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a b s t r a c t

The static non-linear behavior of thin-walled composite beams is analyzed considering the effect of

initial imperfections. A simple approach is used for determining the influence of imperfection on the

buckling, prebuckling and postbuckling behavior of thin-walled composite beams. The fundamental and

secondary equilibrium paths of perfect and imperfect systems corresponding to a major imperfection

are analyzed for the case where the perfect system has a stable symmetric bifurcation point. A

geometrically non-linear theory is formulated in the context of large displacements and rotations,

through the adoption of a shear deformable displacement field. An initial displacement, either in

vertical or horizontal plane, is considered in presence of initial geometric imperfection. Ritz’s method is

applied in order to discretize the non-linear differential system and the resultant algebraic equations

are solved by means of an incremental Newton–Rapshon method. The numerical results are presented

for a simply supported beam subjected to axial or lateral load. It is shown in the examples that a major

imperfection reduces the load-carrying capacity of thin-walled beams. The influence of this effect is

analyzed for different fiber orientation angle of a symmetric balanced lamination. In addition, the

postbuckling response obtained with the present beam model is compared with the results obtained

with a shell finite element model (Abaqus).

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

This paper presents a theory to account for changes in the
stability behavior of thin-walled composite beams when design
parameters are modified. In particular, the model takes into
account the influence of small deviations from the design
configuration that occurs in the presence of imperfections.
Determining this imperfection sensitivity is an important issue
because imperfections in structures are inevitable and may result
in very significant variations in the stability response. The
buckling behavior of thin-walled beams is a difficult topic, since
it involves the coupling among bending, twisting and stretching
deformations of the beam member. For example, in the case of a
beam subjected to a lateral load, the structure may fail in a
flexural or/and torsional buckling mode: the beam suddenly
deflects laterally or twists out of the plane of loading. In this case a
non-linear theory is required for the accurate behavior prediction
of such structures. The limitation of the linear buckling analysis of
beam problems (e.g. Vlasov [1]) is the omission of any considera-
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tion of the prebuckling effect. This omission may be sufficiently
accurate when the initial deflection, corresponding to the
fundamental state, is negligible. In other cases, however, the
effect of the prebuckling deflections must be taken into account
for obtaining accurate predictions of buckling loads. In particular,
lateral buckling is a relevant phenomenon [2] which involves
mechanical complications, since structures may experience large
or moderately large deflections and rotations before buckling
occurs. The buckling and postbuckling analysis of thin-walled
beams has been the subject of considerable research. However,
most of these have been confined to metallic structures [3–14, for
example]. Among the first works carried out for thin-walled
beams, Barsoum and Gallagher [3] studied the torsional and
flexural–torsional instability of a bisymmetric I-beam subjected to
conservative loads. Woolcock and Trahair [4] carried out theore-
tical as experimentally studies on the postcritical behavior of thin-
walled I-beams for different boundary conditions. A consistent
co-rotational total Lagrangian formulation was presented by Hsiao
and Lin [6–8] in the non-linear geometric analysis of mono- and
bi-symmetric beams. In their formulation they considered third-
order terms of the nodal forces, corresponding to the torsional
twist. Based on Galerkin0s method, Mohri et al. [9] studied the
flexural–torsional and lateral postbuckling behavior of mono- and
bi-symmetric simply supported beams, considering different load
conditions. Pi and Bradford [10] used an accurate rotation matrix
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Fig. 1. Fundamental and secondary equilibrium paths of perfect and imperfect

systems.
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in the formulation of a finite element model for the buckling and
postbuckling analysis of thin-walled straight beams. Then, Pi and
Bradford [11,12] and Pi et al. [13] extended their model to analyze
the flexural–torsional stability response of arches with open thin-
walled section under different radial loads. Recently, Machado
[14] investigated the buckling and postbuckling behavior of
simply supported, cantilever and fixed-end beams subjected to
distributed or concentrated loads. He showed that the load-
carrying capacity of elastic steel beams can be established only by
using a non-linear buckling analysis.

On the other hand, laminated composites beams are increas-
ingly being used in the design of load-carrying members
especially in high-performance mechanical, aerospace, aircraft,
naval and civil applications due to their outstanding engineering
properties, such as high strength/stiffness to weight ratios. The
interesting possibilities provided by fiber reinforced composite
materials can be used to enhance the response characteristics of
such structures that operate in complex environmental condi-
tions. The new generation of these constructions should be
designed to work in a safe way and to experience higher
performance than the conventional systems. For example, com-
posite laminates can often sustain large elongations up to the first
occurrence of localized damage, in most instances the failure of
thin-walled composite shapes is due to elastic buckling and the
load carrying capacity is directly related to the critical buckling
load. For this reason, knowledge of the postbuckling response and
the ultimate load of such structures are essential for designers. In
particular, this knowledge will allow composites to be designed
efficiently and economically by fully exploiting their postbuckling
strength. Bhaskar and Librescu [15] presented a geometrically
non-linear theory for thin-walled composite beams, but post-
buckling analyzes were not performed. The non-linear stability
analysis of thin-walled composite beams with open section has
been recently investigated by Fraternali and Feo [16], using a finite
element formulation based on a second-order theory and
disregarding shear-deformation. However, shear deformation
effect plays an important role in the behavior of linear (Sapkás
and Kollár [17], Machado and Cortı́nez [18], Morey et al. [19], Back
and Will [20]) and non-linear (Machado and Cortı́nez [21])
stability of thin-walled composite beams, owing to the high ratio
between the equivalent elasticity modulus and transverse elasti-
city modulus. Finally, Machado and Cortı́nez [21] investigated the
flexural, torsional and flexural–torsional stability of simply
supported beam subjected to axial and lateral load.

Sensitivity of postcritical states of imperfections (specifically
geometric or load imperfections) has been the subject of research
for some time and is part of the general theory of elastic stability
(Thompson and Hunt [22]; Flores and Godoy [23]; Godoy [24]).
Recently, Szymczak [25] and Chróscielewski et al. [26] investi-
gated the dynamics and torsional buckling of a thin-walled
bisymmetric simply supported beam, respectively. Szymczak
[25] analyzed the relative variation of the first three eigenvalues
due to the difference in the beam flanges. The influence of initial
deflection on the torsional buckling load was investigated by
Chróscielewski et al. [26]. They considered a thin-walled steel
I-beam column axially loaded by two compressive forces. Most of
the recent studies have been conducted toward the prediction of
buckling and postbuckling behaviors of imperfect cylindrical
laminated shell.

The objective of this publication is to analyze the influence of
imperfections on the elastic stability of thin-walled composite
beams. The fundamental and secondary equilibrium paths of
perfect and imperfect systems corresponding to a major imper-
fection are analyzed for the case where the perfect system has a
stable symmetric bifurcation point. To further clarify the problem
studied, let us consider the response shown in Fig. 1. The
horizontal axis represents the component of displacements and
the vertical axis represents the load. It can be seen from Fig. 1 that
the critical point disappears due to a major imperfection, where
solid curves are the fundamental and equilibrium path of the
original perfect structure, and the dashed lines correspond to the
paths of the modified imperfect structures A geometrically non-
linear theory is formulated to analyze this problem. The model is
based on the context of large displacements and rotations,
through the adoption of a shear deformable displacement field.
An initial displacement, either in vertical or horizontal plane, is
considered in presence of geometrical imperfections. Ritz’s
method is applied in order to discretize the non-linear
differential system and the resultant algebraic equations are
solved by means of an incremental Newton–Rapshon method. The
numerical results are presented for a simply supported beam
subjected to axial or lateral load. The influence of imperfections is
analyzed for different fiber orientation angle of a symmetric
balanced lamination. In addition, the numerical results obtained
with the present beam theory are compared with those obtained
from non-linear 6-parameter theory of a shell finite element
model (Abaqus).
2. Kinematics

A straight thin-walled composite beam with an arbitrary cross-
section is considered (Fig. 2). The points of the structural member
are referred to a Cartesian coordinate system ðx; y; zÞ, where the
x-axis is parallel to the longitudinal axis of the beam while y and z

are the principal axes of the cross-section. The axes y and z are
parallel to the principal ones but having their origin at the shear
center (SC), defined according to Vlasov’s theory of isotropic
beams. Midway through the thickness of each cross-sectional
element is the middle surface. A plane perpendicular to the x-axis
intersects the middle surface at a curve called the contour. The
coordinates corresponding to points lying on the middle line are
denoted as Y and Z (or Y and Z). A contour (n, s, x) coordinate
system is defined with s following the contour, and n

perpendicular to s. This coordinate is introduced on the middle
contour of the cross-section system.

yðs;nÞ ¼ Y ðsÞ � n
dZ

ds
; zðs;nÞ ¼ ZðsÞþn

dY

ds
; ð1Þ

yðs;nÞ ¼ YðsÞ � n
dZ

ds
; zðs;nÞ ¼ ZðsÞþn

dY

ds
: ð2Þ
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Fig. 2. General thin-walled section beam and notation for displacement measures.
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On the other hand, y0 and z0 are the centroidal coordinates
measured with respect to the shear center.

yðs;nÞ ¼ yðs;nÞ � y0;

zðs;nÞ ¼ zðs;nÞ � z0: ð3Þ

The present structural model is based on the following
assumptions:
1.
 The cross-section contour is rigid in its own plane.

2.
 The warping distribution is assumed to be given by the Saint-

Venant function for isotropic beams.

3.
 Flexural rotations (about the y and z axes) are assumed to

be moderate, while the twist f of the cross-section can be
arbitrarily large.
4.
 Shell force and moment resultant corresponding to
the circumferential stress sss and the force resultant corre-
sponding to the shear strain in the n�s plane (gns) are
neglected.
5.
 The radius of curvature at any point of the shell is neglected.

6.
 Twisting linear curvature of the shell is expressed according to

the classical plate theory.

7.
 The laminate stacking sequence is assumed to be symmetric

and balanced, or especially orthotropic [27].

2.1. Development of the displacement field

According to the hypotheses of the present structural model,
the displacement field proposed Eq. (4) is based on the principle
of semitangential rotation defined by Argyris [21] to avoid the
difficulty due to the non-commutative nature of rotations. In
this displacement field, the torsional twist terms f are expressed
as trigonometric functions according to hypotheses (3). The
displacement field is represented by means of seven degrees
of freedom corresponding to three displacements (u, v and w),
three measures of the rotations (f, yy and yz) about the shear
center axis, y and z axes, respectively; and a warping variable (y)
of the cross-section. The displacement field is expressed in the
following form:

ux ¼ uo � yðyz cosfþyy sinfÞ

� zðyy cosf� yz sinfÞþo½y� 1
2ðyy
0 yz � yyyz

0 Þ�þðyzz0

� yyy0Þ sinf;

uy ¼ v� z sinf� yð1� cosfÞ � 1
2ðy

2
z yþyzyyzÞ;

uz ¼wþy sinf� zð1� cosfÞ � 1
2ðy

2
yzþyzyyyÞ; ð4Þ

where the prime indicates differentiation with respect to x. The
warping function o of the thin-walled cross-section is defined in
[14]. The displacement field expression is a generalization of
others previously proposed in the literature as is explained by the
author in [14,21].
3. The strain field

The displacements with respect to the curvilinear system
(x, s, n) are obtained by means of the following expressions:

U ¼ uxðx; s;nÞ; ð5Þ

V ¼ uyðx; s;nÞ
dY

ds
þuzðx; s;nÞ

dZ

ds
; ð6Þ

W ¼ � uyðx; s;nÞ
dZ

ds
þuzðx; s;nÞ

dY

ds
: ð7Þ

The three non-zero components exx, exs, exn of the Green’s strain
tensor are given by:

exx ¼
@U

@x
þ

1

2

@U

@x

 !2

þ
@V

@x

 !2

þ
@W

@x

 !2
24 35; ð8Þ

exs ¼
1

2

@U

@s
þ
@V

@x
þ
@U

@x

@U

@s
þ
@V

@x

@V

@s
þ
@W

@x

@W

@s

" #
; ð9Þ

exn ¼
1

2

@U

@n
þ
@W

@x
þ
@U

@x

@U

@n
þ
@V

@x

@V

@n
þ
@W

@x

@W

@n

" #
: ð10Þ

Substituting expressions (4) into (5)–(7) and then into
(8)–(10), after simplifying some higher order terms, the compo-
nents of the strain tensor are expressed in the following
form:

exx ¼ eð0Þxx þnkð0Þxx ;

gxs ¼ 2exs ¼ gð0Þxs þnkð0Þxs ;

gxn ¼ 2exn ¼ gð0Þxn ; ð11Þ

where

eð0Þxx ¼ uo
0 þ

1

2
ðu
02
o þv

02þw
02Þþop y0 �

1

2
ðyzyy

00 � yyyz
00 Þ

� �
þZ ½ð�yy

0 � uo
0 yy
0 Þ cosfþðyz

0 þuo
0 yz
0 Þ senf�

þY ½ð�yz
0 � uo

0 yz
0 Þ cosf� ðyy

0 þuo
0 yy
0 Þ senf�

þ
1

2
f
02
ðY2þZ2Þþ

1

2
y
02
y Z

2
þ

1

2
y
02
z Y

2
þyz
0 yy
0 ZY

þðz0yz
0 � y0yy

0 Þ senf; ð12Þ
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kð0Þxx ¼ �
dZ

ds
½�ðyz

0 þu0
0 yz
0 Þ cosf� ðyy

0 þu0
0 yy
0 Þ senf�

þ
dY

ds
½ð�yy

0 � u0
0 yy
0 Þ cosfþðyz

0 þu0
0 yz
0 Þ senf�

�l y0 �
1

2
ðyzyy

00 � yyyz
00 Þ

� �
�rf

02
�Y

dZ

ds
y
02
z þZ

dY

ds
y
02
y þ Y

dY

ds
� Z

dZ

ds

� �
yy
0 yz
0 ; ð13Þ

gð0Þxs ¼
dY

ds
ðv0 � yz � u0

0 yzÞ cosf� z0
1

2
ðyzyy

0 � yyyz
0 Þ

�
þðw0 � yy � u0

0 yyÞ sinf
�
þðr �cÞðf0 � yÞ

þ
dZ

ds
ðw0 � yy � u0

0 yyÞ cosfþy0
1

2
ðyzyy

0 � yyyz
0 Þ

�
�ðv0 � yz � u0

0 yzÞ sinf
�
þc f0 �

1

2
ðyzyy

0 � yyyz
0 Þ

� �
; ð14Þ

kð0Þxs ¼ � 2½f0 � 1
2ðyzyy

0 � yyyz
0 Þ�; ð15Þ

gð0Þxn ¼
dY

ds
ðw0 � yy � u0

0 yyÞcosfþy0
1

2
ðyzyy

0 � yyyz
0 Þ

�
�ðv0 � yz � u0

0 yzÞsinf
�
�

dZ

ds
ðv0 � yz � u0

0 yzÞcosf
�

�z0
1

2
ðyzyy

0 � yyyz
0 Þþðw0 � yy � u0

0 yyÞsinf
�
þ lðf0 � yÞ: ð16Þ

In comparison with the works carried out by Bhaskar and Librescu
[15], Ghorbanpoor and Omidvar [28] and other authors, this
model incorporate the deformations corresponding to second-
order terms that involve to the axial movement. In this way,
appear new components of deformation (terms underlined in the
expressions (12) and (13)), which give origin new higher-order
effects, as will be indicated later. In the same way, Fraternali and
Feo [16] obtained similar strain components, keeping in mind that
their formulation corresponds to a non-shear deformable theory.
3.1. Geometric imperfection

To evaluate the structural significance of geometric imperfec-
tions, an initial imperfection is defined by some function v0(x) or
w0(x), corresponding to a lateral and vertical displacement,
respectively. These geometric imperfections can be included in
the variational formulation by means of a simple concept of initial
strains. The strains that result from an initial deflection are as
follows:

exx ¼
1
2ðv

02
0 þw

02
0 Þ � yy0

0 Z � yz0
0 Y ; ð17Þ

kxx ¼ yz0
0 dZ

ds
� yy0

0 dY

ds
; ð18Þ

gxs ¼ ðv0
0 � yz0Þ

dY

ds
þðw0

0 � yy0Þ
dZ

ds
; ð19Þ

gð0Þxn ¼ ðw0
0 � yy0Þ

dY

ds
� ðv0

0 � yz0Þ
dZ

ds
: ð20Þ

Finally, to consider the imperfections effect on the stability
response, the net strains due to the load are defined in the
following form:

eð1Þxx ¼ e
ð0Þ
xx � exx;kð1Þxx ¼ k

ð0Þ
xx � kxx; gð1Þxs ¼ g

ð0Þ
xs

� gxs;kð1Þxs ¼ k
ð0Þ
xs ; g

ð1Þ
xn ¼ g

ð0Þ
xn � gxn: ð21Þ
4. Variational formulation

Taking into account the adopted assumptions, the principle of
virtual work for a composite shell may be expressed in the form:Z Z

ðNxxdeð1Þxx þMxxdkð1Þxx þNxsdgð1Þxs þMxsdkð1Þxs þNxndgð1Þxn Þds dx

�

Z Z
ðqxduxþqyduyþqzduzÞds dx

�

Z Z
ðpxduxþpyduyþpzduzÞjx ¼ 0 ds dn

�

Z Z
ðpxduxþpyduyþpzduzÞjx ¼ L ds dn

�

Z Z Z
ðf xduxþ f yduyþ f zduzÞds dn dx¼ 0; ð22Þ

where Nxx, Nxs, Mxx, Mxs and Nxn are the shell stress resultants [21].
The beam is subjected to wall surface tractions qx, qy and qz

specified per unit area of the undeformed middle surface and
acting along the x, y and z directions, respectively. Similarly, px, py

and pz are the end tractions per unit area of the undeformed
cross-section specified at x=0 and x=L , where L is the undeformed
length of the beam. Besides f x, f y and f z are the body forces per
unit of volume. Finally, denoting ux, uy and uz as displacements at
the middle line.
5. Constitutive equations and beam forces

The constitutive equations of symmetrically balanced lami-
nates may be expressed in the terms of shell stress resultants in
the following form [27]:

Nxx

Nxs

Nxn

Mxx

Mxs

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

A11 0 0 0 0

0 A66 0 0 0

0 0 A
ðHÞ

55 0 0

0 0 0 D11 0

0 0 0 0 D66

266666664

377777775

eð1Þxx

gð1Þxs

gð1Þxn

kð1Þxx

kð1Þxs

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
; ð23Þ

with

A11 ¼ A11 �
A2

12

A22
;A66 ¼ A66 �

A2
26

A22
;A
ðHÞ

55 ¼ AðHÞ55

�
ðAðHÞ45 Þ

2

AðHÞ44

;D11 ¼D11 �
D2

12

D22
;D66 ¼D66 �

D2
26

D22
; ð24Þ

where Aij, Dij and AðHÞij are plate stiffness coefficients defined
according to the lamination theory presented by Barbero [27]. The
coefficient D16 has been neglected because of its low value for the
considered laminate stacking sequence [29].

Substituting expressions (21) into (22) and integrating with
respect to s, one obtains the one-dimensional expression for
the virtual work equation [21]. The beam forces, in terms of the
shell stress resultants, are defined in this last equation by the
following form:

N¼

Z
Nxxds;MY ¼

Z
NxxZþMxx

dY

ds

� �
ds;MZ ¼

Z
NxxY �Mxx

dZ

ds

� �
ds;

QZ ¼

Z
Nxs

dZ

ds
þNxn

dY

ds

� �
ds;QY ¼

Z
Nxs

dY

ds
� Nxn

dZ

ds

� �
ds; Tw ¼

Z
ðNxsðr �cÞþNxnlÞds;

B¼

Z
ðNxxop �MxxlÞds; Tsv ¼

Z
ðNxsc� 2MxsÞds; ð25Þ

where, N corresponds to the axial force, Qy and Qz to shear forces,
My and Mz to bending moments about y and z axis, respectively,
B to the bimoment, Tw to the flexural–torsional moment and Tsv

to the Saint-Venant torsional moment. Furthermore, op is the
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contour warping function, r(s) represents the perpendicular
distance from the shear center (SC) to the tangent at any point
of the mid-surface contour, and l(s) represents the perpendicular
distance from the shear center (SC) to the normal at any point of
the mid-surface contour. Finally, C is the shear strain at the
middle line [14]. In addition, four high-order stress resultants
have been defined.

B1 ¼

Z
½NxxðY

2þZ2Þ � 2Mxxr�ds;Pyy ¼

Z
NxxZ

2
þ2MxxZ

dY

ds

� �
ds;

Pzz ¼

Z
NxxY

2
� 2MxxY

dZ

ds

� �
ds; Pyz ¼

Z
NxxY ZþMxx Y

dY

ds
� Z

dZ

ds

� �� �
ds:

ð26Þ

In expressions (25) and (26) the integration is carried out over the
entire length of the mid-line contour.

The relations among the generalized beam forces and the
generalized strains characterizing the behavior of the beam are
obtained by substituting the expressions (21) into (23), and then
the results into the shell stress resultants (25–26). In this way, the
constitutive law can be expressed in terms of a beam stiffness
matrix as defined in [21]. On the other hand, the generalized
strains can be identified in terms of the beam forces and
moments, as:

corresponding to N : ED1 ¼ u0
0 þ1

2ðu
02
0 þv

02þw
02þv

02
0 þw

02
0 Þ

þðz0yz
0 � y0yy

0 Þsenf;

corresponding to My : ED2 ¼ ð�yy
0 � u0

0 yy
0 Þcosfþyy0

0

þðyz
0 þu0

0 yz
0 Þsenf;

corresponding to Mz : ED3 ¼ ð�yz
0 � u0

0 yz
0 Þcosfþyz0

0

� ðyy
0 þu0

0 yy
0 Þsenf;

corresponding to B : ED4 ¼ y0 � 1
2ðyzyy

00 � yyyz
00 Þ;

corresponding to Qy : ED5 ¼ ðv
0 � yz � u0

0 yzÞcosf� v0
0 þyz0

� z0
1
2ðyzyy

0 � yyyz
0 Þþðw0 � yy � u0

0 yyÞsenf;

corresponding to Qz : ED6 ¼ ðw
0 � yy � u0

0 yyÞcosf

�w0
0 þyy0þy0

1
2ðyzyy

0 � yyyz
0 Þ

� ðv0 � yz � u0
0 yzÞsenf;

corresponding to Tw : ED7 ¼f0 � y;

corresponding to Tsv : ED8 ¼f0 � 1
2ðyzyy

0 � yyyz
0 Þ;

corresponding to B1 : ED9 ¼
f
02

2
;

corresponding to Pyy : ED10 ¼
y
02
y

2
;

corresponding to Pzz : ED11 ¼
y
02
z

2
;

corresponding to Pyz : ED12 ¼ yy
0 yz
0 : ð27Þ

These generalized strains correspond to the axial strain (ED1), the
two bending curvatures (ED2 and ED3), the torsional curvature
(ED4), the two transverse shear strain (ED5 and ED6), the
transverse shear strain due to warping (ED7), the rate of twist
and a non-linear term (ED8 and ED9), the higher-order axial terms
(ED10, ED11 and ED12).
6. The discrete equilibrium problem

In order to perform the non-linear analysis the Ritz variational
method is used for reducing the governing equation in terms of
generalized coordinates. From the reduced system, first the
buckling loads are determined from the singularity condition of
the tangent stiffness matrix determinant of the structure [14,18].
Then, an incremental-iterative method based on the Newton–
Raphson method combined with constant arc length is employed
for the solution of non-linear equilibrium equation. The equations
of motion are discretized to analyze the stability behavior of
simply supported and fixed-end beams.In the case of simply
supported beams, the displacements modes are approximated by
means of the following functions, which are compatible with the
boundary conditions of the beam:

u0 ¼U
x

L
;

v¼ V sin
p
L

x
� 	

;yz ¼Yz cos
p
L

x
� 	

;

w¼W sin
p
L

x
� 	

; yy ¼Yy cos
p
L

x
� 	

;

f¼F sin
p
L

x
� 	

; y¼Y cos
p
L

x
� 	

; ð28Þ

where U, V, W, Yz, Yy, F and Y are the associated displacement
amplitudes. Besides, the initial deflection can be expressed as:

w0 ¼W0 sin
p
L

x
� 	

; yy0 ¼jy0 cos
p
L

x
� 	

; ð29Þ

v0 ¼ V0 sin
p
L

x
� 	

;yz0 ¼jz0 cos
p
L

x
� 	

: ð30Þ

For the case of fixed-end beams, the variational equation is
discretized by using beam characteristic orthogonal polynomials
which satisfy the geometrical boundary conditions and are
generated by using the Gram-Schmidt process.

U ¼
Xn

i ¼ 1

cixiðxÞ ð31Þ

where U represent each of the displacements and ci are the
undetermined arbitrary coefficients. The polynomials xi(x) are
generated as follows [30]:

x2ðxÞ ¼ ðx� B2Þx1ðxÞ; . . . ; xkðxÞ ¼ ðx� BkÞxk�1ðxÞ � Ckxk�2ðxÞ;

Where

Bk ¼

R L
0 xx2

k�1ðxÞdxR L
0 x

2
k�1ðxÞdx

;Ck ¼

R L
0 xxk�1ðxÞxk�2ðxÞdxR L

0 x
2
k�2dx

: ð32Þ

The first member of the orthogonal polynomial x1(x) is chosen as
the simplest polynomial (of the least order) that satisfies the
boundary conditions. In order to obtain sufficient accurate results,
four terms (n=4) are taken for each one of the flexural–torsional
displacements. As in the previous case, the initial deflection can
be expressed as:

w0 ¼W0
1

2
1� cos

2p
L

x

� �� �
; yy0 ¼jy0 sin

2p
L

x

� �
; ð33Þ

v0 ¼ V0
1

2
1� cos

2p
L

x

� �� �
; yz0 ¼jz0 sin

2p
L

x

� �
: ð34Þ

After integration along the beam length according to the
adopted functions for the displacements, a coupled and
strongly non-linear algebraic system is obtained. This resulting
system has an extremely complicated form, for this reason, it is
not presented here.



ARTICLE IN PRESS

z, w

y, v

φ
z

Fig. 4. Simply supported beam subjected to axial load and buckling shapes modes.
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7. Applications and numerical results

The purpose of this section is to apply the simple present
approach for determining the influence of imperfection on the
buckling, prebuckling and postbuckling behavior of thin-walled
composite beams. The fundamental and secondary equilibrium
paths of perfect and imperfect systems are analyzed for the case of
flexural and flexural–torsional stability behavior of a thin-walled
composite beam. The numerical results are obtained for a four
layer bisymmetric-I cross-section (Fig. 3), whose geometrical
properties are h=0.6 m, b=0.6 m and e=0.03 m. The analyzed
material is glass/epoxy whose properties are E1=48.3 GPa, E2=
19.8 GPa, G12=8.96 GPa, G13=8.96 GPa, G23=6.19 GPa, n12=0.27,
n13=0.27, n23=0.6, r=1389 kg/m3.
Fig. 5. Influence of initial vertical imperfection w0 on the buckling load, L=12 m.
7.1. Buckling of simply supported beam subjected to an axial force

The first example corresponds to a simply supported beam
subjected to an axial load applied to the centroid. The non-linear
equilibrium equations are uncoupled in this case, there are three
buckling modes corresponding either to bending or torsion
(see Fig. 4). The influence of imperfections is analyzed on the
torsional buckling mode. In the case of a perfect beam, the critical
load corresponding to the torsional mode can be easily obtained
by means of Eq. (35) (as explained by the author in Ref. [14]):

Pf ¼
L2cGSw

cGJþcEC wp2ðcGJþcGSwÞ

I0ð
cGSwL2þcEC wp2Þ

; ð35Þ

where, cEC w, cGJ and cGSw are the warping, torsional and shear
stiffness of a composite beam (for isotropic beams the same
expressions are applicable without the ‘‘hats’’ [14]). I0 is the polar
moment of inertia about shear center.

On the other hand, to consider the imperfection effect on the
buckling response, it is assume that the critical load of torsional
buckling is smaller than flexural critical load about z-axis.
Therefore, it is possible to find the solution of the displacement
field in the vertical motion {u, v, yz, w, yy, f, y}t={0, 0, 0, w, yy, 0,
0}t, for a given shape of initial deflection w0. This vertical
displacement is obtained from the linearized version of Eq. (22).
In fact, by neglecting all the non-linear terms in Exp. (22), and
applying the variational calculus, the differential equations of
equilibrium are obtained which are easily solved in a closed form
in order to determine the displacements in the vertical plane. For
the case of simply supported beams subjected to an axial load, the
amplitudes corresponding to the vertical displacements are given
{α/−α/−α/α}

Z

e

y
h

b

Fig. 3. Analyzed cross-section shape.
by the following expressions:

W ¼
w0

1þ
P

Py

;Yy ¼
PybEIy

L

p
W ; ð36Þ

where Py is the flexural critical load of a perfect beam [14]:

Py ¼
bEIy
cGSzp2cGSzL2þ bEIyp2

; ð37Þ

where bEIy is the flexural stiffness and cGSz is the shear stiffness of a
composite beam. To determine the torsional buckling considering
an initial imperfection w0, Exp. (36) is substituted into (22), the
lateral displacements v and yz are neglected and the remaining
displacements f and y are discretized in the resultant variational
equation by means of the trigonometric functions defined in (28).
This procedure leads to the algebraic expression for the unknown
P. The solution of this equation permits to determine the critical
load of torsional buckling.

Figs. 5 and 6 show the effect of an initial vertical deflection
(z-axis) on the buckling load, considering two beam lengths and
three stacking sequences of lamination.

It is possible to appreciate in the figures that the effect of
imperfections is to reduce the buckling load values with respect to
the perfect beam. The difference between perfect and imperfect
system becomes more significant as increase the vertical initial
imperfection. This effect depends on the stacking sequence
and the beam length. In this example, the lamination {45/�45/
�45/45} presents higher influence to the imperfection effect than
the other sequences. In addition, this effect is larger when the
beam slenderness increases. For example, when the beam length
is L=12 m, the perceptual difference between the perfect and
imperfect buckling loads is about 20%, considering an initial
imperfection w0=0.09 m. However, the difference is about 10%
when the fibers are oriented in the longitudinal direction.
Therefore, it is found that the influence of the imperfection effect
decreases as the beam stiffness increases.
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Fig. 6. Influence of initial vertical imperfection w0 on the buckling load, L=6 m.

Fig. 7. Imperfection effect on the fundamental path, lamination {0/0/0/0}.

Fig. 8. Imperfection effect on the fundamental path, lamination {0/90/90/0}.

Fig. 9. Imperfection effect on the fundamental path, lamination {45/�45/�45/45}.

Fig. 10. Influence of imperfections on the postbuckling behavior, lamination {0/0/0/0}.
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7.2. Prebuckling and postbuckling of simply supported beam

subjected to an axial force

The effect of imperfections is analyzed on the prebuckling and
postbuckling behavior of a simply supported beam subjected to an
axial load, for a beam length L=12 m. The fundamental path of the
vertical displacement for different initial deflection values
is shown in Figs. 7–9, for a sequence of lamination {0/0/0/0},
{0/90/90/0} and {45/�45/�45/45}, respectively.

It can be observed from the figures that the reduction of the
buckling load values is associated with an increase in the vertical
displacement to the bifurcation load. As in the buckling state, the
displacement values of the lamination {45/�45/�45/45} are
larger in comparison with the other laminations; it is due mainly
to the flexibility effect. Therefore, the imperfection effect on the
fundamental state is also more significant for this lamination. This
effect is clearly verified following the solid line which connects
the maximum displacements for each imperfection value. For
example, considering an initial imperfection of w0=0.09 m, the
critical displacement is wcr=0.147 m for a lamination {0/0/0/0},
while for the lamination {45/�45/�45/45} is wcr=0.2 m. This
behavior was also observed in the previous section, where the
imperfection influence on the buckling behavior depended on the
beam stiffness. The lamination sequence {0/90/90/0} presents an
intermediate flexibility between {45/�45/�45/45} and {0/0/0/0}.

The equilibrium paths of perfect and imperfect systems are
investigated for the non-linear torsional stability behavior. It is
shown in the Figs. 10–12, the influence of the major imperfections
on the postbuckling response, for a sequence of lamination {0/0/0/
0}, {0/90/90/0} and {45/�45/�45/45}, respectively. The load-
twisting curves are stable and symmetric for all the cases
analyzed. The beam stability is not influenced by the
imperfection effect. In the case of perfect beams, the bifurcation
loads correspond to the buckling load calculated in the first
example 7.1. However, as the imperfection values increase, it is not
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Fig. 11. Influence of imperfections on the postbuckling behavior, lamination

{0/90/90/0}.

Fig. 12. Influence of imperfections on the postbuckling behavior, lamination

{45/�45/�45/45}.

Fig. 13. Postcritical path considering transverse imperfection, lamination {0/0/0/0}.

Fig. 14. Postcritical path considering transverse imperfection, lamination {0/90/90/0}.

Fig. 15. Postcritical path considering transverse imperfection, lamination

{45/�45/�45/45}.

S.P. Machado / International Journal of Non-Linear Mechanics 45 (2010) 100–110 107
so clear to determine the bifurcation load. It can be observed from
the figures that the critical point disappears due to a major
imperfection for the torsional twist postbuckling response. On the
other hand, the unidirectional lamination {0/0/0/0} has the
highest buckling load and the larger additional load carrying
capacity after buckling. The lamination {0/90/90/0} has the lowest
critical load and the lamination {45/�45/�45/45} presents the
smaller additional load capacity. The imperfection effect reduces
the values of the equilibrium path with respect to the perfect
condition. However, the margins of postbuckling strength are not
influenced by the imperfection effect. This behavior is mainly due
to the structural flexibility, allowing moderate large displace-
ments in the imperfect postbuckling curves which converge into
the perfect curves as the displacement increases.

7.3. Postbuckling of simply supported beam with

transverse imperfection

As in the previous example the same boundary condition is
considered, but in this case the effect of transverse imperfections
(see Exp. (30)) on postbuckling behavior is analyzed. The effect of
imperfections on the fundamental path corresponding to the
lateral displacement (y-axis) is shown in Figs. 13–15, for a
sequence of lamination {0/0/0/0}, {0/90/90/0} and {45/�45/
�45/45}, respectively. For a bisymmetric simply supported
beam subjected to an axial load, the smallest buckling mode
corresponds to a bending mode in the y-direction, while the
second buckling mode corresponds to the torsional twist.
Therefore, the bifurcation points are smaller than in the
previous example. The load-deflection curves are symmetric and
stable in all the cases analyzed. The stacking sequence {0/0/0/0}
presents the highest buckling load and the largest load carrying
capacity after buckling. The imperfections effect is higher for the
lamination {45/�45/�45/45}, where the imperfect postbuckling



ARTICLE IN PRESS

Fig. 17. Lateral postbuckling behavior considering the influence of imperfection,

lamination {0/90/90/0}.

Fig. 18. Lateral postbuckling behavior considering the influence of imperfection,

lamination {45/�45/�45/45}.
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curves converge into the perfect curves for larger displacement
values.

7.4. Lateral postbuckling of a fixed-end beam

A fixed-end beam loaded by a transverse force at the middle of
the span is considered. The vertical force is applied on the top
flange for a beam length L=12 m. When the beam is loaded in its
plane of symmetry it initially deflects. However, at a certain level
of the applied load, the beam may buckle laterally, while the
cross-sections of the beam rotate simultaneously about the
beam’s axis. This phenomenon is called lateral buckling, and
the load value at which buckling occurs is the critical load. As in
the previous example, an initial transverse imperfection in the
y-direction is considered (see, Exp. (34)) to study the flexural–
torsional postbuckling behavior. The imperfect postbuckling
paths, corresponding to the torsional amplitude f, are shown in
Figs. 16–18. Three different magnitudes of imperfection are
analyzed for the stacking sequences {0/0/0/0}, {0/90/90/0} and
{45/�45/�45/45}. Furthermore, the accuracy of the proposed
formulation is checked by comparing results with those solutions
obtained by Abaqus0s shell element. The beam is idealized by 240
four-node shell elements (S4). The finite element analysis is based
on two steps. First, a static linear analysis is performed on the
‘‘perfect’’ structure to use the response as an imperfection state. In
the second analysis an imperfection is introduced in the geometry
by addition of the static displacement to the ‘‘perfect’’ geometry
using the IMPERFECTION option. A geometrically non-linear
load-displacement analysis of the structure containing the
imperfections is performed using the Riks method. In this way,
the Riks method can be used to perform postbuckling analyzes.

In this case, the shape of the imperfection corresponds to the
flexural mode of a fixed-end beam subjected to a distributed load
applied in the y-direction (see Fig. 19). The imperfection
magnitudes are included in the model as a scale factor of the
flexural mode amplitude.

The postbuckling equilibrium paths are stable and symmetric
for all the cases studied. The deformed state of the thin-walled
beam obtained with Abaqus is shown in Fig. 20, considering an
imperfection v0=0.045 m and a lamination {0/90/90/0}. It can be
seen that the postbuckling deformed shape correspond to a
flexural–torsional mode. It is important to note that a local
buckling mode appears in the top flange of the beam (see Fig. 20).
The presence of this effect can be due to the concentrated force,
which is precisely applied in this place. However, the influence of
this local mode on the global postbuckling response is not enough
to modify considerably the beam stability behavior. On the other
Fig. 16. Lateral postbuckling behavior considering the influence of imperfection,

lamination {0/0/0/0}.
hand, the postbuckling curves are drawn with the twist values
measured from the centroid of the cross-section. Finally, the
postbuckling behavior obtained with the shell model is, in
general, in good agreement with those obtained with the
present beam model.
8. Conclusions

This paper presents a theory to account for changes in the
stability behavior of thin-walled composite beams when design
parameters are modified. In particular, the model takes into
account the influence of geometrical imperfections on the
buckling, prebuckling and postbuckling beam response. A geome-
trically non-linear beam theory is used to investigate the
influence of imperfections for simply supported and fixed-end
beams subjected to axial and lateral loads. Therefore, the flexural,
torsional and flexural–torsional stability is analyzed by means of a
beam model formulated in the context of large displacements and
rotations. The theory is based on a shear deformable displacement
field (accounting for bending and warping shear), considering
moderate bending rotations and large torsional twist. The Ritz’s
method is used to obtain an algebraic system, which is solved by
an incremental Newton–Raphson algorithm. A set of beam
characteristic orthogonal polynomials and trigonometric func-
tions are used to discretize the variational equation.

Numerical results corresponding to the fundamental
and equilibrium paths of perfect and imperfect systems have
been presented, considering major imperfections of various
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Fig. 19. Deformed shape, corresponding to the first static step, used as a geometric imperfection.

Fig. 20. Lateral postbuckling state of a fixed-end imperfect beam, v0=0.045 m.
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magnitudes. It has been shown that in presence of imperfections
the stability of a flexible structure, allowing moderately large
displacements, is not modified with respect to the perfect case.
The postbuckling curves were stable and symmetric in all the
cases analyzed. However, the critical buckling load is reduced by
the effect of geometrical imperfections. This effect depends on the
stacking sequences and the beam length used. It was found that
the lamination {45/�45/�45/45} presents a higher imperfection
influence on the buckling response than the other sequences of
behavior was observed lamination considered. A similar in the
prebuckling state, where the lamination {45/�45/�45/45} pre-
sented the larger displacement values to the critical condition. It
was determined that the reduction of the buckling load values is
associated with an increase in the vertical displacement to the
bifurcation load. Therefore, it was concluded that the imperfection
effect depends on the stiffness of the structure and the influence
of this effect decreases as the beam stiffness increases.

It was found that the beam formulation proposed in this
paper predicts correctly the 3-D non-linear elastic response of
thin-walled composite beams. The postbuckling behavior ob-
tained with the present model is, in general, in good agreement
with those obtained with a shell finite element model using
Abaqus. It is a very important issue because the computational
cost demanded by the 3-D shell model was substantially larger
than those used by the present beam model.

As a conclusion, the buckling and postbuckling behavior
of thin-walled composite beams is influenced by the imperfe-
ction effect. The effect of initial transverse imperfection
reduces the buckling loads and makes the postbuckling equili-
brium paths be lower in comparison with the perfect one.
Furthermore, these effects become larger as the initial deflections
increases.
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