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Abstract
Given a set of conflicting arguments, there can exist multiple plausible opinions about which arguments should be accepted,
rejected or deemed undecided. We study the problem of how multiple such judgements can be aggregated. We define the
problem by adapting various classical social-choice-theoretic properties for the argumentation domain. We show that while
argument-wise plurality voting satisfies many properties, it fails to guarantee the collective rationality of the outcome. We
then present more general results, proving multiple impossibility results on the existence of any good aggregation operator.
After characterizing the sufficient and necessary conditions for satisfying collective rationality, we study whether restricting
the domain of argument-wise plurality voting to classical semantics allows us to escape the impossibility result. We close by
mentioning a couple of graph-theoretical restrictions under which the argument-wise plurality rule does produce collectively
rational outcomes. In addition to identifying fundamental barriers to collective argument evaluation, our results contribute to
research at the intersection of the argumentation and computational social choice fields.

Keywords: xxx

1 Introduction
Argumentation has recently become one of the key approaches to automated reasoning and rational
interaction in Artificial Intelligence [5, 28]. A key milestone in the development of argumentation in
AI has been Dung’s landmark framework [15], known as abstract argumentation framework (AAF).
Arguments are viewed as abstract entities (a set A), with a binary defeat relation (denoted ⇀)
over them. The defeat relation captures the fact that one argument somehow attacks or undermines
another. This view of argumentation enables high-level analysis while abstracting away from the
internal structure of individual arguments. In Dung’s approach, given a set of arguments and a defeat
relation, a rule specifies which arguments should be accepted.

Often, there are multiple reasonable ways in which an agent may evaluate a given argument
structure (e.g. accepting only conflict-free, self-defending sets of arguments). Each possible
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2 Multi-agent argumentation

Figure 1. Argument graph with three possible labellings.

evaluation corresponds to a so-called extension [15] or labelling [8, 9]. Different argumentation
semantics yield different restrictions on the possible extensions. Most previous research has focused
on evaluating and comparing different semantics based on the (objective) logical properties of their
extensions [3].

One of the essential properties, which is common, is the condition of admissibility: that accepted
arguments must not attack one another, and must defend themselves against counter-arguments, by
attacking them back. A stronger notion is called completeness, and is captured, in terms of labelling,
in the following two conditions:

(1) An argument is labelled accepted (or in) if and only if all its defeaters are rejected (or out).
(2) An argument is labelled rejected (or out) if and only if at least one of its defeaters is accepted

(or in).

Otherwise, an argument may be labelled undec. Thus, evaluating a set of arguments amounts to
labelling each argument using a labelling function L : A→ {in,out,undec} to capture these three
possible labels. Any labelling that satisfies the above conditions is also called a legal labelling. We
will often use legal labelling and complete labelling interchangeably.

The above conditions attempt to evaluate arguments from a single point of view. Indeed, most
research on formal models of argumentation discounts the fact that argumentation takes place among
self-interested agents, who may have conflicting opinions and preferences over which arguments end
up being accepted, rejected or undecided. Consider the following simple example.

Example 1 (A Murder Case)
A murder case is under investigation. To start with, there is an argument that the suspect should
be presumed innocent (a3). However, there is evidence that he may have been at the crime scene
at the time (a2), which would counter the initial presumption of innocence. There is also, however,
evidence that the suspect was attending a party that day (a1). Clearly, a1 and a2 are mutually defeating
arguments since the suspect can only be in one place at any given time. Hence, we have a set of
arguments {a1,a2,a3} and a defeat relation ⇀={(a1,a2),(a2,a1),(a2,a3)}. There are three possible
labellings that satisfy the above conditions:

• L(a1)=in, L(a2)=out, L(a3)=in.
• L′(a1)=out, L′(a2)=in, L′(a3)=out.
• L′′(a1)=undec, L′′(a2)=undec, L′′(a3)=undec.

The graph and possible labellings are depicted in Figure 1.
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Figure 2. Three detectives with different judgements.

Example 1 highlights a situation in which multiple points of view can be taken, depending on
whether one decides to accept the argument that the suspect was at the party or the crime scene.
The question we explore in this article can be highlighted through the following example, extending
Example 1.

Example 2 (Three Detectives)
A team of three detectives, named 1, 2 and 3, have been assigned to the murder case described
in Example 1. Each detective’s judgement can only correspond to a legal labelling (otherwise, her
judgement can be discarded). Suppose that each detective’s judgement is such that L1 =L, L2 =L′
and L3 =L′. That is, detectives 2 and 3 agree but differ with detective 1. These labellings are depicted
in the labelled graph of Figure 2. The detectives must decide which (aggregated) argument labelling
best reflects their collective judgement.

Example 2 highlights an aggregation problem, similar to the problem of preference aggregation
[2, 16, 33] and the problem of judgement aggregation on propositional formulae [19, 20, 22, 23].
It is perhaps obvious in this particular example that a3 must be rejected (and thus the defendant be
considered guilty), since most detectives seem to think so. For the same reason, a1 must be rejected
and a2 must be accepted. Thus, labelling L′ (see Example 1) wins by majority. As we shall see in our
analysis below, things are not that simple, and counter-intuitive situations may arise. We summarize
the main question asked in the article as follows.

Given a set of agents, each with a specific subjective evaluation (i.e. labelling) of a given set
of conflicting arguments, how can agents reach a collective decision on how to evaluate those
arguments?

While Arrow’s Impossibility Theorem can be expected to ensue for this problem [1],1 there
exist many differences between labellings and preference relations (for which Arrow’s result
apply), stemming from their corresponding order-theoretic characterizations. In other words,
aggregating preferences assumes that agents submit a full order of preferences over candidates,
while in labelling aggregation, agents submit their top labelling for a set of logically connected
arguments.

1Arrow’s Theorem claims that four quite natural constraints, that capture abstractly the properties of a democratic
aggregation process, cannot be simultaneously satisfied.
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4 Multi-agent argumentation

The problem of labelling aggregation is more comparable to the judgement aggregation problem
[19, 20, 22, 23], by considering arguments as propositions which are logically connected by the
conditions of legal labelling. However, one important difference is that in judgement aggregation,
each proposition can have two values: True or False. In labelling aggregation, on the other hand,
each argument can have three values: in, out or undec. This makes labelling aggregation be
more comparable to non-binary evaluations [13, 14]. Considering the general framework in [14],
our settings can be considered as focusing on special classes of feasible evaluations, which are the
conditions imposed by the legal labelling (or other semantics). Additionally, the possible evaluations
of each issue (argument, in our case) are to accept (labels asin), reject (labels asout) or be undecided
(labels as undec).

In this article, we conduct an extensive social-choice-theoretic analysis of argument evaluation
semantics by means of labellings. We assume that individuals are presented with a shared
argumentation framework (AF) and need to make a decision about how to evaluate thisAF. Individuals
are assumed to have different, but reasonable, evaluations. There can be many scenarios in which
such settings are present. For example, consider a jury members that are all provided with the same
information, each of them has a different opinion about these information and yet they all need to
come up with a collective decision. Another example is a company board committee who need to
make an informed decision. They can be all presented with the same information about the current
economic status and the possible strategies, each one of them has his/her own opinion about what
should be done, yet they all need to reach a collective decision.

The article makes three distinct contributions to the state-of-the-art in the computational modelling
of argumentation. First, the article introduces the study of aggregating different individual judgements
on how a given set of arguments is to be evaluated.2 This requires adapting classical social-choice
properties to the argumentation domain, and sometimes demands special treatment (e.g. different
versions of some properties).

The second contribution of this article is proving the impossibility of the existence of any
aggregation operator that satisfies some minimal properties. In doing so, we show impossibility
results that concern dealing with ties and producing a collectively rational evaluation of arguments.
These results establish the limits of aggregation in the context of argumentation, and come in
accordance with the impossibility results in the topics of aggregation such as preference aggregation
[1, 17, 25, 30, 31] and judgement aggregation [21]. Hence, as is the case with other aggregation
domains, the aggregation paradox in argument evaluation is an example of a more fundamental
barrier. These results are important because they give conclusive answers and focus research in
more constructive directions (e.g. weakening the desired properties in order to avoid the paradox).
Aiming to investigate possible relaxations in order to circumvent the impossibility in the context of
argumentation, we broke down the Collective Rationality postulate into sub-postulates. This helps in
taking a deeper look at the distinct parts of the postulate. As a consequence, satisfying any of these
parts can be used to weaken the collective rationality.

The third contribution of this article is an extensive analysis of an aggregation rule, namely
argument-wise plurality rule. We analyse the properties of the argument-wise plurality rule in general,

2In fact, this idea was first introduced in [29] for which this article is a substantially extended and revised version. Section 6
which introduces the impossibility of good aggregation operator is significantly enhanced by adding three impossibility results.
Sections 8 and 9 are completely new. Section 10 contains more elaborate discussion of related and future work. Finally, further
explanation, motivation, discussion and background is added to the other sections to improve clarity and presentation of the
article.
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Figure 3. A simple argument graph.

and investigate whether the restriction of the domain of votes to a particular classical semantics would
ensure the fulfillment of these conditions. This highlights a novel use of classical semantics, which
are originally used to resolve issues in single-agent non-monotonic reasoning. Finally, we provide
graph-theoretical restrictions on argumentation frameworks under which the argument-wise plurality
rule would be guaranteed to produce collectively rational outcomes.

The article is organized as follows. In Section 2, we start by giving a brief background on abstract
argumentation systems. Sections 3, 4, 6 and 7 focus on the problem of aggregating sets of judgements
over argument evaluation. Sections 5, 8 and 9 focus on introducing and analysing the argument-wise
plurality rule. We conclude the article and discuss some related work in Section 10.

2 Background
In this section, we briefly outline key elements of abstract argumentation frameworks. We begin with
Dung’s abstract characterization of an argumentation system [15]. We restrict ourselves to finite sets
of arguments.

Definition 1 (Argumentation framework)
An argumentation framework is a pair AF = ⟨A,⇀⟩ where A is a finite set of arguments and ⇀⊆
A×A is a defeat relation. We say that an argument a defeats an argument b if (a,b)∈⇀ (sometimes
written a ⇀ b).

For an argument a∈A, we use a− to denote the set of arguments that defeat a i.e. a− ={b∈A|b⇀a}.

An argumentation framework can be represented as a directed graph in which vertices are arguments
and directed arcs characterize defeat among arguments. An example of argument graph is shown in
Figure 3. Argument a1 has two defeaters (i.e. counter-arguments) a2 and a4, which are themselves
defeated by arguments a3 and a5, respectively.

There are two approaches to define semantics that assess the acceptability of arguments. One
of them is extension-based semantics by Dung [15], which produces a set of arguments that are
accepted together. Another equivalent labelling-based semantics is proposed by Caminada [8, 9],
which gives a labelling for each argument. With argument labellings, we can accept arguments (by
labelling them asin), reject arguments (by labelling them asout) and abstain from deciding whether
to accept or reject (by labelling them as undec). Caminada [8, 9] established a correspondence
between properties of labellings and the different extensions. In this article, we employ the labelling
approach.

Definition 2 (Argument Labelling)
Let AF = ⟨A,⇀⟩ be an argumentation framework. An argument labelling is a total function L :A→
{in,out, undec}.
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Figure 4. Graph with three complete labellings.

We write in(L) (resp. out(L), undec(L)) for the set of arguments that are labelled
in (resp. out, undec) by L. A labelling L can be represented as L= (in(L),out(L),
undec(L)).

However, labellings should follow some given conditions. A minimal reasonable condition is the
conflict-freeness.

Definition 3 (Conflict-freeness)
A labelling L satisfies conflict-freeness iff ∀a,b∈in(L), ¬(a⇀b).

One of the essential semantics, which satisfies conflict-freeness is the complete semantics. We
already informally defined complete labellings via two conditions in the introduction. We find it
convenient to equivalently formulate it as three conditions as follows.

Definition 4 (Complete labelling)
Let AF = ⟨A,⇀⟩ be an argumentation framework. A complete labelling is a total function L :A→
{in,out, undec} such that:

• ∀a∈A : if L(a)=in then ∀b∈A : (b⇀a⇒L(b)=out);
• ∀a∈A : if L(a)=out then ∃b∈A s.t. (b⇀a∧L(b)=in); and
• ∀a∈A : if L(a)=undec then

– ∃b∈A : (b⇀a∧L(b)=undec); and
– ̸ ∃b∈A : (b⇀a∧L(b)=in)

We will use Comp(AF) to denote the set of all complete labellings for AF.

As an example, consider the following.

Example 3
Consider the graph in Figure 4. Here, we have three complete labellings: LG = ({a3},{},{a1,a2}),
L1 = ({a1,a3},{a2},{}) and L2 = ({a2,a3},{a1},{}).

In addition to the complete labelling, there are other semantics which assume further
conditions.
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Definition 5 (Other Labelling Semantics)
Let AF = ⟨A,⇀⟩ be an argumentation framework. Let L :A→ {in,out,undec} be a complete
labelling.

• L is a grounded labelling if and only if in(L) is minimal, or equivalently out(L) is minimal,
or equivalently undec(L) is maximal (w.r.t set inclusion) among all complete labellings.

• L is a preferred labelling if and only if in(L) is maximal, or equivalently out(L) is maximal
(w.r.t set inclusion) among all complete labellings.

• L is a semi-stable labelling if and only if undec(L) is minimal (w.r.t set inclusion) among all
complete labellings.

• L is a stable labelling if and only if undec(L)=∅.

Note that the grounded labelling is always unique, and stable labellings might not exist. Consider
the following example.

Example 4
Consider the graph in Figure 4. Here, we have the grounded labelling is LG = ({a3},{},{a1,a2}).
We have only two preferred labellings: L1 = ({a1,a3},{a2},{}), and L2 = ({a2,a3},{a1},{}). These are
also the only stable and semi-stable labellings for this framework.

Clearly, for any AF, Stab(AF)⊆Semi(AF)⊆Pref (AF)⊆Comp(AF), and Grnd(AF)⊆Comp(AF),
where Stab(AF), Semi(AF), Pref (AF) and Grnd(AF) refer to the set of stable, semi-stable, preferred
and grounded labellings for AF. We refer to the previous semantics as classical semantics. There
exist other semantics which we do not consider in this work.

3 Aggregation of argument labellings
To date, most analyses inspired by Dung’s framework have focused on analysing and comparing the
properties of various types of extensions/labellings (i.e. semantics) [3]. The question is, therefore,
whether a particular type of labelling is appropriate for a particular type of reasoning task in the
presence of conflicting arguments.

In contrast with most existing work on Dung frameworks, our concern here is with multi-agent
systems. Since each labelling captures a particular rational point of view, we ask the following
question: Given an argumentation framework and a set of agents, each with a legitimate subjective
evaluation of the given arguments, how can the agents reach a collective compromise on how to
evaluate those arguments?

Thus, the problem we face is that of judgement aggregation [21] in the context of argumentation
frameworks. This problem can be formulated as a set of individuals that collectively decide how an
argumentation framework AF = ⟨A,⇀⟩ must be labelled.

Definition 6 (Labelling aggregation problem)
Let Ag={1,...,n} be a finite non-empty set of agents, and AF = ⟨A,⇀⟩ be an argumentation
framework. A labelling aggregation problem is a pair LAP = ⟨Ag,AF⟩.

Each individual i∈Ag has a labelling Li which expresses the evaluation of AF by this individual. A
labelling profile is an |Ag|-tuple of labellings.
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Definition 7 (Labelling profile)
Let LAP = ⟨Ag,AF⟩ be a labelling aggregation problem. We use L= (L1,...,Ln)∈L(AF)|Ag| to
denote a labelling profile, where L(AF) is the class of labellings of AF. Additionally, we use L(a) to
denote the labelling profile (i.e. an |Ag|-tuple) of an argument a∈A i.e. L(a)= (L1(a),...,Ln(a)).

The aggregation of individuals’ labellings can be defined as a partial function.3

Definition 8 (Aggregation function)
Let LAP = ⟨Ag,AF⟩ be a labelling aggregation problem. An aggregation function for LAP is a
function F :L(AF)n →L(AF).

For each a∈A, [F(L)](a) denotes the collective label assigned to a, if F is defined for L= (L1,...,Ln).

4 Desirable properties of aggregation operators
Aggregation involves comparing and assessing different points of view. There are, of course, many
ways of doing this, as extensively discussed in the literature of Social Choice Theory [16]. In
this literature, a consensus on some normative ideals has been reached, identifying what a ‘fair’
way of adding up votes should be. So for instance, if everybody agrees, the outcome must reflect
that agreement; no single agent can impose her view on the aggregate; the aggregation should be
performed in the same way in each possible case, etc. These informal requirements can be formally
stated as properties that F should satisfy [12, 21]. In all of the following postulates, it is assumed
that a fixed labelling aggregation problem LAP = ⟨Ag,AF⟩ is given. The postulates can be grouped
as follows:4

Group 1: Domain and co-domain postulates

In judgement aggregation, two postulates that are commonly assumed are those of Universal
Domain and Collective Rationality. The former requires that any profile of labellings chosen from
a pre-specified set of feasible labellings can be used as input to F and F will return an answer.
The question is: what do we take to be the set of feasible labellings in our setting? This depends
on which semantics we assume is being used. Theoretically, we can have a different version of
Universal Domain for each semantics. However since complete semantics represent reasonable
and self-defending points of views, it represents the best counterpart for the logical consistency
in judgement aggregation:

Universal Domain F can take as input all profiles L= (L1,...,Ln) such that L∈Comp(AF)n

However, in Subsection 8.2 we will use other semantics as a domain for L.
Similarly we could have a different version of Collective Rationality—one for each semantics—

stating that the output of the aggregation should also be feasible. Again, since we focus on complete
semantics, we focus on the following version:

Collective Rationality For all profiles L such that F(L) is defined, F(L)∈Comp(AF).

3We state that the function is partial to allow for cases in which collective judgement may be undefined (e.g. when there
is a tie in voting).

4This style of presentation of postulates was inspired by [18] which is on binary aggregation.
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Later, in Section 7, we will break this postulate down into further constituents.

Group 2: Fundamental postulates

Next we come to the standard property that forms the cornerstone of the usual impossibility results
in judgement aggregation. It says the collective label of an argument depends only on the votes on
that argument, independent of the other arguments.

Independence For any two profiles L= (L1,...,Ln), L′ = (L′
1,...,L

′
n) such that F(L) and F(L′)

are defined, and for all a∈A, if Li(a)=L′
i(a) for all i∈Ag, then [F(L)](a)=[F(L′)](a).

The effect of Independence is that aggregation is done ‘argument-by-argument’. To be slightly
more precise, each argument a∈A essentially has its own aggregation operator Ia associated with
it, that takes an n-tuple of labels x= (l1,...,ln) as input (representing the ‘vote’ of each agent
on the label of a) and returns another label Ia(x) as output (the ‘collective label’) of a. Then
[F(L)](a)= Ia((L1(a),...,Ln(a))). Note that the necessity of Independence is questionable in our
settings because of the dependencies between arguments that come already encoded in the form
of the attack relation. Nevertheless, it is usually investigated in the judgement aggregation and
preference aggregation literature because of its role in analysing strategy-proofness. Though the
relation between Independence and strategy-proofness is not established yet in our settings, our task
in this article is to stick close to the methodology in judgement aggregation, and there it is often
assumed.

Next, we have Anonymity, which says the identity of which agent submits which labelling is
irrelevant.

Anonymity For any profile L= (L1,...,Ln), if L′ = (Lρ(1),...,Lρ(n)) for some permutation ρ on
Ag, and F(L) and F(L′) are both defined, then F(L)=F(L′).

If we add Anonymity to Independence, then it means the outputs of the functions Ia described above
depend only on the number of votes that each label gets in x. Essentially it means Ia outputs a collective
label just taking as input the triple (#in,#out,#undec) of numbers denoting, respectively, the
number of votes for in, out and undec in x.

Proposition 1
Let F be an aggregation operator. Then F satisfies both Independence and Anonymity iff for each
a∈A there exists a function Ia :N3 → {in,out,undec} such that, for all L we have [F(L)](a)=
Ia(#in,#out, #undec).

Outline. The ‘if’ case is straightforward, since permuting the rows does not change the vote
distribution and so Anonymity will hold. Independence is also clear.

For the ‘only if’ case, Independence gives us the existence of the function Ia such that
[F(L)](a)= Ia(L1(a),...,Ln(a)) and then Anonymity implies that two vectors that have the same vote
distribution will give the same results, so we can set Ia(#in,#out,#undec)= Ia(L1(a),...,Ln(a))
where (L1(a),...,Ln(a)) is any vote which has (#in,#out,#undec) as its distribution. !

A weakening of Anonymity is Non-Dictatorship:5

Non-Dictatorship There is no i∈Ag such that, for every profile L= (L1,...,Ln) for which F(L)
is defined, we have F(L)=Li.

5Since a violation of the latter would imply a violation of the former.
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Figure 5. An example illustrating Strong Systematicity.

Group 3: Unanimity postulates

Next we move to Unanimity, and some other postulates related to it.

Unanimity If L is such that F(L) is defined and there exists some L s.t. Li =L for all i∈Ag,
then F(L)=L.

This postulate is also familiar from judgement aggregation, but the move to three-valued labellings
rather than the two usually seen in judgement aggregation opens up the possibility to define other
variants of Unanimity, one of which is used by Dokow and Holzman [14], called Supportiveness:

Supportiveness For any profile L such that F(L) is defined, and for all a∈A, there exists i∈Ag
such that [F(L)](a)=Li(a).

Supportiveness says that, for each argument a and label l, the collective judgement cannot be set to
l without at least one agent voting for that l. Clearly Supportiveness implies Unanimity.

It might seem natural to have the collective label of an argument as undec even when nobody
votes for it, if we interpret undec as a halfway label between in and out. Then if half the agents
say in and the other half says out then undec might be a reasonable compromise. Given this,
a weaker version of Supportiveness that only applies to in and out can be defined. We call it
in/out-Supportiveness.

in/out-Supportiveness For any profile L such that F(L) is defined, and for all a∈A, if
[F(L)](a) ̸=undec then there exists some agent i such that [F(L)](a)=Li(a).

Group 4: Systematicity postulates

Now we come to the Systematicity postulates which deal with neutrality issues across arguments
and labels. We can list two variants, both of which imply Independence. We start with the stronger
version:

Strong Systematicity For any two profiles L= (L1,...,Ln) and L′ = (L′
1,...,L

′
n) such that F(L)

and F(L′) are defined, and for all a,b∈A, and for every permutation ρ on the set of labels
{in,out,undec}, if ∀i∈Ag : Li(a)=ρ(L′

i(b)), then [F(L)](a)=ρ([F(L′)](b)).

To illustrate Strong Systematicity, consider the example in Figure 5. We have the following three
labellings: L1 = ({a},{b},{}), L2 = ({b},{a},{}), L3 = ({},{},{a,b}).

Consider the profiles L= (L1,L1,L2,L3) and L′ = (L3,L3,L2,L1). Then, L(a)=
(in,in,out,undec) and L′(b)= (undec,undec,in,out). Let ρ be the permutation on
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labels such that ρ(in)=undec, ρ(out)=in, and ρ(undec)=out. Then, we can see that in this
example ∀i∈Ag : L′

i(b)=ρ(Li(a)). Strong Systematicity requires that [F(L′)](b)=ρ([F(L)](a)).
The postulate forces us to give an even-handed treatment to the labels in, out and undec (in
addition to treating each argument independently and similarly). This makes sense if we consider
in, out and undec as three independent labels. However, one might be tempted to consider undec
as a middle label between in and out. Hence, the equal treatment might not be desirable in this
case. One might suggest a version of Systematicity that treats in and out equally. Following, we
define this version (which we call in/out-Systematicity).

in/out-Systematicity For any two profiles L= (L1,...,Ln) and L′ = (L′
1,...,L

′
n) such that

F(L) and F(L′) are defined, and for all a,b∈A, and for every undec-preserving permutation
ρ on the set of labels {in,out,undec} (i.e.ρ(undec)=undec), if ∀i∈Ag : Li(a)=ρ(L′

i(b)),
then [F(L)](a)=ρ([F(L′)](b)).

in/out-Systematicity lies in the middle between Strong Systematicity and the following version of
Systematicity which can be obtained by restricting the class of permutations, until we only consider
the identity.

Weak Systematicity For any two profiles L= (L1,...,Ln) and L′ = (L′
1,...,L

′
n) such that F(L)

and F(L′) are defined, and for all a,b∈A, if ∀i∈Ag : Li(a)=L′
i(b), then [F(L)](a)=[F(L′)](b).

Clearly Independence follows from Weak Systematicity by just setting a=b. If we strengthen
Independence to Weak Systematicity then the functions Ia, mentioned earlier, are identical for all
arguments.

Group 5: Monotonicity postulates

Our final group relates to Monotonicity.

Monotonicity Let la ∈ {in,out,undec} be such that given two profiles L= (L1,...,Li,

...,Li+k,...,Ln) and L′ = (L1,...,L′
i,...,L

′
i+k,...,Ln) (differing only in the labellings of agents

i,i+1,...,i+k) such that F(L) and F(L′) are defined, where i∈ {1,...,n} and k ∈ {0,...,n−
i}, if Lj(a) ̸= la while L

′
j(a)= la for all j∈ {i,...,i+k}, then [F(L)](a)= la implies that

[F(L′)](a)= la.

Monotonicity states that if a set of agents switch their label of argument a to the collective label
of a then the collective label of a remains the same. Similar to Supportiveness and Systematicity, a
weaker version of Monotonicity that only apply to in and out can be defined. We call it in/out-
Monotonicity.

in/out-Monotonicity Let la ∈ {in,out} be such that given two profiles L= (L1,...,Li,

...,Li+k,...,Ln) and L′ = (L1,...,L′
i,...,L

′
i+k, ...,Ln) (differing only in the labellings of

agents i,i+1,...,i+k) such that F(L) and F(L′) are defined, where i∈ {1,...,n} and k ∈
{0,...,n−i}, if Lj(a) ̸= la while L

′
j(a)= la for all j∈ {i,...,i+k}, then [F(L)](a)= la implies that

[F(L′)](a)= la.
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5 The argument-wise plurality rule
An obvious candidate aggregation operator to check out is the plurality voting operator M. In this
section, we analyse a number of key properties of this operator. Intuitively, for each argument, it
selects the label that appears most frequently in the individual labellings.

Definition 9 (Argument-Wise Plurality Rule (AWPR))
Let AF = ⟨A,⇀⟩ be an argumentation framework. Given any argument a∈A and any profile L=
(L1,...,Ln), it holds that [M(L)](a)= la ∈ {in,out,undec} iff

|{i :Li(a)= la}|>max
l′a ̸=la

|{i :Li(a)= l′a}|

Note that M is defined for all profiles that cause no ties, i.e. M(L) is defined iff there does not exist
any argument a∈A for which we have at least two labels la and l′a with la ̸= l′a and

|{i :Li(a)= la}|=|{i :Li(a)= l′a}|=max
l

|{i :Li(a)= l}|

One can directly notice that AWPR violates Universal Domain, because it is not defined for all
profiles in Comp(AF).

Example 5 (Three Detectives (cont.))
Continuing on Example 2, applying the argument-wise plurality rule, we have [M((L1,L2,L3))](a1)=
out, [M((L1,L2,L3))](a2)= in, and [M((L1,L2,L3))](a3)= out.

5.1 Properties of argument-wise plurality rule

We now analyse whether AWPR satisfies the properties listed above.

Proposition 2
The argument-wise plurality rule operator M satisfies Supportiveness, Anonymity, Strong System-
aticity, and Monotonicity.

Proof. In this proof, the considered profiles are restricted to those for which [M(L)] is defined.

• Supportiveness: consider any profile L= (L1,...,Ln). Suppose, towards a contradiction, that
for some argument a, there exists no agent i such that Li(a)= la where la =[M(L)](a). Then
|{i :Li(a)= la}|=0. But, |{i :Li(a)= la}|>maxl′a ̸=la |{i :Li(a)= l′a}|>0 (the last inequality holds
since Ag is non-empty). Contradiction.

• Anonymity: consider any profile L= (L1,...,Ln). [M(L)](a)= la if and only if |{i :Li(a)= la}|>
maxl′a ̸=la |{i :Li(a)= l′a}| if and only if |{ρ(i) :Lρ(i)(a)= la}|>maxl′a ̸=la |{ρ(i) :Lρ(i)(a)= l′a}|,
which is equivalent to
[M((Lρ(1),...,Lρ(i),...,Lρ(n)))](a)= la.

• Strong Systematicity: consider, for any two profiles L= (L1,...,Ln) and L′ = (L′
1,...,L

′
n), and for

any a,b∈A, the permutation ρ : {in,out,undec} →{in,out,undec}. Suppose, towards
a contradiction, that for any i, Li(a)=ρ(L′

i(b)), and [M(L)](a)= la but ρ(M(L′)[b]) ̸=ρ(la).
But then,|{i :Li(a)= la}|=|{i :L′

i(b)=ρ(la)}| while for any l′a ̸= la, |{i :Li(a)= l′a}|=|{i :L′
i(b)=

ρ(l′a)}|. So, if |{i :Li(a)= la}|>maxl′a ̸=la |{i :Li(a)= l′a}| then, we have |{i :L′
i(b)=ρ(la)}|>

maxl′a ̸=la |{i :L′
i(b)=ρ(l′a)}| as well. Contradiction.
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• Monotonicity: consider the following two profiles L= (L1,...,Li,...,Li+k, ...,Ln) and L′ =
(L1,...,L′

i,...,L
′
i+k,...,Ln) (differing only in the labellings of agents i,i+1,...,i+k) where

i∈ {1,...,n} and k ∈ {0,...,n−i}. Suppose, towards a contradiction, that for a∈A and a label la
we have that Lh(a) ̸= la while L

′
h(a)= la for all h∈ {i,...,i+k}, and we have that [M(L)](a)=

la while [M(L′)](a) ̸= la. But then, |{j :Lj(a)= la}|>maxl′a ̸=la |{j :Lj(a)= l′a}| in the profile L
while in the profile (L̂1,...,L̂n)≡L′, we have {j : L̂j(a)= la}={j :Lj(a)= la}∪{i,...,i+k} and
{j : L̂j(a)= l′a}⊆ {j :Lj(a)= l′a} for every other labelling l′a. Then |{j : L̂j(a)= la}|>maxl′a ̸=la |{j :
L̂j(a)= l′a}|. Contradiction.

!
Corollary 1
The argument-wise plurality rule operator M satisfies Unanimity, Weak Systematicity, Independence
and Non-Dictatorship.

Proof. Weak Systematicity and Independence follow from Strong Systematicity, Unanimity follows
from Supportiveness and Non-Dictatorship follows from Anonymity. !

Despite all these promising results, it turns out that plurality operator violates Universal Domain
and Collective Rationality postulates. The violation of Universal Domain is because AWPR is not
defined for profiles that cause ties, which means that it cannot take as input every possible profile
L∈Comp(AF)n. However, a weaker version of Universal Domain can be defined.

No-Tie Universal Domain An aggregation operator F can take as input all profiles L=
(L1,...,Ln) such that L does not cause a tie and L∈Comp(AF)n.

Since there are no restrictions (other than having no ties) on how labellings are defined, AWPR
satisfies No-Tie Universal Domain. Note that one might be tempted to make AWPR satisfy Universal
Domain by adding a deterministic6 tie-breaking rule to deal with ties. However, as we show in the
next section, the use of any tie-breaking rule would result in violating Anonymity, and/or Strong
Systematicity. While the violation of Universal Domain represents a minor inconvenience that can
be justified, the violation of Collective Rationality poses a serious issue as the collective decision
is usually expected to be reasonable. The following example shows how AWPR violates Collective
Rationality.

Example 6
Suppose argument c has two defeaters, a and b, and argument a (resp. b) defeats and is defeated
by argument a′ (resp. b′). Suppose we have three agents, with votes as shown in Figure 6. We have
[M(L)](c)=out, but it is not the case that [M(L)](a)=in or [M(L)](b)=in.

Interestingly, the above counterexample demonstrates a variant of the discursive dilemma [21] in
the context of argument evaluation, which itself is a variant of the well-known Condorcet paradox.

6 The impossibility of good aggregation operators
In the previous section, we analyzed a particular judgement aggregation operator (namely, argument-
wise plurality rule). We showed that while it satisfies most key properties, it fails to satisfy Universal

6The use of a non-deterministic tie-breaking rule has its own issues too, such as producing different outcomes given the
same profile.
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Figure 6. Counterexample to Collective Rationality.

Domain and Collective Rationality. In this section, we show a couple of impossibility results that
involve these two postulates. The following result shows that introducing a tie-breaking rule to satisfy
Universal Domain would result in violating Anonymity and/or Strong Systematicity.

Theorem 1
There exists an argumentation framework AF such that, for any set of agents whose cardinality
is divisible by three, there exists no labelling aggregation operator satisfying Universal Domain,
Anonymity and Strong Systematicity.

Proof. It is enough to assume an AF that contains at least one argument a which can feasibly
take on any label, i.e. there exist complete labellings Lin,Lout and Lundec over AF such that
Lin(a)=in, Lout(a)=out and Lundec(a)=undec. Divide n agents into three groups G1, G2,
G3 of equal size. By Universal Domain, all profiles consisting of legal labellings are valid input.
Assume a profile in which everyone in G1 provides labelling Lin, everyone in G2 provides Lout
and everyone in G3 provides Lundec. For now let us denote this profile by L= ([G1 :Lin],[G2 :
Lout],[G3 :Lundec]). Now, assume for contradiction that F is an aggregation operator for AF
satisfying Universal Domain, Anonymity and Strong Systematicity. Let ρ : {in,out,undec}→
{in,out,undec} be any permutation on the set of labels such that ρ(l) ̸= l for all labels l (for
instance, ρ(in)=out, ρ(out)=undec, ρ(undec)=in), and let L′ denote the profile ([G1 :
Lρ(in)],[G2 :Lρ(out)],[G3 :Lρ(undec)]). Since L′

i(a)=ρ(Li(a)) for all i∈Ag, Strong Systematicity
implies [F(L′)](a)=ρ([F(L)](a)). However, we chose ρ s.t. ρ(l) ̸= l. Hence, [F(L′)](a) ̸=[F(L)](a).
But Anonymity implies [F(L)](a)=[F(L′)](a). Contradiction. Hence no such F can exist.

!
The previous result can be read in two ways: first, the AWPR cannot be made to satisfy Universal

Domain without violating Strong Systematicity or Anonymity. Second, there exists no aggregation
operator at all that satisfies Universal Domain, Strong Systematicity and Anonymity.

Note that the previous theorem was stated for a set of agents divisible by three. Essentially, three-
way ties would only happen if the cardinality of the agents is divisible by three (since there are
only three possible labels for each argument, and each individual has to submit one label for each
argument). Hence, one might wonder whether we could rule out the possibility of three-way ties,
by assuming n cannot be a multiple of three.7 However, with even number of agents, we can show

7It was shown in [24] that Anonymity, Neutrality (a weaker version of Strong Systematicity) and Resolution can be satisfied
together if and only if the number of alternatives cannot be written as the sum of non-trivial dividers of the number of voters.
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that there is still a large class of AFs which do not have an operator satisfying those three postulates
without violating Collective Rationality.

Theorem 2
There exists an argumentation framework AF such that, for any set of agents of even cardinality,
there exists no labelling aggregation operator satisfying Universal Domain, Anonymity, Strong
Systematicity and Collective Rationality.

Proof. It is enough to assume an AF that contains at least one argument a that can feasibly take on
just two out of the three possible labels. For concreteness suppose a can only take on labels out
and undec (An example of such a framework and an argument can be seen in the proof of Theorem
3 below, in which c can only be either out or undec). Let Lundec and Lout be two complete
labellings such that Lundec(a)=undec and Lout(a)=out. Divide the agents into two groups G1,
G2 of equal size. By Universal Domain, all profiles consisting of legal labellings are valid input, so
assume a profile in which everyone in G1 provides labelling Lundec and everyone in G2 provides
Lout. Denote the resulting profile by L= ([G1 :Lundec],[G2 :Lout]) and assume for contradiction
that F is an aggregation operator for this AF that satisfies Universal Domain, Anonymity, Strong
Systematicity and Collective Rationality. Let ρ be the permutation that swaps undec and out, i.e.
ρ(undec)=out and ρ(out)=undec, and let L′ = ([G1 :Lout],[G2 :Lundec]).8 By Anonymity
we know [F(L)](a)=[F(L′)](a). Then it cannot be that [F(L)](a)=undec, for if so then Strong
Systematicity would imply [F(L′)](a)=ρ(undec)=out ̸=[F(L)](a), and similarly it cannot be
that [F(L)](a)=out. Thus we must have [F(L)](a)=in. But by Collective Rationality [F(L)](a)∈
{undec,out}. Contradiction. !

The careful reader can realize that Collective Rationality can be substituted with Supportiveness in
the previous theorem.As for the proof, the last sentence becomes: ‘Thus we must have [F(L)](a)=in.
But by Supportiveness [F(L)](a)∈ {undec,out}. Contradiction’.

However, one might argue that Strong Systematicity is quite a strong condition. Treating in, out,
and undec differently can be tolerated. Then, it is interesting to ask: ‘Does there exist an operator
that satisfies Universal Domain, Weak Systematicity, and Anonymity?’. The answer for this question
is positive. Consider a modified version of the AWPR that deals with ties by labelling every argument
that has a tie with undec. One can show that this operator satisfies these three properties together.
However, this operator still violates Collective Rationality (Example 6 holds as a counterexample). In
fact, we show that any operator that satisfies Universal Domain, Weak Systematicity, and Anonymity,
would violate either Collective Rationality or Unanimity.

Theorem 3
There exists an argumentation framework AF such that, for any set of agents of even cardinality,
there exists no labelling aggregation operator satisfying Universal Domain, Weak Systematicity,
Anonymity, Collective Rationality and Unanimity.

Proof. Consider the following argumentation framework. An argument c is defeated by two
arguments a and b which defeat each others.

Resolute rules always produce a single outcome, so it resembles No-Tie Universal Domain. Also, in our settings, the number
of candidates is three. So this result says that we can have these postulates together if the number of voters is not a multiple
of three.

8Note here that all labellings in the profile L′ are still complete labellings. This is because ρ does not uniformly exchange
all labels in a given labelling, it is just a permutation on the set of labels.
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Consider the two labellings L= ({a},{b,c},{}) and L′ = ({b},{a,c},{}). Assume, towards a
contradiction, that there exists an aggregation operator F that satisfies Universal Domain, Collective
Rationality, Weak Systematicity, Anonymity and Unanimity.

By Universal Domain, we may consider any profile consisting of legal labellings. Consider the
two profiles L= (L,...,L,L′,...,L′) and L′ = (L′,...,L′,L,...,L). That is, in L half the agents give L
and the other half give L′, and then in L′ the agents switch from L to L′ and vice versa.

By Unanimity we know
[F(L)](c)=out. (2a)

By Weak Systematicity we also know [F(L)](a)=[F(L′)](b). But since L and L′ are permutations of
each other we know F(L)=F(L′) by Anonymity and so we obtain

[F(L)](a)=[F(L)](b). (2b)

But there is no complete labelling simultaneously satisfying (2a) and (2b). Contradiction. Hence no
F can exist.

!
One might note that all of the above theorems exploit the use of profiles that include ties. Then,

one would ask: what if we relax Universal Domain to No-Tie Universal Domain? Do we still have
impossibility results then? Following, we show that an aggregation operator which satisfies No-Tie
Universal Domain (but not necessarily Universal Domain) cannot also satisfy Weak Systematicity,
Anonymity, Collective Rationality and Supportiveness together.

Theorem 4
There exists an argumentation framework AF such that, for any set of agents whose cardinality is
divisible by three, there exists no labelling aggregation operator satisfying No-Tie Universal Domain,
Weak Systematicity, Anonymity, Collective Rationality and Supportiveness.

Proof. Consider the following argumentation framework. An argument a is defeated by two
arguments b and c. Argument b (resp. c) defeats and is defeated by argument b′ (resp. c′).

Consider the three labellings L1 = ({b,c′},{a,b′,c},{}), L2 = ({b′,c},{a,b,c′}, {}) and L3 =
({a,b′,c′},{b,c},{}).
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Assume, towards a contradiction, that there exists an aggregation operator F that satisfies No-Tie
Universal Domain, Collective Rationality, Weak Systematicity, Anonymity and Supportiveness.

By No-Tie Universal Domain, we may consider any profile consisting of legal labellings as long
as it does not cause a tie. We consider here three agents, but the same proof can be shown for any
set of agents that is divisible by three. Consider the three profiles L= (L1,L2,L3), L′ = (L′

1,L
′
2,L

′
3)=

(L3,L1,L2) and L′′ = (L′′
1 ,L′′

2 ,L′′
3 )= (L2,L3,L1).

Since ∀i,Li(a)=L′
i(c), then by Weak Systematicity we know:

[F(L)](a)=[F(L′)](c). (3a)

But since L and L′ are permutations of each other we know [F(L)]=[F(L′)] by Anonymity and
so we obtain

[F(L)](c)=[F(L′)](c). (3b)

From (3a and (3b):
[F(L)](a)=[F(L)](c). (3c)

Similarly, since ∀i,Li(b)=L′′
i (c), then by Weak Systematicity we know:

[F(L)](b)=[F(L′′)](c). (3d)

But since L and L′′ are permutations of each other we know [F(L)]=[F(L′′)] by Anonymity and
so we obtain

[F(L)](c)=[F(L′′)](c). (3e)

From (3d) and (3e):

[F(L)](b)=[F(L)](c). (3f )

From (3c) and (3f):

[F(L)](a)=[F(L)](b)=[F(L)](c). (3g)

The last equation suggests that a, b and c have the same collective labelling. However, by Collective
Rationality, the only legal labelling that satisfy (3g) is undec:

[F(L)](a)=[F(L)](b)=[F(L)](c)=undec. (3h)

However, F satisfies Supportiveness by assumption. Contradiction.
!

One can draw a connection between this result and the previous one. Relaxing Universal Domain
to No-Tie Universal Domain, introduces another impossibility result, in which Unanimity is replaced
with the stronger postulate Supportiveness. Additionally, one can compare this result to the analogue
of Arrow’s theorem in judgement aggregation [22], which involves Unanimity, Independence,
and Non-dictatorship, the weaker versions of Supportiveness, Weak Systematicity, and Anonymity
respectively in our theorem. However, their result also involves completeness, i.e. no proposition can
be collectively undecided, which we do not have as a condition in our result.

The above impossibility results highlight a major barrier to reaching good collective judgement
about argument evaluation in general. These establish the limits of aggregation in the context of
argumentation, and come in accordance with the similar topics of aggregation such as preference
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aggregation [1] and judgement aggregation [21]. Unfortunately, there is no escape from violating
the involved conditions or accepting irrational aggregate argument labellings without somewhat
lowering our standards in terms of desirable criteria.

7 Collective rationality postulates
In this section, we characterize Collective Rationality in terms of conditions that need to be satisfied
by profiles. To do this, we need to go back to the definition of legal (i.e. complete) labelling (Definition
4), and break it down into further constituents defined over the outcome of an aggregation operator.

The following condition, which we call IN-Collective Rationality (IN-CR), requires that if an
argument a is collectively accepted by the agents, then the agents must collectively reject all counter-
arguments against a.

IN-Collective Rationality (IN-CR) For any profile L and a∈A, if [F(L)](a)=in then:

!b∈A, s.t. (b⇀a∧[F(L)](b)=in) (IN-CR1)

and
!b∈A, s.t. (b⇀a∧[F(L)](b)=undec) (IN-CR2)

Note that IN-CR1, the first part of IN-CR, represents the condition of conflict-freeness applied on
the output. The condition of conflict-freeness is usually agreed on as a minimal reasonable condition
in argument evaluation.

We present now the OUT-Collective Rationality (OUT-CR) condition. Intuitively, this condition
means that if an argument a is collectively rejected by the agents, then the agents must also collectively
agree on accepting at least one of the counter-arguments against a.

OUT-Collective Rationality (OUT-CR) For any profile L and a∈A, if [F(L)](a)=out then
∃b∈A, such that b⇀a and [F(L)](b)=in.

We present now the UNDEC-Collective Rationality (UNDEC-CR) condition. An argument must be
labelled undec if and only if: (i) it is not the case that all of its defeaters are out, i.e. at least one
of its defeaters is undec; and (ii) none of its defeaters is in.

UNDEC-Collective Rationality (UNDEC-CR) For any profile L and a∈A, if [F(L)](a)=
undec then:

!b∈A, s.t. (b⇀a∧[F(L)](b)=in) (UNDEC-CR1)

and
∃b∈A, s.t. (b⇀a∧[F(L)](b)=undec) (UNDEC-CR2)

The following result follows immediately from the definitions.

Proposition 3
An argument aggregation operator F satisfies Collective Rationality if and only if for each profile
L= (L1,...,Ln) in its domain, it satisfies the IN-CR, OUT-CR, and UNDEC-CR conditions.

8 Plurality rule with classical semantics
In this section, we analyse the performance of AWPR with respect to Collective Rationality when
agents labellings are restricted to some classical semantics (i.e. complete, grounded, stable, semi-
stable and preferred). This investigation gives a novel meaning to classical semantics in social choice
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settings. Rather than simply being compared by their logical rigour from the perspective of a single
agent, semantics are compared based on the extent to which they facilitate collectively rational
agreement among agents.

Our strategy will be based on the following approach. Since, by Proposition 3, Collective
Rationality arises iff IN-CR, OUT-CR and UNDEC-CR are satisfied, it is enough to check whether
AWPR satisfies those properties.

8.1 Complete semantics

Since the complete semantics generalizes other classical semantics, we provide analysis for it first.
Every property that is satisfied by AWPR when individuals’ labellings are complete labellings would
be also satisfied by AWPR when individuals’ labellings are restricted to the other classical semantics
that we consider.

It is very interesting to see that, as the proposition below shows, when agents collectively accept
an argument, the structure of the AWPR will ensure that they will not collectively accept any of its
defeaters:

Proposition 4
AWPR satisfies IN-CR1. Using the argument-wise plurality rule, given any profile L= (L1,...,Ln), if
an argument a is collectively accepted, none of its defeaters will be collectively accepted. Formally,
if [M(L)](a)=in for some arbitrary a∈A then !b∈A, such that b⇀a and [M(L)](b)=in.

Proof. Suppose that [M(L)](a)=in holds. By definition:

|{i :Li(a)=in}|> |{i :Li(a)=out}| (4a)

Since each Li is a legal labelling, an agent who votes in for a must also vote out for each defeater
of a. Therefore:

∀b⇀a |{i :Li(b)=out}|≥ |{i :Li(a)=in}| (4b)

We want to show that: !b∈A such that b⇀a and [M(L)](b)=in
Assume (towards contradiction) that the contrary holds. That is, ∃b

′ ∈A such that b
′
⇀a and

[M(L)](b′)=in. Then:

|{i :Li(b
′
)=in}|> |{i :Li(b

′
)=out}| (4c)

Since every agent who voted in for b
′

would have voted out for a, we have:

|{i :Li(a)=out}|≥ |{i :Li(b
′
)=in}| (4d)

By (4c) and (4d):

|{i :Li(a)=out}|> |{i :Li(b
′
)=out}| (4e)

while from (4b) and (4e) we have that:

|{i :Li(a)=out}|> |{i :Li(a)=in}| (4f )

But this contradicts (4a) and the assumption that [M(L)](a)=in. !
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Figure 7. Seven votes collectively accepting c, without collectively rejecting b.

It is important to recognize that Proposition 4 is a non-trivial result. It shows that, with AWPR,
the postulate IN-CR1 is satisfied. This means, as we mentioned earlier, that AWPR satisfies the
‘collective’ version of conflict-freeness, a condition that is usually agreed on as a minimal reasonable
condition in argument evaluation. This comes ‘for free’ as a result of the intrinsic structure of the
individual labellings, leading to coordinated votes. Note, however, that the IN-CR postulate is not
fully satisfied. Although Proposition 4 guarantees that a collectively accepted argument will never
have a collectively accepted defeater, it does not guarantee IN-CR2, that none of its defeaters will be
collectively undecided. This is demonstrated in the following remark.

Remark 1
AWPR violates IN-CR2. If an argument is collectively accepted, some of its defeaters might be
collectively undecided.

Proof. Suppose argument c has two defeaters, a and b. Suppose we have 7 agents, with votes
as shown in Figure 7. Clearly, while c is collectively accepted because [M(L)](c)=in, one of its
defeaters is not collectively rejected because [M(L)](b)=undec.

!
As we saw earlier in Example 6, OUT-CR is violated by AWPR.

Remark 2
AWPR violates OUT-CR. If an argument is collectively rejected, it is not guaranteed that one of its
defeaters will be collectively accepted.

Proof. See Example 6 for a counterexample. !
The following remark shows that there are no intrinsic guarantees for satisfying UNDEC-CR1.

Remark 3
AWPR violates UNDEC-CR1. If an argument is collectively undecided, it is possible that one of its
defeaters will be collectively accepted.
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Figure 8. Seven agents collectively undecided on c, but collective accepting a.

Figure 9. Three votes collectively undecided about c, but not collectively undecided about any of
its defeaters a or b.

Proof. Suppose argument c has two defeaters, a and b. Suppose we have 7 agents. Suppose the votes
are as shown in Figure 8. We have [M(L)](c)=undec with 4 votes, but we have [M(L)](a)=in
with 3 votes, thus violating the postulate. !

Similarly, the remark below shows that UNDEC-CR2 is not intrinsically guaranteed.

Remark 4
AWPR violates UNDEC-CR2. If an argument is collectively undecided, it is possible that none of its
defeaters will be collectively undecided.

Proof. Suppose argument c has two defeaters, a and b. Suppose we have 3 agents, with votes
as shown in Figure 9. Clearly, we have [M(L)](c)=undec, but we have [M(L)](a)=out and
[M(L)](b)=out, which would have required c to be in. !
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8.2 Other classical semantics

As we noted before, each possible complete labelling represents a valid self-defending viewpoint,
therefore restricting votes to complete labellings is akin to requiring that each vote in judgement
aggregation is consistent, or that each preference in preference aggregation is transitive and complete.
Other classical semantics are essentially restrictions (i.e. sub-cases) of complete semantics. For
example, restricting votes to preferred semantics requires each individual to be more committed,
maximizing (w.r.t. set-inclusion) the set of accepted (or the set of rejected) arguments, while restricting
votes to semi-stable semantics requires each individual to be less conservative, minimizing (w.r.t.
set-inclusion) the set of arguments about which they are undecided. It is not clear, a priori, what such
requirements, applied on the individual, would have on the collective rationality of the outcome of
voting.

In this subsection, we provide an analysis for the grounded, stable, semi-stable and preferred
semantics as more restricted forms of labellings to choose from. Note that the definition of Universal
Domain, introduced earlier using complete semantics, is now redefined with respect to these
semantics, while the definition of Collective Rationality is unchanged.

The following proposition looks trivial but, as we will see, it is the most positive result in this
subsection.

Proposition 5
If for every argument, agents can only vote for the grounded labelling, then M satisfies IN-CR1,
IN-CR2, OUT-CR, UNDEC-CR1 and UNDEC-CR2. Equivalently, M satisfies Collective Rationality.

Proof. Trivial since there always exists one grounded labeling [8, 15], and M satisfies Unanimity.
!

As a corollary of Proposition 4, when agents votes are restricted to stable (respectively semi-stable
or preferred) labellings, AWPR satisfies IN-CR1.

Corollary 2
When agents can only vote for stable (respectively semi-stable or preferred) labellings, AWPR
satisfies IN-CR1

Proof. From Proposition 4, if agents can only vote for complete labellings, then AWPR satisfies
IN-CR1. Since every stable (respectively semi-stable or preferred) labelling is a complete labelling,
then when agents votes are restricted to these semantics, AWPR satisfies IN-CR1. !
Lemma 1
When agents can only vote for a stable labelling, AWPR satisfies IN-CR2. If an argument is
collectively accepted, none of its defeaters is collectively undecided.

Proof. Suppose, towards a contradiction, that there exists an argument that is collectively accepted
and one of its defeaters is collectively undecided. Then, by Supportiveness, there exists one submitted
labelling (by some agent) in which this argument is undecided. However, agents are only allowed to
submit a stable labelling, and stable labellings have no argument labelled undecided. Contradiction.

!
Remark 5
When agents can only vote for stable (respectively semi-stable or preferred) labellings, AWPR
violates OUT-CR. If an argument is collectively rejected, it is possible that none of its defeaters is
collectively accepted.
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Figure 10. A counterexample shows how, given semi-stable (respectively preferred) semantics,
AWPR violates IN-CR2 and UNDEC-CR1.

Proof. See Example 6 for a counterexample. !
Lemma 2
When agents can only vote for a stable labelling, AWPR satisfies UNDEC-CR (i.e. it satisfies both
UNDEC-CR1 and UNDEC-CR2). If an argument is collectively undecided, none of its defeaters is
collectively accepted, and at least one of its defeaters is collectively undecided.

Proof. Since in stable labelling no argument is labelled undecided, by Supportiveness, there is no
argument that is collectively undecided. Then, this lemma holds. !

We continue with the semi-stable and preferred semantics.

Remark 6
When agents can only vote for a semi-stable (respectively preferred) labelling, AWPR violates IN-
CR2. If an argument is collectively accepted, it is possible that one of its defeaters is collectively
undecided.

Proof. Suppose argument c4 has two defeaters, a4 and c6. Suppose we have 7 agents, with votes as
shown in Figure 10. Clearly, while c4 is collectively accepted because [M(L)](c4)=in, one of its
defeaters, namely a4, is collectively undecided because [M(L)](a4)=undec. !

Remark 7
When agents can only vote for a semi-stable (respectively preferred) labelling, AWPR violates
UNDEC-CR1. If an argument is collectively undecided, it is possible that one of its defeaters is
collectively accepted.

Proof. Suppose argument d has two defeaters, c4 and c5. Suppose we have 7 agents, with votes as
shown in Figure 10. Clearly, while d is collectively undecided because [M(L)](d)=undec, one of
its defeaters, namely c4, is collectively accepted because [M(L)](c4)=in. !
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Figure 11. A counterexample shows how, given semi-stable (respectively preferred) semantics,
AWPR violates UNDEC-CR2.

Table 1. The Collective Rationality properties that are satisfied/violated by AWPR given different
semantics.

Semantics
IN-CR

OUT-CR
UNDEC-CR

IN-CR1 IN-CR2 UND-CR1 UND-CR2

Grounded
Yes Yes Yes Yes Yes

(Prop. 5) (Prop. 5) (Prop. 5) (Prop. 5) (Prop. 5)

Stable
Yes Yes No Yes Yes

(Cor. 2) (Lem. 1) (Rem. 5) (Lem. 2) (Lem. 2)

Semi-stable
Yes No No No No

(Cor. 2) (Rem. 6) (Rem. 5) (Rem. 7) (Rem. 8)

Preferred
Yes No No No No

(Cor. 2) (Rem. 6) (Rem. 5) (Rem. 7) (Rem. 8)

Complete
Yes No No No No

(Prop. 4) (Rem. 1) (Rem. 2) (Rem. 3) (Rem. 4)

Remark 8
When agents can only vote for a semi-stable (respectively preferred) labelling, AWPR violates
UNDEC-CR2. If an argument is collectively undecided, it is possible that none of its defeaters
is collectively undecided.

Proof. Suppose argument c has two defeaters, a4 and b3. Suppose we have 3 agents, with votes as
shown in Figure 11. Clearly, while c is collectively undecided because [M(L)](c)=undec, none of
its defeaters is collectively undecided. !

To sum up, the only restriction that would satisfy the Collective Rationality is the grounded
semantics (Proposition 5). This is trivially true because only one grounded labelling exists. However,
stable semantics violates Collective Rationality only because it violates OUT-CR. As for the semi-
stable and preferred semantics, they only satisfy IN-CR1, a property they inherit from the complete
semantics. Refer to Table 1 for a summary of the results we have found.
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Figure 12. An example about issues.

9 Restricting the domain of argumentation graphs to satisfy collective
rationality

In an earlier section, we showed that, AWPR violates Universal Domain and Collective Rationality.
In this section, we investigate whether AWPR can satisfy Collective Rationality by restricting
the argumentation framework to graphs with certain graph-theoretical properties. We show that
graphs consisting of disconnected issues (a notion we define below) and graphs in which arguments
have limited defeaters (in some sense) guarantee collectively rational outcomes when the AWPR
is used.

9.1 Disconnected issues

The notion of ‘issue’ was defined in [7] in order to quantify disagreement between graph labellings.
In this section, we use this notion to provide a possibility result.

Crucial to the definition of the ‘issue’ is the concept of ‘in-sync’. Two arguments a and b are said
to be in-sync if the (complete) label of one cannot be changed without causing a change of equal
magnitude to the label of the other.

Definition 10 (in-Sync ≡ [7])
Let Comp(AF) be the set of all complete labellings for argumentation framework AF = ⟨A,⇀⟩. We
say that two arguments a,b∈A are in-sync (a≡b):

a≡b iff (a≡1 b ∨ a≡2 b) (5)

where:

• a≡1 b iff ∀L∈Comp(AF) : L(a)=L(b).
• a≡2 b iff ∀L∈Comp(AF) : (L(a)=in ⇔ L(b)=out) ∧ (L(a)=out ⇔ L(b)=in)

This relation forms an equivalence relation over the arguments, and the equivalence classes are
called “issues”.

Definition 11 (Issue [7])
Given the argumentation framework AF = ⟨A,⇀⟩, a set of arguments B⊆A is called an issue iff it
forms an equivalence class of the relation in-Sync (≡).

For example, in Figure 12, the graph consists of 3 issues, namely {a1}, {a2,a3} and {a4,a5}.
The following lemma is crucial in showing the main result of this subsection. We show that if the

defeaters of an argument belong to the same issue as the argument, then the collective labelling of
this argument chosen by AWPR is always a legal labelling.
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Lemma 3
Let AF = ⟨A,⇀⟩ be an argumentation framework. Let a∈A be an argument in this framework. If
every defeater of a (call it b) belongs to the same issue of a (i.e. ∀b∈a−: b≡a), then AWPR would
always produce a legal collective labelling for argument a.

Proof. Let b1,...,bm ∈A such that bj ∈a− and a≡bj ∀j=1,...,m.Then, for every complete labelling
L:

L(a)=out⇔L(b1)=in⇔ ...⇔L(bm)=in (6a)

L(a)=in⇔L(b1)=out⇔ ...⇔L(bm)=out (6b)

L(a)=undec⇔L(b1)=undec⇔ ...⇔L(bm)=undec (6c)

From (6a), (6b) and (6c), for every labelling profile L= (L1,...,Ln):

|{i :Li(a)=out}|=|{i :Li(b1)=in}|= ...=|{i :Li(bm)=in}| (6d)

|{i :Li(a)=in}|=|{i :Li(b1)=out}|= ...=|{i :Li(bm)=out}| (6e)

|{i :Li(a)=undec}|=|{i :Li(b1)=undec}|= ...=|{i :Li(bm)=undec}| (6f )

From (6d), (6e) and (6f):

[M(L)](a)=out⇔ [M(L)](b1)=in⇔ ...⇔ [M(L)](bm)=in (6g)

[M(L)](a)=in⇔ [M(L)](b1)=out⇔ ...⇔ [M(L)](bm)=out (6h)

[M(L)](a)=undec⇔ [M(L)](b1)=undec⇔ ...⇔ [M(L)](bm)=undec (6i)

From (6g), (6h) and (6i), AWPR satisfies IN-CR, OUT-CR, and UNDEC-CR with respect to a in
this case. Then, a is always legally collectively labelled by AWPR if every defeater of it is in the
same issue as a. !

Given the previous lemma, we show that if the argumentation framework consists of a set of
disconnected issues, then AWPR satisfies Collective Rationality for this framework.

Theorem 5
For every AF = ⟨A,⇀⟩ that consists of a set of disconnected components (i.e. disconnected
subgraphs), each of which forms an issue, the argument-wise plurality rule would always produce
collectively rational outcomes.

Proof. Since AF consists of a set of disconnected issues, then ∀a∈A, a has the following property:
∀b∈A such that b∈a− then b≡a. From Lemma 3, a is always legally collectively labelled byAWPR.
Then AWPR satisfies Collective Rationality for this AF. !

This result shows that under argumentation frameworks that consist of disconnected issues, AWPR
always satisfies collective rationality. Indeed, as long as all arguments in every connected component
are ‘in-sync’, the labelling of one argument fully specifies the labelling of all those connected to it.
Then, one can think of these disconnected components/issues as a set of independent propositions,
and voting is done issue-wise.



Copyedited by: ES MANUSCRIPT CATEGORY: Corner Article

[18:21 6/8/2015 exv055.tex] LogCom: Journal of Logic and Computation Page: 27 1–33

Multi-agent argumentation 27

9.2 Limited defeaters

Now we move to another condition. It simply states that the defeaters of any argument are limited
by the flexibility of labelling of these defeaters. To illustrate the latter term, we use a concept called
the ‘justification status’, which is defined in [34]. Intuitively, the justification status of an argument
is the set of possible labellings that this argument can take.

Definition 12 (Justification Status [34])
Let AF = ⟨A,⇀⟩ be an argumentation framework, and a∈A some argument. The justification status
of a is the outcome yielded by the function J S :A→2{in,out,undec} such that J S(a)={L(a)|L∈
Comp(AF)}.
There are six possible justification statuses. Neither ∅ nor {in,out} is a possible justification status.
The former is because each argumentation framework has at least one complete labelling. The later
is because of the following theorem.

Theorem 6 ([34, Theorem 2])
Let AF = ⟨A,⇀⟩ be an argumentation framework, and a∈A some argument. If AF has two complete
labellings L1 and L2 such that L1(a)=in and L2(a)=out, then there exists a labelling L3 such that
L3(a)=undec.

The following lemma shows that an argument with one of its defeaters belong to the same issue
as long as all the other defeaters of this argument have the justification status of {out}.
Lemma 4
Let AF = ⟨A,⇀⟩ be an argumentation framework, and a,b∈A two arguments such that b⇀a. If the
following holds:

∀c ̸=b : (c⇀a⇒J S(c)={out}) (7a)

Then a and b belong to the same issue (i.e. a≡b). Moreover, a is always legally collectively labelled
by AWPR.

Proof. One can show that:
L(a)=out⇔L(b)=in (7b)

L(a)=in⇔L(b)=out (7c)

L(a)=undec⇔L(b)=undec (7d)

Hence, a≡b.
Moreover, in a similar way to Lemma 3, one can show that, for every possible profile L=

(L1,...,Ln), the following holds:

• If [M(L)](a)=out then [M(L)](b)=in (b∈a−).
• If [M(L)](a)=in then [M(L)](b)=out, and by Unanimity, ∀c ̸=b : (c⇀a⇒ [M(L)](c)=
out).

• If [M(L)](a)=undec then [M(L)](b)=undec (b∈a−), and by Supportiveness, ∀c ̸=b : (c⇀

a⇒ [M(L)](c) ̸=in).

Hence, a is always legally collectively labelled by AWPR. !
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Corollary 3
Let AF = ⟨A,⇀⟩ be an argumentation framework, and a∈A an argument. If |a−|=1 then a is always
legally collectively labelled.

Proof. From Lemma 4, a is always legally collectively labelled by AWPR. !
Now we present the main theorem for this subsection. It says if all arguments have limited

defeaters then AWPR always produces legally collective labellings. The limitation of the defeaters
is characterized in both their number and their justification statuses.

Theorem 7
Let AF = ⟨A,⇀⟩ be an argumentation framework. If each argument in A has at most one defeater
that can be labelled undec then AWPR satisfies Collective Rationality.

Proof. Suppose we have an AF = ⟨A,⇀⟩ s.t. each argument a∈A has at most one defeater b∈a−
s.t. undec∈J S(b). Then, using Theorem 6:

∀c ̸=b : (c⇀a⇒J S(c)={in}∨J S(c)={out})

Now for each argument a∈A, all defeaters c with J S(c)={out} have no effect on the label
of a, so one can remove these defeaters. Additionally, if one of the defeaters c (other than b) has
J S(c)={in}, then all other defeaters (including b) will also have no effect on the label of a, so one
can also remove those defeaters. As a result, for each argument a we will end up with one of the
following:

• a has only one defeater b and undec∈J S(b), or
• a has only one defeater c and J S(c)={in}, or
• a has no defeaters

Note that in the last case, we would have J S(a)={in}, and since AWPR satisfies Unanimity, a
would be legally collectively labeled in. As for the first two cases, using Corollary 3, a would be
legally collectively labelled. !

9.3 Relating the two restrictions

In this section, we proposed classes of argumentation frameworks that guarantee collective rationality
for AWPR. Note that neither of the two classes (given in Theorems 5 and 7) is a generalization or
a special case of the other. Example 7 shows an AF that satisfies the condition in Theorem 5 (i.e.
disconnected issues), but violates the condition in Theorem 7 (i.e. limited defeaters), while Example 8
shows an AF that satisfies the condition in Theorem 7 (i.e. limited defeaters), but violates the condition
in Theorem 5 (i.e. disconnected issues).

Example 7
Note that the argumentation framework in Figure 13 satisfies the condition in Theorem 5. All the
arguments a, b, c, d and e are in the same issue, so this AF consists of disconnected issues (only one
issue in this case). However, this AF violates the condition in Theorem 7, since argument a is defeated
by two arguments b and c, each of these defeaters has a justification status of {in,out,undec},
and so their justification statuses share undec.
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Figure 13. An AF that satisfies the condition in Theorem 5, but violates the condition in Theorem 7.

Figure 14. An AF that satisfies the condition in Theorem 7, but violates the condition in Theorem 5.

Example 8
Note that the argumentation framework in Figure 14 satisfies the condition in Theorem 7. The only
argument that is defeated by more than one argument is argument a which has two defeaters b and
c. Moreover, undec /∈J S(c), so undec /∈J S(b)∩J S(c). However, this AF violates the condition
in Theorem 5, since it contains two connected issues. The first issue is {a,b,d} and the second issue
is {c,e}.

Note that although the two proposed conditions can seem strong, constructing weaker conditions
is not an easy task. Consider the graph in Figure 6. It violates both conditions (it consist of three
connected issues {a,a′}, {b,b′} and {c}, and both defeaters of c i.e. a and b have undec in their
justification status). However, this framework is very close to frameworks that satisfy one of the two
conditions. For example, in the framework in Figure 6, if we remove the defeat b⇀b′ we get a graph
similar to the one in Figure 14, which satisfies the limited defeaters condition. On the other hand,
if we remove the defeat b⇀c instead, we get a framework consisting of two disconnected issues,
namely {a,a′,c} and {b,b′}. This suggests the difficulty of finding weaker conditions.

10 Discussion
In this article, we presented an extensive analysis of social-choice-theoretic aspects of Dung’s highly-
influential argumentation semantics. Argumentation-based semantics have mainly been compared on
the basis of how they deal with specific benchmark problems that reflect specific logical structures
from the point of view of a single omniscient observer (e.g. argument graph structures with odd-
cycles, floating defeaters, etc.). Recently, it has been argued that argumentation semantics must be
evaluated based on more general intuitive principles [3]. Our work can be seen as a contribution in
this direction, focusing on issues relating to multi-agent preferences.

The closest work to the present article is Caminada and Pigozzi [10]. In their work, they propose
three aggregation operators, namely sceptical, credulous and super credulous. Although the operators
satisfy Collective Rationality, they violate Independence. These operators are also more applicable
to scenarios where the compatibility of the collective labelling with each individual’s labelling is
appreciated or needed. Argument-wise plurality rule, on the other hand, can be applied to classical
scenarios where some individuals might naturally disagree with the opinion of the group.Additionally,
unlike our work, their work focuses on the proposed operators with only little attention to the general
aggregation problem. Only four postulates are proposed, namely Universal Domain, Collective
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Rationality, Anonymity and Independence, and there are no general impossibility results that holds
for any operator.

Our results on the aggregation of different argument evaluations by multiple agents provide a new
approach for conflict-resolution in multi-agent systems. While this work combines both arguing and
voting, two processes that employ different procedures, we assume these two processes are done
independently and by different groups of individuals. For example, a jury can vote on the evaluation
of arguments that were laid down by the lawyers of two opposing sides. Thus, the arguing part,
which happens between the lawyers occurs in an independent step before the voting step, on which
our analysis focuses.

Our results contribute to research on aggregation in the context of argumentation. The social choice
theoretic Arrovian properties have been analyzed in the context of social argument justification in
[32]. An extended argumentation framework AFn = ⟨A, ⇀1,...,⇀n⟩ is defined, where each ⇀i,
1≤ i≤n, is a particular attack relation among the arguments in A, representing different attack
criteria. Then, the authors define an aggregate argumentation framework AF∗ = ⟨A, F(⇀1,...,⇀n)⟩,
where F(⇀1,...,⇀n) is an attack relation obtained by the aggregation of the individual attack criteria
⇀1,...,⇀n, via different kinds of mechanisms (e.g. majority voting, qualified voting and mechanisms
that can be described by classes of decisive sets). The aggregation of individual attack criteria cannot
be assimilated to the kind of mechanisms proposed here. In [32] an individual may sanction an attack
between two given arguments while another individual may not, which in terms of labellings means
that for the same pair of arguments there may exist the following two labellings: (in, out) and (in,
in). This is impossible in our setting. Hence, the Arrovian properties (e.g. Collective Rationality)
are conceived differently.

In [6] the authors analyse the problem of aggregating different individual argumentation
frameworks over a common set of arguments in order to obtain a unique socially justified set of
arguments. One of the procedures considered there is one in which each individual proposes a set
of justified arguments and then the aggregation leads to a unique set of socially justified arguments.
The AWPR mechanism proposed here fits this procedure for the special case in which individually
justified arguments are simply the sets of arguments labelled in for each individual.

There is much work on using an individual agent’s preferences to help evaluate arguments (e.g.
based on given priorities over rules [26]). But this line of work does not address the preferences
of multiple agents and how they may be aggregated. In other related work, Bench-Capon [4]
associates arguments with values they promote or demote, and considers different audiences with
different preferences over those values. Such preferences determine whether particular defeats
among arguments succeed. Thus, one gets different argument graphs, one for each audience.
Bench-Capon uses this to distinguish between an argument’s subjective acceptance with respect
to a particular audience, and its objective acceptance in case it is acceptable with respect to
all possible audiences. Our work differs in two important ways. First, in our framework, an
agent (or equivalently, an audience) does not have preferences over individual arguments, but
rather preferences over how to evaluate all arguments collectively (i.e. over labellings). Secondly,
our concern here is not with how individual agents (or audiences) accept an argument, but
rather on the possibility of achieving important social-choice properties in the final aggregated
labelling.

In relation to aggregation, Coste-Marquis et al. explored the problem of aggregating multiple
argumentation frameworks [11]. Each agent’s judgement consists of a different argument graph
altogether. This contrasts significantly with our work, in which agents do not dispute the argument
graph, but rather how it must be evaluated/labelled. Our setting is more akin to a jury situation, in
which all arguments have been presented by the prosecution and defence team, and are visible to the
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jury members. The jury members themselves do not introduce new arguments, but are tasked with
aggregating their individual judgements about the arguments presented to them.

Finally, we refer to the work of Rahwan and Larson [27] on strategic behaviour when arguments
are distributed among agents, and where these agents may choose to show or hide arguments. Thus,
their interest is in how agents contribute to the construction of the argument graph itself, which is
then evaluated centrally by the mechanism (e.g. a judge). In contrast, our work is concerned with
how agents individually cast votes on how to evaluate each argument in a given fixed graph.

Our work opens new research problems for the computational social-choice community. As is the
case with other aggregation domains, the aggregation paradox in argument evaluation is an example
of a fundamental barrier. Thus the impossibility results are important because they give conclusive
answers and focus research in more constructive directions (e.g. weakening the desired properties in
order to avoid the paradox). An algorithmic agenda would complement this research by providing
efficient algorithms for such problems. Strategic manipulation, by mis-reporting one’s true vote,
is also an important area of investigation, especially when such manipulations are exercised by
coalitions of agents.
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