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We evaluate the extraction of angular momentum from quantized vortices in trapped Bose-Einstein conden-
sates. Within a variational approach we show that the energy barrier between the ground state and the state
containing an axisymmetric vortex can be crossed in a scattering process by density perturbations. The transfer
of angular momentum can be made total for suitably chosen density perturbations carrying about 10% of the
ground-state energy, irrespectively of the number of particles in the condensate. A similar pattern is reproduced
by the full solution of the Gross-Pitaevskii equation, although interference and diffusion effects are now seen
to limit the efficiency of the process.

DOI: 10.1103/PhysRevA.78.023604 PACS number�s�: 03.75.Lm

I. INTRODUCTION

The study of scattering of sound by vortices in superfluids
initiated with the pioneering work of Pitaevskii �1� on the
mutual friction force in superfluid helium. Since then most
research has focused on the momentum transfer between the
acoustic field and the vortex in homogeneous media in the
linear regime. More recently the problem has regained some
attention due to a controversy on the vanishing of the Iordan-
skii force �2� �see also, e.g., Refs. �3,4�, and references
therein�. The study of the scattering between sound-wave
perturbations with vortex excitations in trapped Bose-
Einstein condensates �BECs� has been also stimulated by the
phenomenon of super-resonance, the acoustic-wave version
of the Penrose process �5�. In classical systems, such a pro-
cess, based on Zel’dovich studies �6�, describes how an axi-
ally symmetric rotating body can amplify some oscillation
modes in a cavity through the transfer of rotation energy.
Recent calculations of sound-wave scattering from hydrody-
namic vortices applicable to atomic Bose-Einstein conden-
sates �7� have shown that at sufficiently high angular speeds
and in the perturbative limit where back-reaction effects can
be neglected, a sound-wave packet can extract a sizeable
fraction of the vortex energy through the mechanism of
super-resonance under typical experimental conditions. Since
a vortex is a state of a stationary BEC with a somewhat
higher energy than the ground state, its nucleation in atomic
condensates requires appropriate experimental techniques to
be achieved. Among these techniques we can mention stir-
ring the condensate with a laser beam �8�, exploiting inter-
conversion between two components of the condensate with
different spins �9�, or directly imprinting a phase in the con-
densate wave function �10�. The nucleation and stability of
vortices have been extensively discussed in the literature �see
Fetter and Svidzinski �11�, and references therein�. Not only

have singly quantized vortex configurations been investi-
gated, but also more elaborate modes such as vortex rings
�12�, vortex clusters �13�, and multiply quantized vortices
�14� confined in harmonic or more complicated traps.

The possibility that substantial angular-momentum trans-
fers from the vortex state to a sonic wave packet may persist
in the nonperturbative quantum regime described by the
Gross-Pitaevskii functional is what the present work focuses
on. Given the quantum nature of a vortex in a BEC, one is
naturally led to ask whether part or all of its energy can be
extracted by the sonic wave packet. Within a variational ap-
proach to the Gross-Pitaevskii energy functional with nonro-
tating traps, we show that the energy barrier between the
state containing an axisymmetric vortex line and the vortex-
free ground state is such that a transfer of population be-
tween the two states is possible with a moderate energetic
cost. A simplified dynamical model is then implemented to
analyze the time evolution of the scattering events and to
identify the conditions that allow a sizeable transfer of angu-
lar momentum between the vortex and the wave packet. Fi-
nally, the predictions of the variational model are compared
with the full solution of the Gross-Pitaevskii equation �GPE�
for the same choice of parameters. The paper is organized as
follows. In Sec. II we introduce the variational model to
describe steady states of the energy, and in Sec. III we ana-
lyze the dynamics of the system when a density perturbation
impacts a centered vortex. Section III A highlights similari-
ties and differences between the results of the variational
model and the full solution of the GPE. Finally, in Sec. IV
we offer a summary and some concluding remarks.

II. STEADY STATES

We explore the possibility of a transition between the state
of a BEC containing a centered axisymmetric vortex and the
vortex-free ground state by introducing a variational model
that allows us to identify and estimate the steady states of the
energy. This method has been used by several authors to
study the BEC static and dynamical properties �15�.
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The energy of the BEC at zero temperature is given by the
Gross-Pitaevskii functional

E��� =� d3r� �2

2m
����2 + Vext�r����2 +

g

2
���4� , �1�

where ��r� is the condensate wave function, Vext=
1
2m�2r2 is

the external nonrotating isotropic trap, and g=4��2as /m
is the strength of the interparticle interaction, with as the
s-wave scattering length. Minimization of the functional
yields the GPE. In order to locate the extrema of the func-
tional and estimate the energy barrier between them, we pa-
rametrize � in the following simple form:

��r� = N�cos� + sin�
x + iy

ahob
�e−m�r2/2�b2

, �2�

where N=�−3/4N1/2�ahob�−3/2 is a normalization constant,
with N the number of particles, and aho=	� / �m�� is the
oscillator length. This wave function is the superposition of
an axisymmetric vortex line orthogonal to the �x ,y� plane
and a vortex-free state, and as such it is written as the sum of
two terms having, respectively, angular momentum equal to
zero and to � per particle, with populations N0=N cos2 � and
N1=N sin2 �. This yields total angular momentum Lz
=� sin2 � per particle. It is worth stressing that the state �2�
for large N cannot be regarded as a vortex that is simply
displaced, as the width of its hollow core is linked to the
width of density profile and therefore increases with N,
whereas normally the core of a displaced vortex is propor-
tional to the healing length, i.e., it diminishes with N �16�.

The state �2� has energy

E =
��

4
�3N0 + 5N1�
b2 +

1

b2�
+ g
m�

��
�3/2 1

8	2b3
�2N0

2 + 4N0N1 + N1
2� . �3�

The steady states of the BEC are specified by the sets ��0 ,b0
that extremize E, i.e., they are the solutions of the coupled
equations

� �E

��
�

��0,b0�
= 0, �4a�

and

� �E

�b
�

��0,b0�
= 0. �4b�

The results for the energy of a 87Rb condensate �8� with as
=5.71 nm and �=11.7 Hz, as a function of � and b for N
=102, 103, 104, and 105, are summarized in Fig. 1. In the
figure the solid and dashed curves correspond to the loci of
the zeroes of the two derivatives in Eqs. �4a� and �4b�, and
hence the extrema of the energy are located at the intersec-
tion between these two curves.

At low N we find only two extrema located at �=0 and
�=� /2 for �� �0,��, corresponding to the states with Lz
=0 �N0=N� and Lz=� �N1=N�, the former being an energy
minimum. On increasing N a maximum develops between

�=0 and � /2, while both extrema at �=0 and � /2 become
minima. This behavior is more clearly depicted in Fig. 2,
where the energy is shown as a function of � along the curve
b0��� obeying Eq. �4b�. It is indeed possible to choose a path
through the energy maxima that is an extremum with respect
to b, as plotted in the left panel of Fig. 2. The plots show that
the energy barrier W associated with the crossover from the
energy minimum at �=� /2 to that at �=0 is about 10% of
the ground-state energy for typical values of the number of
particles in a BEC. This is confirmed by approximate ana-
lytical formulas for the energy of each minimum and for the
barrier as obtained from Eq. �3�. At strong coupling we get
E1=2−2/5�5 /3�3/5E0�1.03E0, and W�0.101E0 for the values
of the parameters used in our calculations. To check the va-
lidity of our variational findings we have evaluated the GP
energy for a state �=cos� �0+sin� �1 with �0 and �1 exact
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FIG. 1. Gray-level plots of the energy E��� as a function of the
variational parameters � and b for N=102 ,103 ,104 ,105 as indicated
in the plots. Darker regions correspond to lower energies. The solid
and dashed lines obey Eqs. �4a� and �4b�, respectively.

1

1.1

1.2

1.3

1.4

1.5

0 0.2 0.4 0.6 0.8 1

E
[b

0
(τ

),
τ
]/

E
[b

0
(0

),
0]

Lz/�

N = 105

N = 104

N = 103

1

1.1

1.2

1.3

1.4

0 π/4 π/2

E
[b

0
(τ

),
τ
]/

E
[b

0
(0

),
0]

τ

E0
E1

W

N = 105

N = 104

N = 103

FIG. 2. Total energy E �in units of the ground-state energy�
along a selected path connecting the energy extrema at �=0 and
� /2 �see text� for several values of the particle numbers N. The left
panel displays the energy as a function of � from the variational
approach �thick lines� and the GPE solutions �thin lines�. The right
panel shows the same energy curves from the variational approach
as functions of Lz /� per particle.

CAPUZZI, FEDERICI, AND TOSI PHYSICAL REVIEW A 78, 023604 �2008�

023604-2



solutions of the GPE without and with vorticity, respectively.
The results are shown in the left panel of Fig. 2 �thin lines�
and demonstrate that while the energy differs in about 5%
from the variational results, the behavior is in complete
agreement; namely, the vortex state is a minimum of the
energy with respect to the exchange of particles with the
condensate. Furthermore, this is valid in general for large
interactions and the exact states �i as analytically shown in
the Appendix.

The right panel of Fig. 2 illustrates how the total energy
of the system varies as the vortex population diminishes, for
a given number of particles. The relatively low value of the
energy barrier between the two energy minima suggests that
annihilation of a vortex in a trapped BEC may be affected at
a moderate energy cost. Some dissipation mechanism will be
needed to stabilize the transition �see, e.g., Ref. �17��, and in
the lack of it one expects that the system will oscillate be-
tween the two states. In the next section we examine the
scattering of density perturbations against the vortex as a
possible mechanism for triggering the transition.

III. DYNAMICS OF THE VORTEX

Since the ground and vortex states are energy eigenstates,
a superposition of both states is a configuration in which the
two populations remain constant in time. We allow the trans-
fer of atoms out of the vortex by a mechanism in which a
compact wave packet, mimicking a classical particle with
average angular momentum determined by Lz, impacts the
system. Thus within the variational approach we extend the
total condensate wave function to include a time dependence
in the form

��r,t� = A�t��0�r� + B�t��1�r� + C�t���r − r0�exp�ik · r� ,

�5�

which will allow the states to change their amplitudes. Here
�0 and �1 are the ground-state and vortex-state wave func-
tions, while A, B, and C are complex time-dependent ampli-
tudes, and r0�t� and k�t� are real functions of time. For the
last term in Eq. �5�, representing a density perturbation
around the position r0 and moving with average momentum
�k, we take a narrow Gaussian packet ��r�=exp�−r2 /bp

2� of
fixed width bp. This yields an average angular momentum
L=r0��k per particle.

The evolution of the system is dictated by the dynamics of
the time-dependent parameters entering Eq. �5�, which is de-
termined from the Lagrangian

L��,t� =� � i�

2

�*

��

�t
− �

��*

�t
� −

�2

2m
����2 − Vext�r����2

−
g

2
���4�dr; �6�

according to the set of coupled Euler-Lagrange equations

d

dt

 �L

��̇
� =

�L
��

�7�

for �=A, B, C, r0, and k. These dynamical equations con-
serve the total energy but do not conserve the angular mo-

mentum associated with the vortex, as a result of the sym-
metry breaking caused by a Gaussian perturbation.

We have solved the Euler-Lagrange equations �7� for a
vortex line in a BEC with N=105 particles and incoming
wave packets with several values of the number of particles
Np, the initial velocities �k0 /m, and widths bp. The trajecto-
ries of a wave packet with Np /N�8�10−2 are displayed in
Fig. 3 for several initial velocities along the x axis and
widths bp /aho=1 and 3. After every scattering event there is
for the more energetic wave packets �smaller bp� a modifica-
tion in the area and the orientation of the orbit, indicating a
change in its angular momentum that lasts for an appreciable
part of the subsequent evolution. This is clearly seen in Fig.
4 where we plot the time evolution of Lz for both the BEC
and the wave packet. From the results of the model we can
see that the vortex exchanges angular momentum with the
wave packet with an approximate periodicity determined by
the sequence of scattering events. At times a total transfer
occurs back and forth between the vortex and the wave
packet. Of course, the trap is playing the role of a mirror
reflecting back the wave packet as it approaches its walls
after each scattering event against the vortex.

Although the chosen Np in Figs. 3 and 4 is only about 8%
of the number of particles in the condensate, the energy as-
sociated with the wave packet is much higher than the ex-
pected energy barrier W. Indeed, for the above parameters
the energy involved is in the range of 30–100 % of the BEC
energy. Therefore we proceed to present calculations for
smaller Np and consequently smaller wave-packet energy.
Figure 5 shows the time evolution of Lz for Np /N=10−2 and
3�10−3. If we focus first on the angular momentum of the
vortex �solid lines� for wave-packet energies larger than 10%
of the initial energy of the BEC �ep	10%, panels �a�, �b�,
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FIG. 3. Orbits of the center of the incident wave packet r0�t� �in
units of aho�. Each panel corresponds to different values of the wave
packet width bp and of the initial velocities k�0�=−k0x̂: �a�
bp /aho=1, k0aho=5.5; �b� bp /aho=1, k0aho=10; �c� bp /aho=3,
k0aho=5.5; �d� bp /aho=3, k0aho=10. The crossed circle represents
the center of the condensate.
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and �d��, we see that the angular momentum is fully trans-
ferred and the transfer lasts for extended time intervals. For
lower energies �ep=3%, panel �c�� instead the wave packet
scatters repeatedly against the condensate without long-lived
exchanges of angular momentum. This behavior can also be
interpreted in terms of the energy background, as is shown in
Fig. 6 for Np /N=3�10−3, corresponding to panel �c� and �d�
of Fig. 5. Figure 6 shows the energy of the unperturbed BEC
from Eq. �3� together with the BEC energy during the evo-
lution of the system at times when the wave packet is at a
distance larger than the width of the condensate, that is at
times when it is meaningful to separately define the energy

of both the wave packet and the BEC. We see that the energy
barrier is crossed only for ep=10% �triangles�.

The predictions of the variational model for the transfer of
angular momentum in scattering events, as a function of the
wave-packet energy, are summarized for the two values of
Np /N in Fig. 7, where we show the minimum value attained
by Lz during the time evolution from t=0 to 50 /�. As ep
increases we find a slow decline of min�Lz leading into a
rather sharp transition to a situation where min�Lz approxi-
mately vanishes. The location of the transition shows a re-
sidual dependence on the value Np /N. It seems therefore
possible to tune k0, and hence ep, so that angular momentum
is extracted from the vortex to the extent of its annihilation.
Of course, permanent annihilation requires that the wave
packet be removed after the scattering event, to prevent its
back-scatter from the trap walls into the condensate.

Although the superresonance phenomenon that was inves-
tigated in �7� concerned scattering of a sound wave against a
classical hydrodynamic vortex with nonquantized vorticity,
we may still compare the resonance windows observed in the
two situations. From Eq. �2� we calculate the angular veloc-
ity 
 of the vortex at a distance � from its center as 
���
=� / �m�2�, and taking �= �8��as�−1/2 as the healing length of
the BEC at the trap center we estimate 
�82�. The veloc-
ity v of the wave packet is linked to its central frequency �0
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FIG. 4. Angular momentum Lz per particle �in units of �� as a
function of time t �in units of 1 /��. Solid and dashed lines corre-
spond, respectively, to the angular momentum of the BEC and of
the wave packet. Each panel refers to the same parameters as in
Fig. 3.
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FIG. 5. Same as in Fig. 4, but for different values of the number
of particles and initial velocity of the wave packet and of the ratio
ep between its energy and that of the BEC: �a� Np /N=10−2,
k0aho=11, ep=11%; �b� Np /N=10−2, k0aho=25.5, ep=50%; �c�
Np /N=3�10−3, k0aho=11, ep=3%; and �d� Np /N=3�10−3,
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through the relation v=��0 / �mc�, where c=� / �	2m�� is the
speed of sound. We thus obtain the superresonant limit as

 /�0�13 / �k0aho�. For the lowest value of Np /N, we see
that the 10% energy barrier corresponds to k0aho=20–25,
which roughly lies within the classical superresonant regime
found in �7�.

On the numerical solution of the GPE

As discussed above, the variational model predicts that in
a scattering event, for certain values of the system param-
eters, the velocity field associated with a quantized vortex in
a BEC can transfer all of its angular momentum to a sonic
wave packet, and that this process is followed by a series of
revivals and annihilations as the outgoing wave packet is
repeatedly back-scattered by the trap walls. The crucial sim-
plification is that the model embodies, through the form that
has been assumed for the order parameter ��r , t� of the sys-
tem, a clear separation between the angular momentum as-
sociated with the vortex and that of the wave packet. We
have made some preliminary attempts to assess how much of
this scenario is confirmed by a calculation of ��r , t� from the
solution of the time-dependent GPE in the presence of an
incoming density perturbation.

The main difficulty that one meets in such an attempt is
indeed posed by the fact that the total angular momentum
can no longer be unambiguously separated into two compo-
nents. If we assume that the angular momentum residing
with the particles inside the initial volume of the condensate
can be attributed to the vortex and the remainder to the wave
packet, then we find that for some values of the system pa-
rameters in the range of those adopted in the variational
model �e.g., for bp /ah0=1, Np /N=2�10−2, and k0aho=10�
there is again from the GPE total transfer of angular momen-
tum in the first scattering event. This process appears to be
followed by a single revival, but the analysis of the subse-
quent evolution is obscured by interference and diffusion
processes of the wave packet. These processes, which are
suppressed in the variational model by preserving the shape
of the condensate and of the perturbation, drain energy from
the wave packet. The use of narrower wave packets would
limit interference, but would also foster diffusion.

Several remedies may be envisaged to overcome these
difficulties, such as �i� the insertion of a central dimple in the
trap potential to confine the velocity field of the vortex �18�,
or �ii� the adoption of wave-packet-absorbing walls in the
trap. It may also prove useful to adopt a simple subtraction
of the angular momentum calculated for the wave packet in
the variational model from the GPE prediction of the total Lz.
These possibilities are left for future study.

IV. SUMMARY AND CONCLUDING REMARKS

In summary, we have estimated the energy barrier associ-
ated with the crossover from the state of a Bose-Einstein
condensate containing an axisymmetric vortex to its ground
state as being about 10% of the ground-state energy. This
suggests the possibility of driving a transition between the
two states of angular momentum through a suitable external

perturbation. A parallelism is thereby indicated with super-
resonance phenomena from classical hydrodynamic vortices.

We have then evaluated within a variational approach the
scattering between a quantized vortex line and a sonic wave
packet of varying number of particles, initial velocity, and
width, by solving the Euler-Lagrange equations. Within this
approach, from the trajectories of the wave packet it is clear
that every scattering event against the condensate may be
accompanied by a change in angular momentum that lasts for
an appreciable time interval during the subsequent evolution.
This behavior is directly confirmed by the time evolution of
the angular momentum: the condensate exchanges angular
momentum with the wave packet with an approximate peri-
odicity which is determined by the sequence of scattering
events. The transfer could be made permanent by removing
the wave packet after the relevant scattering event. This can
be experimentally achieved by using shallow traps where the
finite depth allows the wave packet to leave the condensate
after the scattering event �18�. The wave packet can be ini-
tiated by first confining some of the particles by means of an
additional laser beam and then releasing the particles by
switching off the additional trap.

We have achieved partial confirmation of these dynamical
results by solving the time-dependent Gross-Pitaevskii equa-
tion for a condensate subject to an incoming sonic wave
packet. A suitable choice of system parameters reproduces
the transfer of angular momentum in a scattering event, but
the correspondence with the variational model is subse-
quently lost because phenomena of interference and diffu-
sion become allowed. These effects reduce the energy sup-
plied by the wave packet in later events and limit the
efficiency of the scattering process as a possible vortex-
annihilation mechanism. We have indicated some directions
along which the dynamical study of the induced annihilation
of quantized vorticity may be further developed.
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APPENDIX

In this Appendix we show that the exact vortex state �1 is
a minimum of the energy respect transfering atoms to the
ground state �0. Therefore we consider the analog to Eq. �2�
with the exact states �i�r�,

��r� = cos� �0�r� + sin� �1�r� , �A1�

and calculate the energy E��� from Eq. �1� as

E = cos2� E0
0 + sin2� E1

0 + cos4� E0
int + sin4� E1

int

+ sin2 2�
g

2
� ��0�2��1�2, �A2�

where the one-body terms are
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Ei
0 =� 
 �2

2m
���i�2 + Vext�r���i�2�d3r �A3�

and the interaction terms are

Ei
int =

g

2
� ��i�4d3r . �A4�

From Eq. �A2� we find that �=0,� /2 are extremes and that

�2E

��2 = � 2
E1
0 − E0

0 − 2E0
int + 2g� ��0�2��1�2d3r� , � = 0

− 2
E1
0 − E0

0 + 2E1
int − 2g� ��0�2��1�2d3r� , � = �/2� .

For zero coupling we then have

�2E

��2 =  2�E1
0 − E0

0�for � = � 0

�/2� , �A5�

while for large couplings, the interaction energy terms are larger than the one-body one and thus we may approximate

�2E

��2 = 4E0
int � 0 for both � = 0 and �/2. �A6�

Namely, in this limit �1 is a minimum respect changing �.
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