesting. Vehicles may only be in range of a roadside unit
(RSU) for a few seconds making it impossible to transfer large
log files. To make the log files amenable to opportunistic har-
vesting, the log files can be split by the number of data entries,
by time or by both. The infrastructure for opportunistic data
harvesting is described in Section V-A.

To prevent uninteresting data from being recorded, the log-
ging system is only initiated when the engine is running.
Similarly the logging system is terminated when the engine
is turned off. While promoting efficient use of resources, this
automatic logging system is also convenient as it does not
depend on a human operator. Datasets are defined by engine-on
and engine-off events. Each dataset is stored in a newly created,
time stamped directory.



1752 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 17, NO. 6, JUNE 2016

Fig. 5. Sequence diagram of opportunistic data harvesting. Events occur in
time sequence down the diagram.

V. OFF-VEHICLE DATA ACQUISITION

The in-vehicle data acquisition system described in Section IV
is capable of automatically recording a complex payload of
sensor data. While these systems can be used in vehicle trials,
their usefulness is hampered by the need for human operators to
manually retrieve data files recorded by the system on a regular
basis. Manual intervention is not amenable to accruing big data.

This section describes additional infrastructure, outside the
vehicle, that transforms the system into one that is capable of
automatically harvesting data from the in-vehicle data acqui-
sition systems. Again, the software architecture described in
Section III is used as a backbone for the system. Section V-A
describes how data is automatically harvested from in-vehicle
data acquisition systems. Section V-B describes how the har-
vested data is stored in a central database.

A. Opportunistic Data Harvesting

An important feature of our system is that off-vehicle data
acquisition systems are able to harvest data logged by in-
vehicle data acquisition systems. Our off-vehicle data acqui-
sition systems are implemented in RSUs equipped with DSRC
and connected to a centralized database. Once a vehicle is able
to connect to a RSU using DSRC, data can be transferred to a
centralized database. We have demonstrated the value of such
an approach in the context of mining and mining safety [16],
[17] and apply a similar approach to ITS.

A sequence diagram of the process is shown in Fig. 5. In or-
der to avoid creating and tearing down routes on the automotive
computer whenever the DSRC radio establishes communica-
tion with an RSU, the sequence is initiated and controlled by the
DSRC radio. The first step is to determine whether communica-
tions can be established with the database server via the RSU.
The DSRC unit periodically pings the database server and
listens for a response. If a response is received it begins the data
harvesting process. This is done by establishing an ssh tunnel
between the automotive computer and the database server. This
design was chosen because the DSRC radio already needs
to connect to the automotive computer via ssh to initiate file
transfers, so the tunnel setup can be integrated into this process.
Once the tunnel is established, the automotive computer runs
rsync to transfer files. Files that are successfully transferred are

deleted from the automotive computer. This eliminates the need
for periodic maintenance to ensure there is appropriate disk
space on the automotive computer. The database server peri-
odically polls the directory where uploaded log files are stored
and any new ones are processed using the method described
in Section V-B.

Since the in-vehicle data acquisition system logs different
message types in separate files, the harvesting system can be
configured to prioritize certain messages types. This is done so
that information can be recovered from vehicles while respect-
ing bandwidth limitations of the V2I network. Message prior-
ities can be configured for the requirements of the particular
deployment. For example in a real-time monitoring application,
state information such as position and speed could be priori-
tized over bandwidth intensive camera data.

A natural result of this architecture is that as the number of
RSUs is increased, the latency between when a vehicle logs data
and when it is available in the database decreases. If infrastruc-
ture is deployed such that a given vehicle is always in contact
with an RSU then the data from the vehicle will be available
in real-time, without any change to the fundamental underlying
configuration of the system. This opens up the possibility of
traffic monitoring and management in real-time.

B. Database

The database server has a PostgreSQL/PostGIS database. As
log files are harvested from the vehicles they are parsed and
stored in the database. The log files are also stored on the server
for backup purposes. The geographic information system (GIS)
extensions in the database make selecting data on a geospatial
basis far simpler than searching through the log files.

Each message in the raw data is processed in a straightfor-
ward manner. If the message contains geospatial information,
it is extracted from the message and combined into a single
PostGIS geometry entity. Messages in this category include
global navigation satellite systems (GNSS) messages, received
DSRC Basic Safety Messages (BSM) and messages from posi-
tion filters such as UKFs. Since PostgreSQL can handle JSON
as a native type and messages are stored as associative arrays,
non-geospatial data are translated into a JSON representation
and injected directly into the database. The advantage of such
an approach is that messages with optional fields can be stored,
indexed and queried in the database. This provides the com-
bined benefits of being able to store semi-structured data and
the power of SQL indexing and geospatial queries. It is this
flexibility that allows the reporting and visualization discussed
in Section VII.

The way data is transferred from vehicles to the database
allows sharding to be used for load balancing and scalability.
For example, many database instances can be established at dif-
ferent sites with each database connected to local RSUs. Load
balancing on the individual databases is achieved by connecting
only a small number of RSUs that have a large amount of
vehicular traffic (and therefore large data downloads). These
database shards can then agglomerate their data into a single
instance using established database sharding tools. The scala-
bility of the system is thus only constrained by the database



BENDER et al.: SYSTEM ARCHITECTURE FOR ACQUISITION AND STORAGE OF NATURALISTIC DRIVING DATA 1753

backend, and not the V2I network itself. Advanced techniques
for the storage, replication and load balancing of big data from
vehicular systems is discussed in [18] and could be applied to
our architecture.

VI. COMMUNICATION

The software architecture discussed in Section III and the
hardware discussed in Sections IV and V require well defined
communications protocols. In Section VI-A we nominate IPv6
UDP multicasting for use as a network transport mechanism. In
Section VI-B we discuss how the network can be configured to
facilitate IPv6 UDP multicasting between devices.

A. Software

The inter-process communications architecture described in
Section III-B requires a network transport that can support a
many-to-many data distribution. The transport mechanism we
have adopted for inter-process communication is IPv6 UDP
multicasting. This is a similar design to the lightweight commu-
nications and marshalling (LCM) [8] library which uses IPv4
UDP multicasting. IPv6 is preferred because the creation of
multicast groups and routes is greatly simplified over IPv4.

Within the software architecture, each message type is asso-
ciated with a unique multicast group. Publishers and subscribers
can begin to transmit or receive messages by subscribing to a
multicast group. Using multicast groups in this way is advanta-
geous as the decision to forward a message across the network
is transparent to the high-level software architecture. These de-
cisions are handled at the network level by switches and routers
in the network.

Since our transport mechanism relies on UDP rather than
TCP connections, there is no guarantee of message delivery
or message ordering. UDP is also unable to transmit large
messages, such as big images. To handle large payloads, a split-
ting and marshalling system has been implemented. Again, this
approach is similar to LCM.

B. Configuration

In order to make the network as transparent to the software
architecture as possible, an addressing scheme was chosen that
makes configuration and service discovery easy. The addressing
scheme for a typical in-vehicle data acquisition system and
RSU node is shown in Fig. 6 and summarized in Table I.

Each in-vehicle data acquisition system has three main com-
ponents, as can be seen in Fig. 4 and the left-hand side of
Fig. 6. These are the Ethernet switch, automotive computer,
and DSRC radio module. Ethernet connections are assigned
addresses in the 2001:db8:0:0nnn::/64 subnet—where
nnn is the equipment unit number. The automotive computer is
assigned the static IP address 2001:db8:0:0nnn::1/64,
and the DSRC radio 2001:db8:0:0nnn::2/64.

Any devices connected to the network via the Ethernet switch
can auto-configure their IP address based on the prefix adver-
tised by a radvd daemon running on the automotive computer.
The radvd daemon also advertises the 2001:db8:0:1nnn:
:/64 prefix on the WiFi interface. A route to the 2001:db8:
0:0nnn::/64 and2001:db8:0::/64 subnets is provided

Fig. 6. IPv6 addressing scheme. Addresses are represented in the 2001:db8::/32
documentation namespace. Actual implementation of this scheme can be in any
prefix.

TABLE I
SUMMARY OF IPV6 ADDRESSING SCHEME

allowing WiFi connected devices to talk directly to the DSRC
radio. The DSRC radio is able to provide V2V and V2I function-
ality by establishing ad-hoc connections with other DSRC nodes.
The DSRC radio behaves like a standard network interface and
is allocated the address 2001:db8:0:2nnn::2/64.

The physical devices of the RSU are simpler but the network
configuration of each interface is a little more complicated. The
DSRC radio unit has the same address for the DSRC interface
but also has a radvd advertising the prefix for other DSRC nodes
that connect to it. The database server is located at addresses
2001:db8:0:3nnn::3/64 and 2001:db8:0:3000::
3/64, where nnn is the number of the server.

To make the network easier to use, each network interface
in an in-vehicle data acquisition system and RSU is allocated
an anycast address. This means that the interfaces share these
addresses across all devices. The first to receive a request at
an address will answer. Automotive computers are allocated
the anycast address 2001:db8::1/64, DSRC radios 2001:
db8::2/64 and database servers 2001:db8::3/64. The
outcome is that a device connecting to the network does not
need to know the unit number. For example, by connecting
to 2001:db8::1/64, the device will get the nearest auto-
motive computer. Database servers share the anycast addresses
2001:db8:0:3000::3/64 and 2001:db8::3/64.

VII. DATA VISUALIZATION

The software architecture discussed in Section III and the
hardware discussed in Sections IV and V allow large volumes



1754 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 17, NO. 6, JUNE 2016

Fig. 7. Live data displayed on a tablet computer including video feed from the
front camera.

of data to be automatically harvested from vehicles. Collecting
data from multiple vehicles over an extended period of time has
the potential to amass vast quantities of data. Visualizing this
big data is an important preliminary step in extracting useful
information.

Our architecture is flexible and offers many ways to vi-
sualize the data. The system described in this paper permits
real-time display of data. This is discussed in Section VII-A.
Off-vehicle methods for visualizing data are discussed in
Section VII-B.

A. In-Vehicle Visualization

Any mobile device with the capacity to connect to a wireless
network is able to access data broadcasts within the Blackbox.
Mobile devices can connect with the Blackbox via the WiFi
network it provides. Although this capability is useful for
exchanging information between devices, connected mobile
devices would require additional software to read and display
the data broadcasts. Instead of requiring mobile devices to rely
on specialized software, summary data is made available via
a website hosted on each Blackbox. Once on the Blackbox
network, mobile devices only require a browser to view live
system updates.

The Blackboxes also host a PostgreSQL database [19] with
GIS extensions [20] installed on it. This allows OpenStreetMap
(OSM) data to be stored on-board the vehicle for a local region.
This data provides a rich source of contextual information to
the wider software ecosystem such as the name of the current
street, the speed limit or distance to the next intersection.

An example illustrating a tablet device connected to the vehi-
cle WiFi network is shown in Fig. 7. The device has navigated
to the locally hosted website which is serving the current posi-
tion of the vehicle, the surrounding OSM tiles and an intruder
vehicle communicating via DSRC. This sort of visualization al-
lows researchers to coordinate maneuvers in multi-vehicle field
trials and confirm that data is being logged properly. Real-time
visualization also forms the basis for providing information to
the driver to improve situational awareness. Visualization can
include information about any threats that the system identifies,
such as increased risk of collision or abnormal behavior of
other vehicles.

Fig. 8. Geo-spatial analysis showing vehicle speed as a heat map.

B. Off-Vehicle Visualization

Several methods of off-vehicle visualization are available.
The data can be replayed as if it were a live system, as discussed
in Section VII-B1. Alternatively, large volumes of data can
be mined from the database to provide a rich source for 2D
visualization, as described in Section VII-B2. Section VII-B3
describes how historic data can be used to simulate traffic
environments.

1) Playback: Real-time playback of historic data provides a
repeatable mechanism for testing new algorithms in an artificial
environment based on real data. Testing algorithms in this
environment allows them to be developed and validated using
historic data prior to costly field trials and deployments.

Using inter-process communication (Section III-B) to trans-
fer data between processes has the useful property that for
processes receiving messages, there is no difference between
live and replayed data. Data consumers have no way of identify-
ing if the data is being generated live, or if historic data is being
re-injected into the system. To playback data, a broadcaster can
be created for each message type in the system. The logged
messages are then read from the log files (Section IV-C) or
database (Section V-B) and published via the appropriate broad-
caster. The order and timing of broadcasts during playback is
structured to replicate the traffic that was originally observed
during logging.

2) Database Queries: Over time, the database is able to
automatically acquire a large amount of data from multiple
vehicles. Aggregating data in one location allows queries to be
formed about the performance of individual drivers, types of
drivers, geospatial locations or entire transport networks. Traf-
fic flow rates and congestion, hotspots for traffic rule violations,
near misses, and network efficiencies can all be reported upon
with the richness of data collected.

Geospatially referenced data can easily be reported using
a top-view heat map such as in Fig. 8. Even more complex
queries such as selecting all data where vehicles stopped within
50 meters of a traffic signal are trivial to implement. The results
of this query are shown in Fig. 9.

3) Simulation: Traditional visualization of traffic data is typ-
ically performed in either geospatial or temporal domains. Col-
ored maps and time series graphs are common representations



BENDER et al.: SYSTEM ARCHITECTURE FOR ACQUISITION AND STORAGE OF NATURALISTIC DRIVING DATA 1755

Fig. 9. Geospatial query performed on database to return all positions where
a vehicle is stationary within 50 meters of a traffic signal. These positions are
shown as red octagonal markers.

Fig. 10. 3D visualization tool used to replay logged data. Note the annotations
that can be added to the scene, and the close correspondence between the
simulated environment and the video still (middle, right image) captured during
the trial.

in these two domains [21]. An alternative method for analyzing
this information is to unify the geospatial and temporal domains
in an immersive, three-dimensional environment. Visualizing
the data in this way provides a natural and intuitive method for
people to relate to traffic interactions.

Fig. 10 shows work we have done to replay logged data within
a 3D engine. Fig. 11 shows the variety of data sources that can
act as inputs to the simulation. Logged data is combined with al-
gorithms and agent models to produce a simulated environment.
To add realism, geospatial information and street level imagery
are added to the scene. Several 3D game engines are capable
of implementing this visualization strategy and have been dis-
cussed in the literature [22]. In our work, Unity3D is used.

Accurate simulated environments are a useful research tool.
On a very basic level, the simulated environment provides a
mechanism for visualizing recorded data from any point of
view. For example, the data can be viewed from the perspective
of any driver or pedestrian in the scene. However, the utility
of a simulator is not limited to replaying recorded data. Future
simulators will be capable of running synthetic scenarios with
simulated agents. To convincingly depict agents in synthetic
scenarios, statistically accurate models of driver behavior need
to be developed. As large databases of naturalistic driving
data are collected, these models will be developed. The ability
to create synthetic traffic scenarios will enable researchers to
study driver behavior in a safe and controlled environment
without the cost and resources required for live testing.

Fig. 11. Operational scheme of the proposed visualization tool. The core is a 3D
game engine with inputs from the logged data, algorithms, models and maps.
The output is a 3D environment with the potential to introduce synthetic agents.

VIII. EVALUATION

The foundation of our proposed architecture is the software
paradigm described in Section III and the IPv6 communication
strategy described in Section VI. A high-level comparison of
our proposed software architecture and several other communi-
cations libraries is included in Section VIII-A. The performance
of our system, relative to the other communication libraries,
is quantified in Section VIII-B. A broader evaluation of our
software architecture and its application to our research is
discussed in Section VIII-C.

A. Comparison

Motivating factors in the design of our system were extensi-
bility, ease of maintenance and reliability. We call the communi-
cation backbone of our system the multiprocess communications
library (MCL) and have made it publicly available [23]. Prior
to developing this software we considered LCM [8], ZMQ [24],
robot operating system (ROS) and RabbitMQ (RabbitMQ) [9].
A comparison of key differences between the communication
libraries is shown in Table II. These libraries can be broadly
divided into two categories: centralized and decentralized.

ROS and RabbitMQ are similar in that a central service is
needed to facilitate message routing. The problem with these ar-
chitectures is that the central service forms a single point of fail-
ure that can disable communication within the system. While
adding new processes or messages is relatively trivial, adding
new nodes to the system requires extra configuration. Each ma-
chine that joins the network needs to know both a message spec-
ification and the location of the central service. In our software
architecture, nodes joining the network only need to acknowl-
edge the message specification. They do not need to perform
any configuration. By acknowledging each message type is
uniquely associated with a multicast address, new nodes can
participate by simply joining the network.

ZMQ is a high performance communication library that
provides a socket-like interface for transmitting and receiving
data. One of our goals was to implement a communication
system where many-to-many connections are possible. That is,
many broadcasters can publish data on the network to many



1756 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 17, NO. 6, JUNE 2016

TABLE II
COMPARISON OF COMMUNICATION LIBRARIES

consumers. While ZMQ allows many connections to listen for
data on a particular socket, only one process can bind to a socket
and publish. To allow a many-to-many topology, complex net-
works, a directory service or broker need to be implemented.
Robustly implementing these solutions is a challenging task.

Our system is most similar to LCM. In LCM, strongly typed
messages are broadcast using IPv4 UDP multicasts. In our archi-
tecture weakly typed messages are broadcast using IPv6 UDP
multicasts. By utilizing multicasts, both libraries are robust in
the sense that there is no single point of failure. Rather than
relying on brokers or discovery services, multicasts allow any
process to listen for or broadcast data on a particular address. If
a particular process blocks, it will not impede the ability of the
other processes to communicate. A point of difference between
the libraries is that our library is capable of transmitting weakly
typed messages where any serializable object may be trans-
mitted. While our software allows messages with mandatory
fields to be defined, it is also possible to dynamically create and
transmit new fields. In LCM, messages are strongly typed mak-
ing it impossible to dynamically add new fields to a message.

The communication libraries can also be categorized by the
protocol used to transmit data. ZMQ, ROS and RabbitMQ use
TCP to transmit data. MCL and LCM use UDP to multicast
data. TCP is a more robust protocol as it guarantees trans-
mission and order of delivery whereas UDP does not. On the
other hand, UDP offers lower latency and a connectionless
transmission model. The connectionless transmission model is
what allows the UDP based communication libraries to operate
in a decentralized manner.

B. Quantitative

Our tests are structured similarly to the tests performed in
[8]. A single process transmits ping messages at various rates.
A number of client processes receive the ping messages and
echo the data as a pong message. A final process is used to log
all of the network traffic. The logged data is used to calculate
network performance.

Network performance is quantified by both bandwidth and
latency. Transmission bandwidth is calculated by comparing
the observed number of logged pings against the target send
rate. This measures the software’s capacity to send data at high
frequencies. The receive bandwidth is calculated by comparing
the observed number of logged pongs against the target ping
send rate. This measures the software’s capacity to receive data
at high frequencies. Note that the receive rate will be limited
by the transmission rate. The time is recorded when each ping
message is created and transmitted. The time is also recorded
when a client receives a ping message and copies the data into
a pong message. These two time-stamps are used to calculate
the latency of sending data over the network.

In the following tests ZMQ, LCM, ROS and RabbitMQ are
compared to our system. To ensure the implementations are
as comparable as possible, an effort was made to standardize
the testing code for each communication library. As mentioned
earlier, the primary motivating principles in the design of our
system are rapid prototyping and ease of development. Fol-
lowing these considerations our software language of choice
is Python. We have consciously traded-off the performance
of compiled languages like C++ for ease of development.
The tests discussed in this section were conducted in Python.
The results presented are objective when comparing the com-
munication libraries for use in Python. Care must be taken
not to view the results as an absolute statement of perfor-
mance that applies across all language implementations of each
library.

1) Localhost: To test the software’s ability to scale with
multiple processes, a single machine hosted a ping server, a
logging process and 1, 3, and 6 pong clients. Each ping space
and pong message contains a payload of one kilobyte. The
results are averaged over a testing window of 10 seconds. The
results are shown in Fig. 12. The data show that our software
(MCL) is able to provide comparable bandwidth and latency
to both LCM and ZMQ for up to three pong clients while still
remaining a high performance option up to six pong clients. In
all scenarios MCL is preferable to both RabbitMQ and ROS.

To test the software’s ability to scale with message size, a
single machine hosts a ping server, a logging process and three
pong clients. Each ping and pong message contains a payload
of 500, 1500 and 3000 bytes. The results are averaged over a
testing window of 10 seconds. The results are shown in Fig. 13.
The data show that as the payload size is increased, the observed
transmit and receive bandwidth increase for all communication
libraries. Again, MCL is able to provide comparable bandwidth
and latency to both ZMQ and LCM. As the message size
increases, all methods converged on equivalent bandwidths
with the exception of RabbitMQ.

Figs. 12 and 13 show that as message traffic is increased,
both transmit and receive bandwidth deviate further away from
perfect transmission. The number of messages sent per second
can be increased by introducing more pong clients into the
system or by decreasing the size of the message payload. Note
that as the message payload is decreased, more messages need
to be transmitted to realize a target bandwidth.

In these tests, the main bottleneck in the system is the amount
of available computing power. The tests were performed on a
consumer laptop with an Intel i7-2640M processor and 8GB of
RAM. As the number of messages sent per second is increased,
computing power becomes a scarcer resource. Messages are
being received faster than they can be processed. Differences
in the implementation of the communication libraries start to
affect how much traffic they are able to handle.



BENDER et al.: SYSTEM ARCHITECTURE FOR ACQUISITION AND STORAGE OF NATURALISTIC DRIVING DATA 1757

Fig. 12. Performance on a single machine using one, three and six pong clients. Each message contains a payload of one kilobyte. The results are averaged over
a testing window of 10 seconds. The first column shows the observed transmit rate plotted against the target transmit rate. The second column shows the total
observed receive rate for all clients plotted against the target transmit rate. The final column shows the observed latency plotted against the target transmit rate.

The converse is also true. As the number of messages in the
system is decreased, the communication libraries are largely
decoupled from inefficiencies in their implementation and hard-
ware limitations. Evidence of this can be seen in Fig.13(c) where
all communication libraries, with the exception of RabbitMQ,

are able to provide similar performance. This is achieved by
transmitting large messages at a low frequency.

The results show that the decentralized methods out-perform
the two centralized methods. Both ROS and RabbitMQ rely on
a centralized process to permit communication. These central



1758 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 17, NO. 6, JUNE 2016

Fig. 13. Performance on a single machine using 500, 1500, and 3000 byte message payloads. Three pong clients are included in the test. The results are averaged
over a testing window of 10 seconds. The first column shows the observed transmit rate plotted against the target transmit rate. The second column shows the total
observed receive rate for all clients plotted against the target transmit rate. The final column shows the observed latency plotted against the target transmit rate.

processes become bottlenecks in the system as the data rate
rises. This can be observed in the ROS graphs which plateau
when the capacity of the system is reached. The decentral-
ized architectures avoid these bottlenecks by permitting direct
communication via sockets (ZMQ) or via multicasts (MCL and

LCM). This makes the decentralized strategies more scalable
as they are amenable to distributing the processing load over
multiple machines.

Whilst ZMQ offers the highest bandwidth and lowest latency,
it is the least flexible architecture. Since only one process



BENDER et al.: SYSTEM ARCHITECTURE FOR ACQUISITION AND STORAGE OF NATURALISTIC DRIVING DATA 1759

Fig. 14. Performance on a network of machines using a single ping server and three pong clients. Messages with a 500 byte payload are transmitted. The results
are averaged over a testing window of 10 seconds. The first column shows the observed transmit rate plotted against the target transmit rate. The second column
shows the total observed receive rate for all clients plotted against the target transmit rate. The final column shows the percentage of total traffic that was observed.

can bind to a socket and publish, each client publishing a
pong message must open up a new and unique socket. To
receive all pong messages, a new process will need to know
how to connect to each pong socket. The tests formed a trivial
network where the number of clients was known a priori.
This made it possible to “hardcode” the network topology. In
complex and dynamic networks this naive strategy does not
scale well.

The tests illustrate that MCL is able to provide a good mix
of high bandwidth, low latency and scalability with minimal
configuration. On a qualitative level, the testing code written
using the MCL is more compact than the other libraries. The
event driven architecture we advocate in Section III-A allows
transparent code to be written in a few lines. We believe this
promotes code that is easier to debug, maintain and extend.

2) Network: To test the software’s efficiency on a local area
network, a test was performed using one ping server and three
pong clients. The laptop used in the previous test was used
as a server to issue ping messages and log network traffic.
Three Blackbox (Section IV-B) clients were used to return pong
messages. All computers were connected via a gigabit switch.
The clocks in the pong clients were synchronized to a NTP
server hosted on the ping server. For ROS and RabbitMQ the
central processes were hosted on the ping server. Each ping
and pong message contains a payload of 500 bytes. The results
are averaged over a testing window of 10 seconds. The results
are shown in Fig. 14 and can be compared to the same test
performed on a single machine [Fig. 13(a)].

The most notable outcome of this comparison is that the
centralized communication libraries (ROS and RabbitMQ) per-
form similarly whether they operate on a single machine or
as part of a distributed network. Conversely, the decentralized
methods (ZMQ, MCL, and LCM) benefit significantly from
operating in a distributed network. In a distributed network, the
decentralized methods are able to take advantage of additional
nodes by sharing the processing load across the machines.

The latency of the communication libraries could not be
measured reliably. Although the clocks were synchronized via
a NTP server, each library was able to send data with a latency

smaller than the jitter in the NTP synchronized clocks. Instead
of showing latency (as in Figs. 12 and 13), the last sub-plot in
Fig. 14 shows the total percentage of data that was successfully
transferred. This is measured by calculating the ratio between
the number of pings and pongs that were observed against the
number of pings and pongs that were sent.

The total percentage of data that was successfully transferred
shows that TCP based methods (ZMQ, ROS) outperform UDP
based methods (MCL, LCM). Once the UDP based methods
become limited by the processor, they are able to continue op-
erating by dropping packets. While this enables a high transmit
and receive bandwidth, it also mean much of the data is lost.
Since TCP guarantees delivery, messages cannot be dropped
silently. This limits the amount of network traffic that can be
exchanged to the capacity of the processor. As a result, the
transmit and receive bandwidths are low but data is not lost.

C. Research Utility

A similar architecture for on-board logging and harvesting
was used by our group in the mining industry, resulting in a
publicly available dataset spanning three years involving over
30 vehicles [25]. To give some idea of the scale of this dataset,
a typical day of data contains vehicles driving a total distance of
around 3000 kilometers. This dataset has been used in a number
of different types of analysis including road mapping [26],
long term prediction estimation [27], fault detection [28] and
behavior [29] analysis. To the authors’ knowledge this is one of
the most comprehensive Cooperative ITS datasets available to
researchers.

The architecture proposed in this paper improves on our pre-
vious data acquisition framework. It is more automatic, scalable,
flexible and reliable. This makes it an ideal environment for
rapid prototyping and experimenting with new sensors and
algorithms. The volume of data our proposed architecture is
able to collect automatically also makes it an ideal environment
for gathering big data.

The system presented in this paper has been deployed at our
test site. Two research vehicles are fitted with data acquisition



1760 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 17, NO. 6, JUNE 2016

systems (Section IV). Two RSU (Section V) are located on the
campus. One RSU is located in a position we drive near fre-
quently. This allows us to test live-streaming capabilities. The
second RSU is located near the vehicle parking bays. This
ensures all data can be uploaded automatically after a drive has
concluded. The process of collecting data is simply driving the
vehicle and parking it in the designated parking bays at the end
of the drive. The data can then be accessed by querying our
database. This low intervention approach has greatly simplified
our ability to perform experiments.

The system has been running and collecting data without
human assistance for a year at the time of submission of this
document. Although our current deployment has been operating
for a shorter period of time and on fewer vehicles than [25], it
has currently automatically logged several million data. In that
short time, the proposed architecture has fulfilled its design cri-
teria. Data collection and mining is trivial due to the automatic
collection infrastructure. The flexibility of the software has
also permitted new algorithms to be integrated into the system.
As a result we have been able to focus our efforts on performing
research on driver behavior [30], [31] and navigation filter
consistency [32].

IX. CONCLUSION

This paper introduced a modular architecture for the acquisi-
tion, storage, processing and visualization of data in ITS appli-
cations. The design is based on a publish–subscribe paradigm
using IPv6 multicast for inter-process communication. This
strategy allows code to be broken up into modular designs that
can be run on many independent processes. Message passing
over the publish–subscribe network allows communication to
occur transparently within a single computer, across multiple
computers and across heterogeneous platforms running differ-
ent programming languages.

The software architecture described is used for both in-
vehicle data acquisition and off-vehicle data acquisition. The
in-vehicle data acquisition system automatically records vehi-
cle data streams to log files. When in range of a RSU the in-
vehicle data acquisition system is able to automatically upload
the log files to a central server via DSRC radio. Once the log
files have been uploaded, they are inserted into a database. The
combined software and hardware design allows complex data to
be recorded from vehicles and inserted into a database with no
human intervention. The automatic nature of this design makes
the system ideal for gathering big data.

When compared to ZMQ, LCM, ROS and RabbitMQ we
show that our proposed architecture offers a good mix of high-
bandwidth and low-latency transmission. Due to the design of
the system it is decentralized, robust to failure and amenable to
scaling across multiple machines with minimal configuration.
We believe that the design paradigms advocated in our architec-
ture encourage code development that is transparent, extensible
and easy to maintain.

REFERENCES

[1] J. Ziegler et al., “Making bertha drive—An autonomous journey on a
historic route,” IEEE Intell. Transp. Syst. Mag., vol. 6, no. 2, pp. 8–20,
Summer 2014.

[2] S. Kammel et al., “Team AnnieWAY’s autonomous system for the 2007
DARPA Urban Challenge,” J. Field Robot., vol. 25, no. 9, pp. 615–639,
2008.

[3] S. Thrun et al., “Stanley: The robot that won the DARPA grand chal-
lenge,” J. Field Robot., vol. 23, no. 9, pp. 661–692, Sep. 2006.

[4] H. Stubing et al., “simTD: A car-to-X system architecture for field
operational tests,” IEEE Commun. Mag., vol. 48, no. 5, pp. 148–154,
May 2010.

[5] P. Alexander, D. Haley, and A. Grant, “Cooperative intelligent transport
systems: 5.9-GHz field trials,” Proc. IEEE, vol. 99, no. 7, pp. 1213–1235,
Jul. 2011.

[6] H. Cai, X. Jia, A. S. Chiu, X. Hu, and M. Xu, “Siting public electric ve-
hicle charging stations in Beijing using big-data informed travel patterns
of the taxi fleet,” Transp. Res. D, Transp. Environ., vol. 33, pp. 39–46,
Dec. 2014.

[7] L. Gong, X. Liu, L. Wu, and Y. Liu, “Inferring trip purposes and uncover-
ing travel patterns from taxi trajectory data,” Cartogr. Geograph. Inf. Sci.,
vol. 43, no. 2, pp. 1–12, 2016.

[8] A. Huang, E. Olson, and D. Moore, “LCM: Lightweight communica-
tions and marshalling,” in Proc. IEEE/RSJ Int. Conf. IROS, Oct. 2010,
pp. 4057–4062.

[9] RabbitMQ. [Online]. Available: http://www.rabbitmq.com/
[10] M. Quigley et al., “ROS: An open-source robot operating system,” in

Proc. ICRA Workshop Open Source Softw., 2009, pp. 1–6.
[11] D. Geronimo, A. Lopez, A. Sappa, and T. Graf, “Survey of pedestrian

detection for advanced driver assistance systems,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 32, no. 7, pp. 1239–1258, Jul. 2010.

[12] G. Agamennoni, J. Nieto, and E. Nebot, “A Bayesian approach for driving
behavior inference,” in Proc. IEEE IV , Jun. 2011, pp. 595–600.

[13] S. Sivaraman and M. Trivedi, “Towards cooperative, predictive driver
assistance,” in Proc. IEEE 16th Int. ITSC, Oct. 2013, pp. 1719–1724.

[14] R. Adla, N. Al-Holou, M. Murad, and Y. Bazzi, “Automotive collision
avoidance methodologies sensor-based and ITS-based,” in Proc. IEEE
AICCSA, May 2013, pp. 1–8.

[15] J. R. Ward, G. Agamennoni, S. Worrall, A. Bender, and E. Nebot,
“Extending time to collision for probabilistic reasoning in general traf-
fic scenarios,” Transp. Res. C, Emerging Technol., vol. 51, pp. 66–82,
Feb. 2015.

[16] S. Worrall and E. Nebot, “Automated process for generating digitised
maps through GPS data compression,” in Proc. Australasian Conf. Robot.
Autom., 2007, pp. 1–6.

[17] J. Ward, S. Worrall, G. Agamennoni, and E. Nebot, “Comprehensive data
collection and context based metric evaluation for safety monitoring,” in
Proc. 16th IEEE ITSC, Oct. 2013, pp. 658–663.

[18] Y. Ding, H. Tan, W. Luo, and L. M. Ni, “Exploring the use of diverse
replicas for big location tracking data,” in Proc. IEEE 34th ICDCS, 2014,
pp. 83–92.

[19] PostgreSQL. [Online]. Available: http://postgresql.org/
[20] PostGIS. [Online]. Available: http://postgis.net/
[21] N. Adrienko and G. Adrienko, “Spatial generalization and aggregation

of massive movement data,” IEEE Trans. Vis. Comput. Graph., vol. 17,
no. 2, pp. 205–219, Feb. 2011.

[22] A. Gregoriades, C. Florides, V. Lesta, and M. Pampaka, “Driver behaviour
analysis through simulation,” in Proc. IEEE Int. Conf. SMC, Oct. 2013,
pp. 3681–3686.

[23] Multiprocess communications library. [Online]. Available: https://github.
com/acfr/mcl

[24] ZeroMQ. [Online]. Available: http://zeromq.org/
[25] J. Ward, S. Worrall, G. Agamennoni, and E. Nebot, “The Warrigal dataset:

Multi-vehicle trajectories and V2V communications,” IEEE Intell.
Transp. Syst. Mag., vol. 6, no. 3, pp. 109–117, Fall 2014.

[26] G. Agamennoni, J. Nieto, and E. Nebot, “Robust inference of principal
road paths for intelligent transportation systems,” IEEE Trans. Intell.
Transp. Syst., vol. 12, no. 1, pp. 298–308, Mar. 2011.

[27] M. Shan, S. Worrall, F. Masson, and E. Nebot, “Using delayed
observations for long-term vehicle tracking in large environments,”
IEEE Trans. Intell. Transp. Syst., vol. 15, no. 3, pp. 967–981,
Jun. 2014.

[28] S. Worrall, G. Agamennoni, J. Ward, and E. Nebot, “Fault detection
for vehicular ad-hoc wireless networks,” in Proc. IEEE IV , Jun. 2013,
pp. 298–303.

[29] G. Agamennoni, S. Worrall, J. Ward, and E. Nebot, “Automated
extraction of driver behaviour primitives using Bayesian agglomera-
tive sequence segmentation,” in Proc. IEEE 17th Int. ITSC, Oct. 2014,
pp. 1449–1455.



BENDER et al.: SYSTEM ARCHITECTURE FOR ACQUISITION AND STORAGE OF NATURALISTIC DRIVING DATA 1761

[30] A. Bender, G. Agamennoni, J. Ward, S. Worrall, and E. Nebot, “An unsu-
pervised approach for inferring driver behavior from naturalistic driving
data,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 6, pp. 3325–3336,
Dec. 2015.

[31] A. Bender, J. Ward, S. Worrall, and E. Nebot, “Predicting driver intent
from models of naturalistic driving,” in Proc. IEEE 18th ITSC, Sep. 2015,
pp. 1609–1615.

[32] S. Worrall, J. Ward, A. Bender, and E. Nebot, “GPS/GNSS consistency in
a multi-path environment and during signal outages,” in Proc. IEEE 18th
Int. ITSC, Sep. 2015, pp. 2505–2511.

Asher Bender received the Bachelor of Engineer-
ing (Mechatronics) and the Doctor of Philosophy
degrees from The University of Sydney, Sydney,
Australia, in 2008 and 2013, respectively. He is a
Research Associate with and a member of the Intelli-
gent Vehicles and Safety Systems Group, Australian
Centre for Field Robotics, The University of Sydney.
His research focuses on applying machine learning
to solve problems in field robotics.

James R. Ward received the Bachelor of Engi-
neering (Aeronautical) and the Master of Education
degrees from The University of Sydney, Sydney,
Australia, in 1999 and 2003, respectively, and the
Ph.D. degree in mechatronic engineering from
The University of New South Wales, Kensington,
Australia, in 2009. He is a Researcher with the Intel-
ligent Vehicles and Safety Systems Group, Australian
Centre for Field Robotics, The University of Sydney.
His research interests are in safety analysis, vehicle
safety systems, and intelligent transportation.

Stewart Worrall received the Ph.D. degree from
The University of Sydney, Sydney, Australia, in
2009. He is currently a Research Fellow with the
Australian Centre for Field Robotics, The University
of Sydney. His research is focused on the study and
application of technology for vehicle automation and
improving safety.

Marcelo L. Moreyra (M’02) received the Electronic
Engineering degree from Universidad Nacional del
Comahue (UNCo), Neuquén, Argentina, in 2007
and the Ph.D. degree in control systems from Uni-
versidad Nacional del Sur (UNS), Bahía Blanca,
Argentina, in 2013. He is an Assistant Professor
with UNCo. His main research interests are in visual
perception systems, driver assistance systems, and
multisensor fusion for localization and guidance of
ground and aerial intelligent vehicles. He is a mem-
ber of the IEEE Robotics and Automation (RAS)

and the Intelligent Transportation Systems societies. He was an SAC Chair
of Argentina IEEE Section (2009–2011) and a RAS-SAC Cochair in 2011.
Since 2015, he has been the Treasurer of IE13/CS23/RA24/IA34/PEL35/
VT06 IEEE Argentina Joint Chapter.

Santiago Gerling Konrad received the Electronic
Engineering degree from Universidad Nacional del
Sur (UNS), Bahía Blanca, Argentina, where he is
currently a Ph.D. candidate. He holds a scholarship
from Consejo Nacional de Investigaciones Cientifi-
cas y Técnicas (CONICET) at Instituto de Inves-
tigaciones en Ingeniería Eléctrica (IIIE) “Alfredo
Desages”, Departamento de Ingeniería Eléctrica y
Computadoras, Universidad Nacional del Sur.

Favio Masson received the B.Sc. degree in electrical
engineering and the Ph.D. degree from Universi-
dad Nacional del Sur (UNS), Bahía Blanca, Argentina.
He was a Researcher with National Scientific and
Technical Research Council (CONICET), Buenos
Aires, Argentina. He is a Professor with UNS. His
main research interests are in field robotics automa-
tion and sensors network.

Eduardo M. Nebot received the B.Sc. degree in
electrical engineering from Universidad Nacional del
Sur, Bahía Blanca, Argentina, and the M.Sc. and
Ph.D. degrees from Colorado State University, Fort
Collins, CO, USA. He is currently a Professor with
The University of Sydney, Sydney, Australia, and
the Director of the Australian Centre for Field Ro-
botics, The University of Sydney. His main research
interests are in field robotics automation. The major
impact of his fundamental research is in autonomous
systems, navigation, and safety.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


