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In this work, the phase diagram of the ferromagnetic Ising model with dipole interactions is revisited with
the aim of determining the nature of the phase transition between stripe-ordered phases with width n (hn) and
tetragonal liquid (TL) phases. Extensive Monte Carlo simulations are performed in order to study the short-time
dynamic behavior of the observables for selected values of the ratio between the ferromagnetic exchange and
dipolar constants δ. The obtained results indicate that the h1-TL phase transition line is continuous up to
δ = 1.2585, while for the h2-TL line a weak first-order character is found in the interval 1.2585 � δ � 1.36 and
becomes continuous for 1.37 � δ � 1.9. This result suggests the existence of a tricritical point close to δ = 1.37.
When it is appropriate, the complete set of critical exponents is obtained, and in all the studied cases they depend
on δ but do not belong to the Ising universality class. Furthermore, short-time dynamic studies reveal that at the
point where the mentioned lines meet the h1-h2 line, i.e., at δ = 1.2585, the critical phase corresponding to the
h1-TL transition coexists with the h2 phase.
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I. INTRODUCTION

The two-dimensional Ising model with short-range ferro-
magnetic exchange and long-range antiferromagnetic dipole
interactions has been extensively investigated in recent
decades. In spite of its simplicity, the competition between the
exchange and dipole interactions, which creates frustration,
originates an interesting but complex behavior. In particular,
attention has been focused on the phase diagram since
both theoretical [1–3] and numerical studies [1,4–7] have
contributed to explaining a variety of experimentally observed
structures in anisotropic ultrathin magnetic films, for example,
stripe domain patterns [8–11]. The dimensionless Hamiltonian
of the model is written as

H = −δ
∑

〈i;j〉
σiσj +

∑

i<j

σiσj

r3
ij

, (1)

where σi = ±1 is the Ising spin variable oriented perpen-
dicularly to the square lattice of size L and δ = J/g is
the ratio between the short-range ferromagnetic exchange
constant J > 0 and the long-range antiferromagnetic dipole
coupling constant g > 0. The first sum runs over all pairs of
nearest-neighbor (NN) spins, while the second one runs over
all pairs of spins (i,j ) of the lattice separated by a distance rij ,
measured in crystal units.

By using theoretical arguments, the pioneering work of
Taylor, MacIsaac, and coauthors has contributed significantly
to determining the phases exhibited by the model [1–3]. In this
way, MacIsaac et al. have shown that for δ < 0.425 the ground
state is antiferromagnetic (AF), while for δ > 0.425 stripe
spin configurations with opposite magnetization running
along one axis of the lattice are observed. These phases are
characterized by an integer width h fixed all over the lattice,
which increases with δ.

On the other hand, from the Monte Carlo (MC) simulations
on square lattices, it was possible to access the phase diagram
in the T -δ plane, where T is the temperature of the thermal
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bath [1,4–7]. At low temperatures, the model still presents
AF configurations in the range 0 < δ < 0.4152, and this
phase changes to irregular checkerboard configurations (IRC)
with rectangular spin domains in the narrow range 0.4152 <

δ < 0.4403 [4]. For larger values of δ, the system state is
characterized by the same stripe configurations found in the
ground state. Extensive studies of staggered magnetization
[6,12,13] have shown that the transition lines between the
described phases (IRC-h1,h1-h2,h2-h3, and so on, where hn

means h = n) have a first-order character. In particular, the
h1-h2 transition was found at δ = 1.2585 [6].

At higher temperatures all the phases change to disordered
states characterized by a fourfold discrete rotational symmetry
[14], called tetragonal liquid (TL), except for narrow windows
around δ = 2.2 and δ = 2.8, where intermediate nematic
phases, between stripes and TL phases, were observed
[6,7]. Finally, with a further temperature increase, the
tetragonal fourfold symmetry is continuously replaced by the
full-rotational symmetry corresponding to the paramagnetic
phase [8].

The continuous character of the AF-TL phase transition
line was determined by studying the thermal evolution of
the specific heat [5]. However, for the IRC-TL transition a
first-order line was reported, and the existence of a tricritical
point was suggested, although these facts are not completely
clear [5]. In the case of the transition between stripes and TL
phases, it was stated recently that the phase transition h1-TL is
continuous up to δ = 1.2. This puts an end to a long-standing
controversy about the order of this transition line [15,16].
Furthermore, a full characterization of the critical behavior
along this line up to δ = 1.2 was also given [16]. On the
other hand, both works have reported a first-order transition for
δ = 1.3 that corresponds to the h2-TL transition, in agreement
with previous results [6]. This fact may suggest the existence of
a multicritical point somewhere in the interval 1.2 < δ < 1.3.
It is important to mention that these findings were obtained
by using two quite different techniques: (a) the analysis of
the complex partition function zeros from multicanonical
algorithms [15] and (b) the study of the dynamic evolution
of the order parameter and its moments at the early stages
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of its evolution, named short-time dynamics (STD) [16].
In addition, Rastelli et al. [4,5] have given evidence that
first-order transitions occur at δ = 1.7 and 2.5, i.e., h2-TL
and h3-TL, respectively. Nevertheless, a full characterization
of the transition lines for hn-TL for n � 2 is still necessary.

The difficulties in the characterization of the transition
lines are, on the one hand, a consequence of the difficulties
introduced in the simulations due to the presence of long-range
dipole interactions, such as an important increase in the
simulation times that limits the system size used and strong
finite-size effects. On the other hand, they are due to the
existence of multiple metastable states at low temperatures
and weak first-order phase transitions [6]. As a consequence,
any convincing finite-size scaling is hindered.

In this context, the STD method has proven to be a powerful
technique to avoid these hindrances, displaying its ability to
determine the nature of the h1-TL transition [16]. In fact, STD
studies are performed by considering the early time evolution
of the relevant observables, before reaching equilibrium
states. This means a huge reduction in computational time.
Moreover, due to the fact that the finite-size effects do not
significantly affect the dynamic evolution of the observables
within the short-time regime, the results could be attributed to
those corresponding to the thermodynamic limit, avoiding the
finite-size analysis. Furthermore, STD has been successfully
applied to several models in order to differentiate a weak
first-order phase transition from a continuous one and to study
the multicritical behavior. For more information about the
application of STD, see the recent report of Albano et al.
[17] and references therein.

In this work the transition lines between stripes and TL
phases are studied in the interval 1.2 < δ < 2 by means of
the STD method. The aim is to determine the order of the
transitions as a function of δ, to characterize the critical
behavior in the case of the continuous transition, and from
the results to determine the existence of multicritical points.
This paper is organized as follows: in Sec. II the simulation
details and a summary of the STD method are given, and in
Sec. III the results are presented and discussed. Finally, the
conclusions are reported in Sec. IV.

II. SHORT-TIME DYNAMICS AND SIMULATION DETAILS

As was mentioned, the dynamic behavior of the Ising model
with dipolar interactions will be studied by employing the
STD. This method consists of the analysis of the dynamic
evolution of some observables in a neighborhood of the
transition points for different values of the control parameter,
in the present case the temperature. The observables are
typically the order parameter Op, its second moment O2

p, the
susceptibility χ , the logarithmic derivative of Op with respect
to the reduced temperature D evaluated at the critical point Tc,
and the second-order Binder cumulant U .

For our purposes, the order parameter has to be sensitive to
the change in the orientational order, such as the one introduced
by Booth et al. [14],

Op ≡ Ohv ≡ nv − nh

nv + nh

, (2)

where nv (nh) is the number of vertical (horizontal) bonds of
the NN antiparallel spins. This definition ensures that Op =

+1 (−1) when the system is in the stripe horizontal (vertical)
phase and Op = 0 in the TL or paramagnetic phase. Due to
the fact that Ohv does not distinguish between hn and hn+1

phases, it is necessary to modify the definition (2) in order to
take into account the effects of the proximity of the first-order
transition h1-h2. This topic will be discussed in detail in the
following section. Nevertheless, the other observables can be
defined in a general way:

χ = 1

N

(〈
O2

p

〉 − 〈Op〉2
)
, (3)

D ≡ ∂ log〈Op〉
∂τ

∣∣∣∣
τ=0

, (4)

U = 1 −
〈
O2

p

〉

〈Op〉2
, (5)

where τ = (T − Tc)/Tc is the reduced temperature, N = L2,
and 〈· · · 〉 indicates the average performed over different
realizations from equivalent initial conditions. Hereafter, 〈Op〉
and 〈O2

p〉 will be referred to as Op and O2
p, respectively.

The dynamic evolution of the observables is measured
when the system is initialized from configurations correspond-
ing to the trivial fixed points [17], i.e., the ground state at
T = 0 and the paramagnetic one at T = ∞. In the case of a
continuous phase transition, it is expected that the observables
defined above will exhibit a power-law behavior at the critical
point within the short-time regime, with exponents related to
the critical exponents of the phase transition. For values of the
control parameter T �= Tc, but at the criticality, the power law is
modified by a scaling function. This fact allows us to determine
the critical temperature as well as the critical exponents from
the localization of the best power law (for more details, see the
review in Ref. [17] and references therein).

For the case of the ground-state initial condition, the
Ansatzë of the time evolution of the observables are the
following:

Op(t) ∝ t−β/νz, (6)

χ (t) ∝ tγ /νz, (7)

U (t) ∝ td/z, (8)

D(t) ∝ t1/νz, (9)

where β,ν, and γ are the static exponents for the order
parameter, correlation length, and susceptibility, respectively,
and z is the dynamic exponent for the time evolution of the
spatial correlation length.

However, if the system is started from paramagnetic initial
condition, the proposed scaling law is

O2
p(t) = χ (t) ∝ tγ /νz. (10)

It is important to mention that the universal evolution is strictly
valid in a well-defined time interval (tmic,tmax), where tmic

and tmax are set when the spatial correlation length ξ (t) is
of the order of a single lattice spacing and the lattice size L,
respectively. Furthermore, STD is free of the critical slowing
down due to the fact that tmax is smaller than the equilibration
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time. It is well known that for short-range models, STD is free
of finite-size effects since ξ (t) � L, but this is no longer valid
for long-range models. In fact, it was observed that the cutoff
introduced in the interaction sum, when periodic boundary
conditions are implemented, affects the validity range of the
power-law behavior but not the corresponding exponents [18].

In addition, STD can also be applied to determine the
metastability limits of the coexisting phases in a first-order
phase transition [17,19]. At these points the susceptibility and
relaxation times diverge, as in the case of a continuous phase
transition. This fact allows us to define them as pseudocritical
points and identify them as the spinodals. In this way, for the
ground-state initial condition the Op behaves as

Op(t) ∝ tω + Osp
p , (11)

where ω is an exponent and O
sp
p is the value of the order

parameter at the spinodal point Tup. Also, the susceptibility
diverges as a power law given by

χ (t) ∝ t�, (12)

where � is an exponent. For the paramagnetic initial condition
O2

p is given by

Op(t)2 ∝ tω
∗
, (13)

where ω∗ is another exponent, and O
sp
p = 0 at the other

spinodal Tdown. The difference Tup − Tdown is a measure of
the strength of the transition, and it allows us to distinguish
between a continuous transition, where Tup = Tdown = Tc, and
a weak first-order transition (Tdown < Ttrans < Tup, where Ttrans

is the transition temperature [17]).
In order to properly treat the effects of the above-mentioned

cutoff, periodic boundary conditions were set in such a way
that the entire space is tiled with replicas of the original
finite system. The original system and its replicas called
the aggregation and are represented by the pairs (L,m),
where m is the size of the aggregation in units of replicas.
In this way, the Hamiltonian in Eq. (1) is replaced by an
Ising-type Hamiltonian, with effective interaction coefficients
that take into account not only the interactions of the original
system but also the interactions with its replicas [16,20].
This method is a simpler and alternative way to the Ewald
summation techniques [21]. In previous work, it was checked
that m ∼ 5000 is enough to reproduce the results reported by
other authors. More details about these methods can be found
in Refs. [16,20].

Monte Carlo simulations (MCS) were performed in a square
lattice with size L = 128 using periodic boundary conditions
with aggregation size m = 5000. The STD observables were
measured until 3000 MCS were performed and averaged over
3000 different realizations. The time interval that defines the
range of validity of STD scaling was determined as tmic ≈ 100
MCS and tmac > 3000 MCS.

III. RESULTS AND DISCUSSION

A. Phase transitions at δ = 1.2585

In order to report the obtained results, let us start from the
point δ = 1.2585. As has been mentioned, at this δ value a
first-order phase transition line between the ordered phases

t = 1 MCS t = 100 MCS

t = 400 MCS t = 1000 MCS

FIG. 1. Dynamic evolution of the system at δ = 1.2585 and T =
0.226, when it is started from DC. Up (down) spins are indicated with
black (white) squares. The evolution times are indicated below each
configuration.

h1-h2 extends from T = 0 up to a temperature where the
order-TL transition takes place. As a consequence, the phase
coexistence leads to the observation of metastable phases
around the whole line. So it is reasonable to think that this fact
will affect the dynamic observables in such a way that may lead
to misinterpretations of the results. Furthermore, the nature of
the order-TL transition point is uncertain, and it has been
conjectured to be a triple [6] or tricritical point [15], where the
three involved phases coexist or become critical, respectively.

Figure 1 illustrates the time evolution of the system from
the initial paramagnetic state by means of a series of snapshots
taken at δ = 1.2585 and T = 0.226. As can be observed, h1

and h2 domains start to grow inside the bulk of the TL phase.
It is evident that the measurement of Ohv will be affected by
this behavior, so the order parameter definition Eq. (2) must be
modified in order to detect an order-disorder phase transition
with a specific ordered structure, either h1 or h2. For this
reason, it is necessary to introduce two new order parameters.
On the one hand, an order parameter sensitive to the phase
transition between the h1 and TL phases is defined as

Ohv1 ≡ nv1 − nh1

nv + nh

, (14)

where now nv1 (nh1 ) is the number of spins that have
vertical (horizontal) antiparallel NN; that is, Ohv1 detects
configurations of the sequence (−σu−ε)(σu)(−σu+ε), where
σu is the value of the spin in the lattice position u = (i,j )
and ε = (1,0) or (0,1). Furthermore, nv (nh) is the number
of vertical (horizontal) bonds of the NN antiparallel spins,
already defined in Sec. II.
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FIG. 2. Dynamic evolution of O2
hv,O

2
hv1

, and O2
hv2

at δ = 1.2585
when the system is started from DC at the temperatures (a) T = 0.226
and (b) T = 0.254. The power-law fits are indicated with a solid line.
More details are given in the text.

On the other hand, the order parameter that detects the
h2-TL phase transition is defined as

Ohv2 ≡ nv2 − nh2

2(nv + nh)
, (15)

where nv2 (nh2 ) is the number of spins in the vertical (horizon-
tal) direction, whose NN are antiparallel between them; that
is, the sequence in this case is (−σu−ε)(σu)(σu+ε). Here the
factor 2 must be added since this sequence is repeated twice.

The definition (14) ensures that Ohv1 = 1 (−1) when the
system is in the stripe-ordered horizontal (vertical) phase h1 or
Ohv1 = 0 in the TL, paramagnetic, and h2 phases. Equivalently,
Ohv2 is nonzero in the h2 phase, and it becomes null in the TL,
paramagnetic, and h1 phases.

It is important to mention that all the expressions
enumerated in Sec. II remain valid for both defined order
parameters. Also, the dynamic behavior of Ohv1 and Ohv2

matches that corresponding to Ohv far from the h1-h2 line, as
will be discussed below.

Figure 2 shows the time evolution of the O2
hv,O

2
hv1

, and O2
hv2

from the initial disordered configurations (DC) at the indicated
temperatures. For O2

hv2
the power-law behavior is evident at

T = 0.226, while O2
hv1

and O2
hv present upward deviations

[see Fig. 2(a)]. On the other hand, Fig. 2(b) shows that O2
hv

and O2
hv1

exhibit a similar power-law behavior at T = 0.254,
while Ohv2 quickly saturates at a small value. This result can
be understood due to the fact that there are, on average, tiny
structures of h = 2 at this temperature, but its contribution to
Ohv dynamic behavior is not significant.

The presence of the above-mentioned first-order transition
line makes the ground state twofold. In fact, there are two
possible initial ground-state configurations at δ = 1.2585,
i.e., the ordered configurations h1 and h2. These initial
configurations have to be considered if the h1-TL or h2-TL
transitions are studied by means of the STD method.

Figure 3 exhibits the dynamic behavior of Ohv,Ohv1 , and
Ohv2 as well as the corresponding susceptibility χ . In order
to study the phase transition h1-TL, the system was started
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2x10-5
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(a) (b)T=0.254 T=0.260

FIG. 3. Dynamic evolution of (a) Ohv and Ohv1 at δ = 1.2585
when the system is started from the h1 OC at the temperature T =
0.254 and (b) Ohv and Ohv2 when the system is started from the h2 OC
at the temperature T = 0.260. The insets show the evolution of the
susceptibilities that exhibit power-law behavior at these temperatures.
The solid lines correspond to the fits using the STD equations. More
details are given in the text.

from the ordered configuration (OC) with the h1 configuration.
Figure 3(a) indicates that the power-law behavior of Ohv1 ,
according to Eq. (6), is found at T = 0.254, i.e., at the same
temperature obtained for the DC case [see Fig. 2(b)]. Note
that Ohv presents a slightly different power-law behavior at
this temperature due to the fact that the definition of Ohv1 only
takes into account domains with stripes of width h = 1, while
Ohv also includes h = 2 stripes.

In this way, as stated in the STD method, both observables
indicate that the h1-TL transition is continuous and the
critical temperature is Tc = 0.254(1), where the error bars
were estimated using the closest temperatures that present the
smallest deviations from Eq. (6) (not shown). This result is
confirmed by the time evolution of the susceptibilities that
also present a power-law behavior according to Eq. (7) at the
same temperature.

In order to determine the critical exponents, the Binder
cumulant and the logarithmic derivative of the Ohv1 with
respect to the reduced temperature were obtained. These
observables as well as Ohv1 and O2

hv1
were fitted with the STD

equations. The STD exponents are listed in Table I and shown
in Fig. 4. From the STD exponents, the critical exponents of the
h1-TL phase transition at δ = 1.2585 were estimated and are
reported in both Table II and Fig. 5. Notice that the exponents
γ /νz and γ /ν determined from both initial conditions are
in good agreement. It is worth mentioning that the critical
exponents obtained from the evolution of Ohv and its moments
were also calculated and differ from the previously calculated
ones by a number smaller than 5%, except for the value of z,
which differs by 10%.

The scenario is completely different if the system is started
from the OC with h2. In this case, Fig. 3(b) shows that the
evolution of Ohv and Ohv2 at T = 0.260 can be well fitted
by Eq. (11), as shown by the dashed lines. These fits are
justified by the fact that the corresponding susceptibilities,
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TABLE I. Critical temperatures and STD exponents corresponding to the continuous transition lines h1-TL and h2-TL. The upper part
reports the results for the h1-TL phase transition using Ohv1 as the order parameter, while the lower part corresponds to h2-TL and Ohv . The
initial conditions for Tc and γ /νz are also indicated.

δ Tc (DC) Tc (OC) γ /νz (DC) γ /νz (OC) d/z 1/νz β/νz

1.23 0.286(1) 0.285(1) 0.785(9) 0.695(8) 0.719(8) 0.657(5) 0.0122(5)
1.25 0.265(1) 0.265(1) 0.74(1) 0.682(9) 0.696(8) 0.620(9) 0.0065(2)
1.2585 0.254(1) 0.254(1) 0.586(9) 0.565(6) 0.556(6) 0.540(6) 0.0028(1)

1.37 0.426(1) 0.428(1) 0.605(5) 0.61(1) 0.65(1) 0.520(9) 0.0186(2)
1.375 0.433(1) 0.434(1) 0.573(8) 0.587(7) 0.624(9) 0.46(1) 0.0190(5)
1.40 0.465(1) 0.465(1) 0.539(5) 0.537(5) 0.584(7) 0.494(9) 0.0222(4)
1.50 0.572(1) 0.5730(5) 0.593(6) 0.599(5) 0.680(8) 0.560(5) 0.0386(6)
1.60 0.658(1) 0.6588(3) 0.622(9) 0.636(9) 0.703(9) 0.579(5) 0.0399(4)
1.70 0.722(1) 0.724(1) 0.636(8) 0.640(9) 0.727(9) 0.575(8) 0.0394(4)
1.80 0.769(1) 0.7965(5) 0.641(4) 0.65(1) 0.718(9) 0.567(9) 0.0299(5)
1.90 0.795(1) 0.795(1) 0.720(5) 0.591(8) 0.620(9) 0.50(1) 0.0180(5)

which are shown in the inset, exhibit the power-law evolution
predicted by Eq. (12). This result, in addition to those displayed
in Fig. 2(a), allows us to conclude that the transition h2-TL
is of first order, so the temperatures T = 0.260(2) and T =
0.226(6) can be related to the spinodal points of the phases h2

and TL, respectively. Therefore, in view of the exposed results
for δ = 1.2585 at Tc = 0.254(1), a critical phase correspond-
ing to the transition h1-TL coexists with the h2 phase.

B. Phase transitions and multicritical behavior in the
neighborhood of δ = 1.2585

In order to avoid the possible influence of the development
of domains corresponding to unstable phases during the
nonequilibrium measurements, i.e., the h2 domains within
the region where h1 is the stable phase and vice versa, the
above-described procedure was applied in the neighborhood
of δ = 1.2585. The obtained results for the cases δ = 1.25 and
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FIG. 4. STD critical exponents versus δ obtained for both initial
conditions (OC and DC) as indicated. The open symbols correspond
to previously reported data in Ref. [16]. More details are given in the
text.

δ = 1.23 indicate that the phase transition is continuous. Both
the critical temperature and STD exponents of Ohv1 as well as
its moments are reported in Table I, and the calculated critical
exponents are summarized in Table II. As can be inferred from
both Tables I and II, γ /νz and γ /ν determined from both initial
conditions present a relatively good agreement. Figure 6 shows
the excellent agreement between the critical temperatures and
those reported in Refs. [5,6].

With the aim of determining the value of δ where the influ-
ence of unstable h2 domains on the critical behavior becomes
negligible, the same measurements were performed using Ohv

and its moments. The obtained critical temperatures are in
agreement with those reported in Table I. This is illustrated
in Fig. 7(a), where Ohv,Ohv1 , and their susceptibilities exhibit
a power-law behavior at T = 0.285(1) for the initial OC. A
similar situation is found when the system is started from
the DC [see Fig. 7(b)]. On the other hand, Fig. 8 shows
that the difference between the critical exponents, obtained by
considering both Ohv1 and Ohv , becomes less important when
δ is decreased. Furthermore, for δ = 1.23 both sets of critical
exponents are in excellent agreement within the error bars.

TABLE II. Critical exponents calculated from the STD exponents
listed in Table I. The upper and lower parts correspond to h1-TL and
h2-TL phase transition lines, respectively. The initial condition for
γ /ν is also indicated. The exponent γ /ν (DC) was estimated by
using the exponent z obtained from the initial OC, which is listed in
the fourth column. More details are given in the text.

δ β γ z ν γ /ν (DC) γ /ν (OC)

1.23 0.0186(8) 1.06(1) 2.78(3) 0.547(7) 2.18(3) 1.93(4)
1.25 0.0105(4) 1.10(2) 2.87(4) 0.56(1) 2.12(4) 1.96(5)
1.2585 0.0052(2) 1.05(2) 3.60(4) 0.515(8) 2.11(4) 2.03(4)

1.37 0.036(1) 1.17(3) 3.08(5) 0.63(1) 1.94(4) 1.88(4)
1.375 0.041(1) 1.28(3) 3.21(5) 0.68(2) 1.86(3) 1.88(4)
1.40 0.045(1) 1.09(2) 3.42(4) 0.59(1) 1.84(4) 1.84(4)
1.50 0.069(1) 1.07(1) 2.94(3) 0.607(9) 1.85(3) 1.76(3)
1.60 0.069(1) 1.10(2) 2.84(4) 0.607(9) 1.74(3) 1.81(3)
1.70 0.069(1) 1.11(2) 2.75(3) 0.63(1) 1.77(3) 1.76(3)
1.80 0.053(1) 1.14(3) 2.79(3) 0.63(1) 1.75(3) 1.81(4)
1.90 0.036(1) 1.18(3) 3.23(5) 0.62(2) 1.79(3) 1.91(4)
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FIG. 5. Critical exponents versus δ obtained from initial OC. The
open symbols correspond to previously reported data in Ref. [16].
More details are given in the text.

These findings were also verified for δ = 1.20 by comparing
the results obtained using Ohv1 with those reported in Ref. [16],
where only Ohv was employed. The described results allow us
to conclude that the continuous phase transition line between
h1 and TL extends up to δ = 1.2585 (see Table I and Fig. 6).
Furthermore, for δ � 1.23,Ohv is suitable to characterize this
phase transition by means of the STD method.

However, for 1.2585 < δ � 1.36, where the h2-TL tran-
sition takes place, the obtained results are consistent with a
weak first-order phase transition (see Table III and Fig. 6). As
can be observed in the inset of Fig. 6, the strength Tup − Tdown

takes its largest value at δ = 1.2585 and decreases up to zero
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FIG. 6. Phase diagram in the T -δ plane. Open circles are from
Ref. [16], crosses are from [6], and pluses were taken from Ref. [15].
Solid symbols correspond to the data obtained in the present work;
circles denote the critical temperatures, while the squares and
diamonds are the spinodal temperatures Tup and Tdown, respectively.
Dotted lines are to guide the eye, and the dashed line represents the
first-order phase transition h1-h2 line that was taken from Ref. [6].
The inset shows the interval 1.2585 � δ � 1.36 in more detail.
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FIG. 7. Dynamic evolution of the system at δ = 1.23: (a) Ohv

and Ohv1 at T = 0.285 from the ordered initial condition (OC). The
inset shows the corresponding susceptibilities. (b) O2

hv and O2
hv1

at
T = 0.286 when the system is started from the DC. The solid lines
represent the power-law fit by means of STD equations (6) and (7) in
(a) and (10) in (b). More details are given in the text.

at δ = 1.37 (see also Table III). In addition, the value of
the order parameter at the spinodals of the h2 phase (Osp

p )
goes to zero with δ. It is worth mentioning that for δ > 1.26,
the spinodal temperatures as well as O

sp
p obtained by using

Ohv are in agreement with those corresponding to Ohv2 . This
indicates that the influence on the dynamics of unstable h1

domains can be disregarded. The described results give clear
evidence of the existence of a tricritical point within the interval
1.36 < δ � 1.37 and also confirm the first-order character of
the h2-TL phase transition for δ = 1.2585.

C. Critical behavior on the h2-TL transition line

In this section, the research is extended to the interval
1.37 � δ � 1.9. In order to apply the STD method and based
on the conclusions of the previous sections, Ohv was used
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FIG. 8. Estimation of the critical exponents obtained by using
STD equations and taking Ohv as the order parameter: (a) β, (b) z,
(c) γ , and (d) ν as a function of δ. The results corresponding to Ohv1

are also included.
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TABLE III. Pseudocritical temperatures Tdown and Tup corre-
sponding to spinodal points of the TL and h2 metastable phases,
respectively. The fourth column reports the value of the order
parameter at the spinodal of h2 phase, and the fifth column indicates
the order parameter used. The initial conditions are also included.

δ Tdown (DC) Tup (OC) Osp
p (OC) OP

1.2585 0.226(6) 0.260(2) 0.972(2) Ohv2

1.26 0.244(2) 0.263(2) 0.960(4) Ohv2

1.28 0.292(2) 0.299(1) 0.918(8) Ohv

1.30 0.326(1) 0.3305(5) 0.89(1) Ohv

1.325 0.364(1) 0.367(1) 0.82(1) Ohv

1.35 0.3990(5) 0.4010(5) 0.757(5) Ohv

1.36 0.4125(5) 0.4155(5) 0.662(5) Ohv

as the order parameter. For each δ value investigated and
for both initial conditions, the STD observables showed a
power-law behavior at the same temperature, within the error
bars, indicating a continuous phase transition. The obtained
temperatures are listed in the lower part of Table I. Figure 6
shows that these transition temperatures are in excellent
agreement with those reported in Ref. [6]. Notice that this work
suggested a first-order transition line; however, the limitations
imposed by the long equilibration times and the small system
sizes in the Monte Carlo studies did not lead to completely
reliable conclusions. In fact, they also predicted a first-order
phase transition for the h1-TL line in the range 1 � δ � 1.2,
and more recently, it was demonstrated that this line is
continuous [15,16]. The continuous character determined in
the present case is supported by the fit of the Ohv evolution
with Eq. (11) that gives values O

sp

hv = 0 over the whole studied
δ interval. Moreover, there is good agreement between the
estimations of exponent γ /νz from both initial conditions,
except for the case of δ = 1.9, where the difference is of
the order of 16%. The last difference could be related to the
proximity of the nematic phase that was detected for δ = 2 [6].

The STD exponents obtained by means of the fit of the
corresponding observables are listed in the lower part of
Table I and are shown in Fig. 4. From these values, the critical
exponents were estimated and are reported in both Table II
and Fig. 5. For the sake of comparison, Figs. 4 and 5 also
include the exponents corresponding to the h1-TL transition
line. As can be observed in Fig. 5(a), the static exponents,
β,γ , and ν, show a weak dependence on δ except near the
zone where the tricritical point is expected to be. Furthermore,
these exponents indicate that the transition h2-TL does not
belong to the Ising universality class. On the other hand, the
dynamic exponent z presents a minimum value for δ = 1.7
but always remains higher than the value corresponding to the
bidimensional Ising model, i.e., z = 2.1667(5) [22]. The last
result is indicative of the slow critical dynamic behavior of the
model, which is enhanced in the neighborhood of the tricritical
point. A similar behavior is observed for z in the case h1-TL
close to δ = 1.2585 in Fig. 5.

IV. CONCLUSIONS

The phase diagram of the ferromagnetic Ising model with
dipole interactions has been the object of a long-standing

controversy about the order of the high-temperature phase
transitions and the possible existence of multicritical points. In
the present work, the short-time dynamics method was applied
to determine the nature of the transitions between the ordered
stripe of width h = n (hn, n = 1,2) and tetragonal liquid TL
phases in the interval 1.23 � δ � 1.9.

In order to study the dynamic behavior at the point where
the h1-TL, h2-TL, and h1-h2 transition lines meet, which
corresponds to δ = 1.2585, it was necessary to define two
variants of the orientational order parameter Ohv . These vari-
ants, denoted as Ohv1 and Ohv2 , are capable of distinguishing
an ordered stripe phase with the specific widths h = 1 and
h = 2, respectively. The dynamic evolution of the observables
Ohv1 ,Ohv2 and their moments allowed us to conclude that the
h1-TL phase transition is continuous, while the h2-TL one
presented a weak first-order character. As a consequence, at
this point the critical phase corresponding to the transition
h1-TL coexists with the h2 phase. So this point must not be
considered a triple point due to the fact that the three involved
phases do not coexist; that is, a continuous transition line
meets two first order ones. Moreover, it cannot be classified as
tricritical because if it were so, all the phases would become
critical. It is important to remark that, as expected, the dynamic
behavior of Ohv1 and Ohv2 matched that corresponding to Ohv

for δ � 1.23 and δ > 1.26, respectively, i.e., when δ is moved
away from the h1-h2 transition line.

Furthermore, the results obtained for δ < 1.2585 allow us
to conclude that the continuous h1-TL phase transition line
extends up to δ = 1.2585. The critical exponents were deter-
mined from the STD exponents, including those corresponding
to δ = 1.2585. It was found that they depend on δ and do not
belong to the Ising universality class in any case reported.
On the other hand, for 1.2585 < δ � 1.36 the behavior of
the STD observables was consistent with a weak first-order
phase transition, whose strength decreases up to zero at
δ = 1.37. This result confirms the first-order character of the
h2-TL transition at δ = 1.2585 and suggests the existence of
a tricritical point within the interval 1.36 < δ � 1.37. Finally,
for 1.37 � δ � 1.9 the h2-TL transition line was found to be
continuous, and consequently, the complete set of the critical
exponents was obtained. As in the case of h1-TL, the critical
exponents varied with each value of δ investigated.

It is important to remark that in this work the STD
technique was successfully applied to study a point where
three transition lines meet and more than two phases are
present, i.e., in the case δ = 1.2585. With this aim, it was
necessary to define new order parameters that take into
account the specific structure of the stripe-ordered phase.
Moreover, in view of the obtained results, STD is expected
to be useful to determine the nature of the phase transitions
exhibited by the Ising model with dipolar interactions for
larger values of δ, which remains under discussion.
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