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We have analyzed electromagnetic wave propagation in photonic bandgap (PBG) structures comprising
alternating layers of isotropic dielectric-magnetic materials with positive phase velocity and negative phase
velocity, implemented in different waveguides of uniform cross-section (parallel-plate, rectangular, circular,
and coaxial) and perfectly conducting walls. The structures could be either ideal (i.e. of infinite extent along the
waveguide axis) or real (i.e. terminated at both ends with homogeneously filled waveguide sections). The spectral
locations of the band gaps do not directly depend on the cross-sectional shape and dimensions, but on the cut-off
parameter instead, for ideal structures. The band gaps of an ideal structure are located in spectral regions where
the reflectance of the corresponding real structure is large. The real structures show four types of band gaps,
only one type of which is due to the periodically repetitive constitution of the PBG structure; the remaining three
types are not of the Bragg type.

Keywords: circular waveguides; coaxial waveguides; gap map; negative phase velocity; parallel-plate waveguide;
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1. Introduction

Periodic arrangements of two or more dissimilar
materials are called photonic band gap (PBG) struc-
tures. These structures can manipulate the flow of light
[1–3], and are expected to lead to commercially impor-
tant devices [4–6]. PBG structures have frequency-
selective response properties: there are frequency-
ranges (called photonic band gaps or stopbands) in
which propagation is forbidden, and there are fre-
quency ranges (called passbands) wherein transmission
is allowed. A periodic stack of layers or sheets, called
a periodic multilayer, is the simplest PBG structure.
Such 1-D PBG structures are mainly used as distributed
Bragg reflectors [7–9].

The possible incorporation of negatively refracting
materials in PBG structures is an attractive idea.
Isotropic, negatively refracting materials had been
hypothesized for about a century, most memorably
by Veselago in 1967 [10], but were not realized until
2001. Much theoretical and experimental work has
been reported since then [11–13]. In their simplest
form, these passive materials are isotropic, dielectric-
magnetic substances whose permittivity and

permeability obey a certain condition in a particular
frequency range [14]. As a result, the phase velocity
and the time-averaged Poynting vector of a plane wave
have opposite directions; therefore, these materials
are also called negative-phase-velocity (NPV) materials
[15]. By analogy, materials that do not satisfy the
NPV condition are called positive-phase-velocity
(PPV) materials, because the phase velocity and the
time-averaged Poynting vector then are co-parallel.
Most notably, NPV materials are said to hold promise
for almost perfect, flat lenses [16–22].

The study of electromagnetic propagation through
1-D PBG structures containing NPV materials has
shown the existence of new band gaps that arise due
to the presence of the NPV materials. Alternating
PPV-NPV multilayers exhibit the zero-index band gap
[17,18] when the volumetrically averaged refractive
index of the unit cell equals zero. The resonance
behavior of the NPV constitutive parameters gives rise
to the �-zero and "-zero band gaps [23,24]. In contrast
to the usual Bragg PBGs, these two new types of
band gaps are invariant to scale-change and robust
against disorder, properties that could encourage the
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fabrication of novel devices. NPV materials have been
widely developed in the microwave and millimeter
regimes (the optical regime has recently been reached
[25–27]), in which regimes’ the finite transverse
dimensions play an important role [9]. A waveguide
completely filled with an NPV material has already
been found to exhibit new and unusual properties such
as zero flux energy for the design of an optical trap [28]
or absence of a fundamental mode [29]. These studies
had earlier led us to consider the electromagnetic
response of a periodic multilayer inserted in a parallel-
plate waveguide, with a unit cell comprising a PPV
layer and an NPV layer, and the direction of propa-
gation being generally oblique to the stratification
direction [30]. Both walls of the waveguide were taken
to be perfectly conducting. The number of unit cells
could be either infinite or finite (as for real structures).
Comparison of guided wave propagation (a) in the
parallel-plate waveguide and (b) in the stratification
direction as well as obliquely in the same 1-D PBG
structure but of infinite transverse extent assisted
in the explanation of several band gap features and
reflectance peaks, particularly those associated with
non-Bragg gaps obtained for (a).

Continuing with the same theme, and in order to
analyze the influence of the cross-sectional shape of the
waveguide, we considered the characteristics of prop-
agation in waveguides of different cross-sectional
shapes filled either completely or partially with a 1-D
PBG structure whose unit cell comprises a PPV layer
and an NPV layer. If the chosen 1-D PBG structure is
of finite thickness, then both ends of the waveguide are
supposed to be filled with a PPV material. The walls
of the waveguide are perfectly conducting.

To acquire a full theoretical understanding, in
Section 2 of this paper we provide a brief introduction
to every item involved in our calculations, from
electromagnetic propagation in waveguides of different
cross-sections to bilayer dispersion relations including
the two numerical techniques used to determine
the response of real multilayer structures. Section 3
presents a thorough analysis of the influences that the
cross-section geometries and dimensions have on the
electromagnetic responses of the studied systems.
Finally, Section 4 presents a summary and conclusions
of the results obtained in the present work.

2. Basic theory

2.1. Ideal PBG structure

Let us consider an ideal PBG multilayer comprising
PPV and NPV layers implemented inside a waveguide
with arbitrary closed cross-sectional shape and
perfectly conducting walls, as illustrated in Figure 1.
We chose an orthogonal curvilinear cylindrical

coordinate system (u, v, z) with unit vectors u, v and z

[31]. The PBG multilayer has a spatial period

d¼ d1þ d2 along the z axis; hence, the relative

permittivity "ðzÞ and relative permeability �ðzÞ obey
the relations "ðzþ d Þ ¼ "ðzÞ and �ðzþ d Þ ¼ �ðzÞ, with
the reference unit cell d1 � z � �d2 characterized by

"ðzÞ ¼
"1 if 0 � z � d1,

"2 if � d2 � z � 0,

�
ð1Þ

�ðzÞ ¼
�1 if 0 � z � d1,

�2 if � d2 � z � 0:

�
ð2Þ

Propagation was taken to occur in the stratification

direction (i.e. parallel to the z axis). With the assump-

tion of an exp(–i!t) time-dependence, the electromag-

netic field phasors, E(u, v, z) and H(u, v, z), inside the

waveguide are given as solutions of the vector

Helmholtz equation

r2 þ
!2

c2
"ðzÞ�ðzÞ

� �
Eðu, v, zÞ

Hðu, v, zÞ

( )
¼ 0, ð3Þ

where c is the speed of light in free space.

Independently of the cross-sectional shape, these

fields can be expressed as an infinite superposition

of modal fields, each of which is a solution of (3) [32].

Moreover, as the product "ðzÞ�ðzÞ is piecewise uni-

form, each modal field inside the jth layer, j 2 f1, 2g,

of the unit cell can be expressed in terms of a

superposition of forward and backward waves with

z dependence given by exp(��ð j Þnmz), where the mode

indexes n and m are natural numbers.
As described in detail by Jackson [32], modal fields

can be separated into transverse (perpendicular to the

z axis) and longitudinal (parallel to the z axis)

components. The longitudinal components are found

by solving the scalar Helmholtz equation

r2
t þ �2

nm

� �
 nmðu, vÞ ¼ 0, ð4Þ

z

u
v

Figure 1. Schematic of a waveguide filled completely by a
PBG multilayer of period d. (The color version of this figure
is included in the online version of the journal.)
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where r2
t � r

2 � @2=@z2 and  nmðu, vÞ is the longitu-

dinal component for each nm mode of the magnetic
(electric) field in the TEz (TMz) polarization state.

The cut-off wavenumber �nm emerges from the impo-
sition of the boundary conditions on the perfectly
conducting walls of the waveguide, and thus depends

only on the cross-sectional shape and size.
Accordingly, the propagation constant

�ð j Þnm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

c2
"j�j � �2

nm

r
, j ¼ 1, 2 ð5Þ

has to be defined for a mode with the (n,m) index
in the jth layer.

2.2. Chosen cross-sectional shapes

So far, the analysis presented holds for a cylindrical

waveguide with an arbitrary cross-sectional shape.
Therefore, it covers PBG multilayers with infinite
transverse dimensions [33], as well as PBG multilayers

implemented in parallel-plate [30,34], rectangular [35],
and circular [36] waveguides. Even coaxial waveguides
lie within the scope of the presented analysis. We chose

to study the following types of waveguides.

. Parallel-plate waveguide. The walls are the

planes y ¼ �h=2 . Then the index m becomes
meaningless, and both TEzand TMz modes
have the same cut-off wavenumber

�n ¼

ffiffiffiffiffiffiffiffiffi
n�

h
,

r
n ¼ 1, 2, 3, . . . ð6Þ

Also allowed is the TMz mode with n¼ 0,
which is the TEM mode. As this mode is

insensitive to the presence of the waveguide
walls, we excluded it from our analysis.

. Rectangular waveguide. The walls are formed
by the planes x ¼ �a=2 and y ¼ �b=2. Again,

the TEz and TMzmodes have the same cut-off
wavenumber

�nm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�

a

� 	2
þ

m�

b

� 	2r
: ð7Þ

The indexes n,m¼ 0, 1, 2, . . . (but with
n¼m¼ 0 disallowed) for TEz modes and

n, m¼ 1, 2, 3, . . . for TMz modes.
. Circular waveguide. The wall is a tube of

radius a. The cut-off wavenumbers for TEz

and TMz modes are different.

. TEz modes

�nm ¼
� 0nm
a

ð8Þ

where � 0nm is the mth zero of the first
derivative of the Bessel function of the
first kind and order n, i.e. dJnð�

0Þ=
d� 0 ¼ 0, n¼ 0, 1, 2, . . .

. TMz modes

�nm ¼
�nm
a

ð9Þ

where �nm is the mth zero of the Bessel
function of first kind and order n, i.e.,
Jnð�Þ ¼ 0, n¼ 0, 1, 2, . . .

. Coaxial waveguide. The walls are tubes of radii
rin and rext. The cut-off wavenumbers for TEz

and TMz modes are different and can be
found by solving the following characteristic
equations:

. TEz modes

J 0nð�nmrinÞY
0
nð�nmrextÞ � J 0nð�nmrextÞY

0
nð�nmrinÞ ¼ 0:

ð10Þ

. TMz modes

Jnð�nmrinÞYnð�nmrextÞ � Jnð�nmrextÞYnð�nmrinÞ ¼ 0:

ð11Þ

The function Yn is the Bessel function of the
second kind and order n, and the prime on a
Bessel function indicates the first derivative
with respect to the argument.

2.3. Dispersion relation

In order to obtain the multilayer dispersion relation for
propagation of TEz and TMz modes, only the reference
unit cell d1 � z � �d2 needs to be considered.
Boundary conditions have to be enforced on the
u-directed and v-directed components of the electric
and the magnetic fields across the bimaterial interface
z ¼ 0, and the Floquet-Bloch theorem [33] has to be
implemented on the planes z ¼ d1 and z ¼ �d2.
Furthermore, the orthogonalities of the functions
 nmðu, vÞ have to be exploited. For each mode with
index (n,m), the dispersion relation

Lnm ¼ cosðKd Þ ¼ cos �ð1Þnmd1

 �

cos �ð2Þnmd2

 �

�
1

2

�2�
ð1Þ
nm

�1�
ð2Þ
nm

þ
�1�
ð2Þ
nm

�2�
ð1Þ
nm

 !
sin �ð1Þnmd1

 �

sin �ð2Þnmd2

 �

,

ð12Þ

is obtained, where K is the Bloch wavenumber and

�j ¼
�j for TEz modes,
"j for TMz modes:

�
ð13Þ
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The dispersion relation (2) rules the electromagnetic

characteristics of the PBG multilayer implemented in a

waveguide. As the dispersion relations involves the

propagation constants �ð j Þnm , j 2 1, 2f g, defined in

Equation (5), the cross-sectional geometry of the

waveguide must influence the spectral locations of

the passbands and the stopbands.
The passbands and stopbands can be distinguished

from each other analytically as follows. If dissipation

in both materials in the unit cell is small enough to be

ignored, the function Lnm¼ cos(Kd ) is then real-valued

for all modes. The frequency ranges for which the

condition jLnmj � 1 is satisfied are associated with

real-valued Bloch wavenumbers and therefore are

passbands. Stopbands are associated with the satisfac-

tion of the condition jLnmj4 1 for which the Bloch

wavenumbers must be complex-valued.
In a periodic multilayer comprising NPV and PPV

constituent materials, the following different types

of photonic band gaps (stopbands) can be distin-

guished [23]:

. Bragg band gaps:

. these band gaps are characteristic of

periodic structures independently of the

direction of the phase velocity. They

appear under the following conditions:

� 1ð Þ
nmd1 þ �

ð2Þ
nmd2 ¼ p�, p ¼ �1,� 2, . . . ,

�2�
ð1Þ
nm 6¼ �1�

ð2Þ
nm,

�ð1Þnmd1 6¼ q�, q ¼ �1,� 2, . . . : ð14Þ

. Band gaps of other types:

. �n ¼ 0 band gap: This band gap appears

when the condition for zero (volume)

averaged refractive index is met, which

occurs when the following conditions

are simultaneously satisfied:

�2�
ð1Þ
nm 6¼ �1�

ð2Þ
nm,

�ð1Þnmd1 þ �
ð2Þ
nmd2 ¼ 0:

(
ð15Þ

. �-zero and "-zero band gaps: these types

of band gaps appear in frequency ranges

wherein one of the two constituent materials

of the unit cell has a zero refractive index

[23,24]. When one of the two relative perme-

abilities (permittivities) equals zero but neither

of the relative pemittivities (permeabilities)

is null-valued, a band gap may occur for TEz

(TMz) modes.

2.4. Real PBG structure

A real PBG multilayer must have a finite thickness
and must contain a finite number of unit cells. Hence,
the Floquet-Bloch theorem becomes inapplicable.
Furthermore, a real PBG multilayer implemented
in a waveguide must be coupled to input and output
waveguide sections. We chose the input and output
sections to have the same cross-section as the
waveguide section containing the real PBG multilayer.
We also chose the input and output sections to be
unfilled.

In order to determine the electromagnetic char-
acteristics of this type of structure, we used two
different procedures. The first procedure is based
on the Abelés method [37] and involves the use of
Chebychev polynomials [38]. The second procedure
is formulated in terms of an overall scattering
matrix [39].

2.4.1. Abelés–Chebyshev procedure (ACP)

In this procedure, boundary conditions are enforced
across every interface of two layers. This allows us
to relate field amplitudes in one layer with those in an
adjacent layer by means of a 2� 2 transfer matrix P,
which thus characterizes the unit cell. Provided the
dissipation is small enough to be ignored, det(P)¼ 1
and tr(P) is real-valued. If there are N unit cells,
the matrix PN characterizes them all together. After
exploiting the Cayley–Hamilton theorem, PN can be
expressed as a linear combination of P and the 2� 2
identity matrix I [38]. The coefficients of this linear
combination are UN-1(Lnm) and UN-2(Lnm), which are
Chebyshev polynomials of order N� 1 and N� 2,
where Lnm is defined in Equation (12).

Taking advantage of this formalism, the reflectance
and transmittance of a real PBG structure for the (n,m)
index can be computed as

Rnm ¼
j�nmj

2UN�1ðLnmÞ

1þ j�nmj
2UN�1ðLnmÞ

, ð16Þ

Tnm ¼
1

1þ j�nmj
2UN�1ðLnmÞ

, ð17Þ

with

�nm ¼
i

2

�ð1Þnm�2

�ð2Þnm�1
þ
�ð2Þnm�1

�ð1Þnm�2

 !
sinð�ð2Þnmd2Þ:

2.4.2. Scattering-matrix procedure (SMP)

In this procedure, every interface of two layers is
treated as the junction of two semi-infinite waveguides
filled homogeneously with different materials, in such
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a way that the usual TEz and TMz modes are matched
at the junction to produce a generalized scattering
matrix (GSM) [39]. Since no internal discontinuity is
present in the transverse plane, each mode individually
satisfies the boundary conditions at every bimaterial
interface along the z-axis. Consequently, a GSM for
a specific mode characterized by the (n,m) index can be
formulated as the usual 2� 2 circuital scattering matrix
for a two-port circuit [39].

The GSMs of consecutive bimaterial interfaces are
linked one by one to devise a scattering matrix S (n,m)

for the overall structure [40]. The reflectance and
transmittance of the real PBG structure can be easily
computed from the elements of S (n,m) as follows:

Rnm ¼ S
ðn,mÞ
11

��� ���2, ð18Þ

Tnm ¼ S
ðn,mÞ
21

��� ���2: ð19Þ

3. Numerical results and discussion

Let us now numerically analyze how the spectral
locations of both Bragg and non-Bragg band gaps
depend on the cross-sectional shape. We begin in
Section 3.1 by analyzing ideal PBG structures with
vacuum as the PPV material ("1¼�1¼ 1), and the
NPV material being non-dispersive and non-
dissipative. In Section 3.2, we provide results for real
PBG structures (of finite thickness and terminated on
both ends by unfilled waveguide sections) wherein the
NPV material is dissipative and dispersive, whereas
vacuum acts as the PPV material.

3.1. Ideal PBG structures

For this case, results were computed for parameters
of the multilayer: d1/d¼ 0.8, "1¼�1¼ 1, "2¼�8, and
�2¼�2 implemented in (i) a parallel-plate waveguide
(PPWG); (ii) a rectangular waveguide (RWG); and
(iii) a circular waveguide (CWG). In order to isolate
the role of the cross-sectional shape, we chose the

mode indexes (n,m) and the cross-sectional dimen-
sional ratios such that all structures have the same cut-
off wavenumber �nmd¼ 0.15, as shown in Table 1;
additionally all modes are of the TE polarization state.

Figure 2 shows the variation of the function
Lnm¼ cos(Kd ) versus frequency for all six cases listed
in Table 1. Inspecting this figure, it can be seen that the
Lnm of the different waveguides and modes are
superimposed. These results show that the spectral
locations of the band gaps do not directly depend
on the cross-sectional shape and dimensions; instead,
they depend directly on the cut-off parameter, as can
also be deduced from Equations (5) and (12).

It is also important to note that the passbands
(Lnm� 1) are few and very narrow. Consequently, at
most frequencies, energy does not propagate through
the structure. This result is due to the selection of the
constitutive parameters for the PPV–NPV materials
that compose the unit cell, which for most frequencies
satisfy the condition of zero average index �n ¼ 0,
giving rise to an extended �n ¼ 0 band gap [18].

3.2. Real PBG structure

Up to this point, the behavior of the ideal PBG
structure has been analyzed for fixed cross-sectional
dimensions with both constituent materials of the unit
cell being non-dispersive and non-dissipative.

0 5 10 15 20 25
0

0.5

1

1.5

ωd/c

L
n

m

PPWG TE1 PPWG TE2 RWG TE10 RWG TE20 CWG TE01 CWG TE11

Figure 2. Variation of Lnm¼ cos(Kd ) versus !d/c for the waveguides and TEz modes listed in Table 1. (The color version of this
figure is included in the online version of the journal.)

Table 1. Mode indexes and cross-sectional dimensional
ratios such that �nmd¼ 0.15, d1/d¼ 0.8, "1¼�1¼ 1, "2¼ –8,
and �2¼ –2 for the polarization state in six different
waveguides.

Cross-sectional
shape

Mode
indexes

Dimensional
ratios

Parallel-plate n¼ 1 h/d¼ 2.05
Parallel-plate n¼ 2 h/d¼ 4.1
Rectangular n¼ 1, m¼ 0 a/d¼ 2.05, b/d¼ 3.0
Rectangular n¼ 2, m¼ 0 a/d¼ 4.1, b/d¼ 3.0
Circular n¼ 0, m¼ 1 a/d¼ 2.5
Circular n¼ 1, m¼ 1 a/d¼ 1.25

Journal of Modern Optics 5



In this section we study the dependence of the

spectral locations of band gaps on the cross-sectional

dimensions and shape of the waveguide, but with the

mode index (n,m) fixed; then �nm cannot be a fixed

parameter. For a more general and realistic study, we

also chose to consider real PBG structures wherein the

NPV material is dissipative and dispersive, vacuum

acts as the PPV material, the number of unit cells

is finite (N), and the waveguide is terminated on both

ends with unfilled sections. As stated earlier, the

Abelés–Chebyshev procedure and the scattering-

matrix procedure were used.
We began by comparing the numerical results

obtained by the two numerical procedures, which

were also evaluated against the results obtained for

an analogous ideal PBG structure. The constitutive

parameters of the NPV material chosen are given

by [18]

"2 ¼ 1þ
31:412

5:652 � !2 � i�!
þ

62:832

72:252 � !2 � i�!
, ð20Þ

�2 ¼ 1þ
18:852

5:672 � !2 � i�!
, ð21Þ

where � is the damping constant. The frequency depen-

dence of these parameters is shown in Figure 3(a): the

solid line represents "2(!) and the dotted line �2(!).
Figure 3(b) shows the variation of the reflectance

R1 versus !d/c for the TEz
1 mode in a real PBG

structure implemented inside a parallel-plate wave-

guide characterized by h/d¼ 4.5; d1/d¼ 2/3, N¼ 15,

and �¼ 0. Dotted lines indicate the results from the

Abelés–Chebychev procedure, and solid lines from the

scattering-matrix procedure. In addition, the notional

results for the corresponding ideal PBG structure

(N ! 1) are presented as dashed lines. As can be
seen from Figure 3(b), the results from both numerical
procedures agree very well (the relative error is less
than 0.01%), and the stopbands for the ideal PBG
structure are located in regions where the reflectance
of the real PBG structure is large. Let us also point
out that the reflectance R1 in Figure 3(b) shows the
presence of three different types of band gaps: the first
located at !d/c� 0.9 satisfies the �n ¼ 0 condition
(when both "2(!) and �2(!) are negative), the second
located around !d/c� 1.2 corresponds to a �–zero gap
(�2(!) crosses from positive to negative within the gap
frequency region), and finally, the rest of the band gaps
are Bragg gaps.

We went on to examine the dependence of the
band-gap locations on the cross-sectional dimensions
and shape. Since both numerical procedures gave
the same results, only results obtained with the
scattering-matrix procedure method are presented.

In Figure 4, we present the variation of the
reflectance Rnm against frequency when a real PBG
structure is implemented in (a) a parallel-plate wave-
guide; (b) a rectangular waveguide; (c) a circular
waveguide; and (d) a coaxial waveguide. In order to
compare the variations, the selected modes for these
gap maps are the lowest-order TEz modes for each
cross-section chosen. The plotted graphs are called
‘gap-maps’.

As observed in previous works [18,24], four types
of band gaps can be identified in the gap-maps
of Figure 4. The first band gap (grey zone) is due to
the cut-off frequency of the input and output
terminating sections. Since these waveguide sections
are usually much longer than the unit cell, they control
the cut-off frequency of the real PBG structure.
Thus, this gap only depends on the cross-sectional

Figure 3. (a) Frequency dependence of the constitutive parameters, "2 and �2, of the NPV material; and (b) variation of
reflectance versus !d/c for the TEz

1 mode, when a real PBG structure is implemented in a parallel-plate waveguide; h/d¼ 4.5,
"1¼�1¼ 1, d1/d¼ 2/3, "2 and �2 are given by Equations (20) and (21) with �¼ 0, and N¼ 15. The notional results for the
corresponding ideal PBG structure N!1 are also presented. (The color version of this figure is included in the online version
of the journal.)
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dimensions and shape, but not on the PBG structure.
The remaining band gaps are due to the PBG structure
and depend on the unit cell characteristics (constitutive
parameters and layer thicknesses). The second and
third band gaps are not of the Bragg type: the second
band gap, near !d/c¼ 0.9, can be identified as a �n ¼ 0
band gap, whereas the next band gap, whose width

decreases with the height for the parallel-plate and
rectangular waveguides, or with the external radius
(for the circular and coaxial waveguides), is the �-zero
band gap [15]. Contrary to [23], these last two non-
Bragg band gaps appear even in normal propagation
due to the presence of the waveguide walls [30]. All the
rest of the band gaps present in these gap-maps are

Figure 4. Variation of the reflectance versus frequency and a cross-sectional dimension of a real PBG structure implemented in:
(a) a parallel-plate waveguide for the TEz

1 mode; (b) a rectangular waveguide with b/d¼ 4.5 for the TEz
10 mode; (c) a circular

waveguide for the TEz
01 mode; (d ) a coaxial waveguide with rin/d¼ 0.55 for the TEz

01 mode. Data: "1¼�1¼ 1, d1/d¼ 2/3, "2 and
�2 given by Equations (20) and (21) with �¼ 0, and N¼ 15.

Figure 5. Variation of the reflectance versus frequency and a cross-sectional dimension of a real PBG structure implemented in:
(a) a parallel-plate waveguide for the TMz

1 mode; (b) a rectangular waveguide with b/d¼ 4.5 for the TMz
11 mode; (c) a circular

waveguide for the TMz
01 mode; and (d ) a coaxial waveguide with rin/d¼ 0.55 for the TMz

01 mode. Data: "1¼�1¼ 1, d1/d¼ 2/3,
"2 and �2 given by Equations (20) and (21) with �¼ 0, and N¼ 15.
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Bragg band gaps, and their origin is due to interference
from the periodically repetitive constitution of the
PBG structure.

In Figure 5, analogous gap-maps for lowest-order1

TMz modes are plotted. For modes of this polarization
state, no �-zero band gap appears, but the "-zero band
gap is present instead.

The four gap-maps displayed in Figures 4 and
5 are practically the same, regardless of the cross-
sectional shape. The widths of the passbands are very
similar, and the small differences between the gap-
maps are further reduced when the cross-sectional
dimensions are slightly increased. The slight variations
among the different gap-maps are due to the value
the cut-off wavenumber acquires for each structure.
To quantify these differences and similarities, the
upper and lower frequencies of the different band
gaps are compared in Table 2 and Figure 6 for the
same constitutive parameters of Figures 4 and 5.
These limiting frequencies were computed for the
lowest-order TMz mode for each shape, and the
cross-sectional dimensions were selected for useful
comparison.

In all cases, the numerical values show that the
frequencies at which band-gaps occur are very similar
for all the geometries, having differences at most of
10% for the worst of the comparisons. Coaxial guides
differ from the other four cases by approximately 15%,
because the inner diameter is not so small with respect
to the outer one; this difference reduces significantly as
rint ! 0. In these figures, we can also distinguish the
reduction of the differences between sections as relative

Table 2. Values of the upper and lower frequencies of band gaps for the lowest-order TMz modes for different section
geometries. (a) h/d¼ b/d¼ r/d¼ rext/d¼ 1.5; (b) h/d¼ b/d¼ r/d¼ rext/d¼ 4.5. Lines represent frequencies below the cut-off
frequency limit.

TMz

h
=d
¼

b
=d
¼

r=
d

¼
r e
x
t=
d
¼

1
:5 n
¼

0
g
a
p !�d/c 1.044 – – – –

!þd/c 1.212 – – – –

"
¼

0
g
a
p !�d/c 1.358 – – – –

!þd/c 2.139 2.224 – – –

B
ra
g
g

g
a
p !�d/c 3.142 3.192 3.552 2.947 3.702

!þd/c 3.484 3.511 3.687 3.369 3.750

h
=d
¼

b
=d
¼

r=
d

¼
r e
x
t=
d
¼

4
:5 n
¼

0
g
a
p !�d/c 0.884 0.898 0.995 0.829 0.907

!þd/c 1.021 1.024 1.024 1.019 1.021

"
¼

0
g
a
p !�d/c 1.418 1.428 1.409 1.412 1.415

!þd/c 1.468 1.474 1.525 1.450 1.477

B
ra
g
g

g
a
p !�d/c 2.707 2.713 2.764 2.683 2.717

!þd/c 3.208 3.213 3.249 3.191 3.215

Figure 6. Schematic comparison of the frequency limits
of band gaps for the lowest-order TMz modes for the same
geometries of Table 2. (The color version of this figure is
included in the online version of the journal.)
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distances enlarge. Lines or absent points in Table 2
and Figure 6, respectively, represent frequencies below
the cut-off frequency (�nm).

Finally, we plot in Figure 7 the reflectance spec-
trum of a real PBG multilayer structure with N¼ 30
unit-cells implemented inside the different cross-
sectional shaped waveguides considered in the previous
figures. The external dimensions of the diverse
waveguides are fixed in order to obtain the same cut-
off wavenumber for the chosen propagation modes.
Results are shown for both non-dissipative (�¼ 0)
and dissipative (�¼ 0.16) NPV materials exhibiting
that the reflectance spectrum of each structure yields
band gaps located in the same frequency range.

4. Conclusions

We have studied here the responses of PBG structures
that alternate conventional dielectrics with negative
phase velocity materials implemented in waveguides
of different cross-sections. Our results show that the
reflectance spectrum does not depend directly on the
cross-sectional geometry but on the cut-off wavenum-
ber instead. Therefore, only the cross-sectional dimen-
sions that control the cut-off wavenumber are capable
of modifying the spectral localization of the band
gaps when the unit-cell parameters (constitutive
parameters and widths of layers) are fixed. Results
obtained using two alternative numerical methods,
the Abelés–Chebyshev and the Scattering Matrix

procedures, show that structures exhibit both Bragg
and non-Bragg gaps even for normal propagation.
Simulations with lossy materials have been included
showing that the spectral localization of the band gaps
remains invariant for low loss.
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Note

1. The TMz
0 , i.e. the TEM mode is not taken in account for

the parallel-plate waveguide. Therefore, the TMz
1 is the

lowest-order TMz mode.
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