Elsevier Editorial System(tm) for Chemical

Physics Letters

Manuscript Draft

Manuscript Number: CPLETT-16-697R2

Title: Experimental determination of the activation energies of CH_4, SO 2 and O 2 reactions on Cr 2O $3/\gamma\text{-Al}$ 2O 3

Article Type: Research paper

Section/Category: Gaseous Molecules

Corresponding Author: Prof. Isabel M. Irurzun, Prof.

Corresponding Author's Institution: Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas

First Author: Sabrina N Hernandez Guiance, Dr

Order of Authors: Sabrina N Hernandez Guiance, Dr; Daniel I Coria, Prof.; Isabel María Irurzun, Professor; Elias E Mola, Prof.

Abstract: In the present work we experimentally determine the activation energies of CH4, SO2 and O2 reactions on $Cr2O3/\gamma$ -Al2O3. To our knowledge there is no previous determination of these parameters, so fundamental information is provided to determine the velocity laws of these reactions and understand their kinetic behavior. γ Dear Editor,

We are pleased to send you the revised version of our manuscript entitled "Experimental determination of the activation energies of SO₂, CH₄ and O₂ reactions on Cr_2O_3/γ -Al₂O₃."

We expect that you may find our article suitable for publication in Chemical Physics Letters.

Yours sincerely Isabel Irurzun i_irurzun@hotmail.com

CHEMICAL PHYSICS LETTERS

Online Manuscript Submission Item Count

Manuscript Title:

Experimental determination of the activation energies of SO₂, CH₄ and O₂

reactions on Cr_2O_3/γ -Al₂O₃.

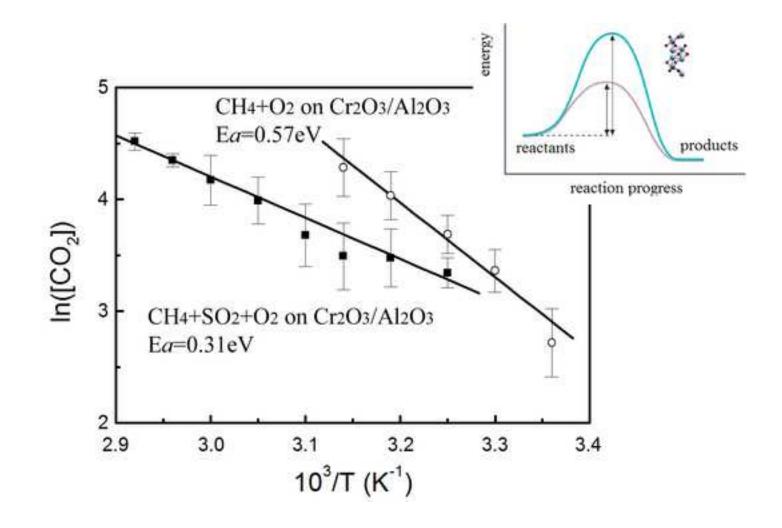
Authors:

S. N. Hernandez Guiance, I. D. Coria, I. M. Irurzun, E. E. Mola

Please include a count of the following items. When you are finished, you may save this document for use with your online submission to Chemical Physics Letters.

Abstract: Word Count				
(The manuscript abstract may not exceed 100 words.)				
47				
Manuscript Text: Word count				
3330				
References: Number Count				
(A maximum of 50 single references is permitted. Multiple references referring to more than				
one paper are not permitted and neither are references to web sites.)				
11				
Figures: Number Count				
(A maximum of 8 normal-sized figures and/or tables is allowed)				
3				

Dear Sir,


The following changes were made to our manuscript Ms. No.: CPLETT-16-697, entitled "Experimental determination of the activation energies of CH_4 , SO_2 and O_2 reactions on Cr_2O_3/γ -Al₂O₃".

- (i) Graphical Abstract: the graphical abstract was replaced according to your suggestion.
- (ii) While preparing the new graphical abstract, we realized that there were two major mistakes in the figures, which were corrected in this version. We regret any misunderstanding that these errors may have caused.
 - (a) The CO_2 production curves corresponding to the catalyzed reactions were interchanged, the one in figure 2b corresponded to figure 2c and vice versa
 - (b) The line corresponding to the catalysed reaction in figure 3b was mistakenly included in figure 3c.

We expect that you may find our article suitable for publication in Chemical Physics Letters.

Yours sincerely Isabel Irurzun i_irurzun@hotmail.com *Experimental determination of the activation energy of the SO₂ reduction with CH₄ on Cr_2O_3/γ -Al₂O₃

*The oxygen decreases the activation energy of the SO₂ reduction with CH₄ on Cr₂O₃/ γ -Al₂O₃

Experimental determination of the activation energies of CH_4 , SO_2 and O_2 reactions on $Cr_2O_3/\gamma - Al_2O_3$

S. N. Hernández Guiance

Facultad de Química, e Ingeniería, Pontificia Universidad Católica Argentina, Mendoza 4197 CP 2000 Rosario, Argentina.

I. D. Coria

Universidad del Centro Educativo Latinoamericano. Av. Pellegrini 1332 CP 2000 Rosario, Argentina.

I. M. Irurzun¹

CCT La Plata – CONICET. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata. Diagonal 113 y 64, CP (1900), La Plata, Argentina. Telephone: +54 221 425 74 30, ext. 149. Fax: +54 221 425 46 42.

E. E. $Mola^2$

CCT La Plata – CONICET. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata. Diagonal 113 y 64, CP (1900), La Plata, Argentina. Telephone: +54 221 425 74 30, ext. 149. Fax: +54 221 425 46 42.

Abstract

In the present work we experimentally determine the activation energies of CH_4 , SO_2 and O_2 reactions on $Cr_2O_3/\gamma - Al_2O_3$. To our knowledge there is no previous determination of these parameters, so fundamental information is provided to determine the velocity laws of these reactions and understand their kinetic behavior.

Keywords: Catalysis, methane oxidation, chromium oxide

Preprint submitted to Journal of LATEX Templates

August 1, 2016

¹Corresponding author

²In memory

1. Introduction

Metal oxide surfaces are of great interest in environmental science as catalysts to eliminate harmful molecules (such as SO_2 , NH_3 , CO and NO_x) from polluted air. Among these molecules, SO_2 is one of the substances emitted to the atmosphere from natural and human sources that can be converted into acid rain [1]. Most of the SO_2 that reaches the atmosphere ($\approx 3/4$) is produced by human activities, mainly, the combustion of fossil fuels. More than half of the world production comes from a few developed countries.

In previous papers, we investigated the adsorption and desorption of SO_2 on several polycrystalline transition metal oxides (*Co*, *Ni*, *Fe*, *V*, *Mn*, *Cr* and *Mo*) supported on alumina [2]. Among them, Cr_2O_3 is the oxide with the maximum capacity to adsorb SO_2 at high temperatures. DFT calculations shows that the adsorption of SO_2 implies the formation of sulfite-like species, while the desorption energy calculated by temperature-programmed desorption (TPD) experiments is 3.12eV [3].

In the present work, the following reactions are experimentally studied

$$CH_4 + 2SO_2 \xrightarrow{\kappa_1} 2S^0 + CO_2 + 2H_2O \tag{1}$$

$$2O_2 + CH_4 \xrightarrow{k_2} CO_2 + 2H_2O \tag{2}$$

$$SO_2 + CH_4 + O_2 \xrightarrow{k_3} S^0 + CO_2 + 2H_2O \tag{3}$$

In the industrial combustion of fossil fuels, the reduction of SO_2 occurs by reaction with CH_4 , while the latter is oxidized to CO_2 by O_2 . This conversion is very important for environmental sciences, and a metal oxide is used as catalyst to favoring the reactions.

 CH_4 adsorption on Cr_2O_3 was previously studied by IR spectroscopy in the presence of H_2 . Both molecules are adsorbed on Cr^{3+} sites, and electrostatic forces are mainly involved [4].

The adsorption and desorption of SO_2 on $\gamma - Al_2O_3$ and $Pt/\gamma - Al_2O_3$ were recently studied in [5] to further understand the oxidation of SO_2 on $Pt/\gamma - Al_2O_3$ catalysts [6].

The reduction of SO_2 with H_2 and C_2H_4 , as catalyzed by different transitionmetal oxides supported on γ -alumina, was also studied [7, 8]. On $NiO/\gamma - Al_2O_3$, nickel sulfide species were identified during the reaction process.

The catalytic oxidation of methane in the presence and absence of SO_2 was investigated on palladium catalysts supported on Al_2O_3 and CeO_2/Al_2O_3 washcoats [9, 10]. The activation energies in absence of SO_2 were $0.4\pm0.1eV$ and $0.6\pm0.15eV$ for the 3 wt.% Pd/Al_2O_3 and the 3 wt.% Pd/12 wt.% $CeO_2/\gamma - Al_2O_3$ catalyst respectively.

To our knowledge, there are no previous studies of the reduction of SO_2 with CH_4 and O_2 on $Cr_2O_3/\gamma - Al_2O_3$. In the present work we approach the study of this system by determining the activation energies of the reactions (1)-(3), under stoichiometric conditions, with and without $Cr_2O_3/\gamma - Al_2O_3$ as catalyst.

In the next section we present the experimental setup, results are presented in Section 3 and the discussion of our results and conclusions are in Section 4.

2. Experimental

The experimental setup is shown in Fig 1. The fixed bed reactor consists of a quartz column of 0.6 cm diameter and 110 cm length placed in an adjustable temperature oven [2]. The column is narrowed in the middle to support the catalyst between two layers of glass wool. Thus, the gases are warmed prior to the reaction.

Reaction gases were provided by LINDE: SO_2 composition > 99.98%, CH_4 composition > 93%, O_2 composition > 99.5%. They are introduced in the reactor at a constant flow rate and a concentration of 10 ppm in N_2 . At the reactor exit, SO_2 and CO_2 concentrations are measured. The SO_2 register is an electrochemical cell SafeLog 100, Quest Technologies, capable of detecting down to less than 10 ppm of SO_2 in the out-coming gas mixture. The CO_2

detector is TES 1370 with a precision of 1 ppm.

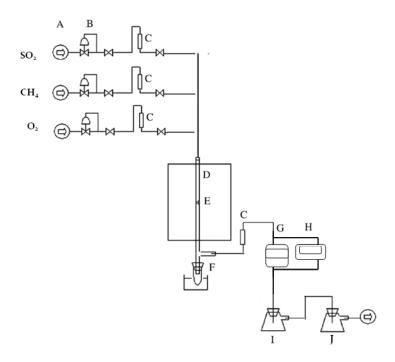


Figure 1: Experimental setup used in the present work. (A) Gas suppliers, (B) Safety valves, (C) Rotameters, (D) Electrically heated oven, (E) Reactor (column quartz) (F) Sulfur trap, (G) Sulfur dioxide concentration register SafeLog 100, (H) Carbon dioxide concentration register (I) Bubbler with distilled water, (J) Bubbler with a dilute sodium hydroxide solution.

 γ -Alumina (catalyst support) was first dried overnight at 105 °C and then burnt at 600 °C. Cr_2O_3 was prepared in a precipitation flask from an aqueous solution of chromium nitrate $Cr(NO_3)_3.9H_2O$, FLUKA trademark. The support, previously prepared, was then impregnated with the Cr_2O_3 in a rotameter. The amount of catalyst employed was the amount necessary to produce a 10% w/w mixture with the alumina. The rotameter used is a Buchi, Waterbath model B-480. Water is evaporated at 70 °C under a pressure of 0.3 bar. After evaporation every sample was dried overnight in a stove at 105 °C within a covered porcelain container. After that, every sample was burnt in a Carbolite furnace. The catalyst samples were characterized by X-ray diffraction, atomic adsorption spectroscopy, nitrogen BET specific surface determination and X-ray photoelectron spectroscopy. The crystalline structure is 85% rhombohedral at 973K, with a specific surface of 164 m²/gr at 873K.

3. Results

The reactions in Eqs. (1)-(3) were carried out under stoichiometric conditions. The reactor was first cleaned by passing a current of N_2 while heating it by steps until 500K. The presence of SO_2 and CO_2 was monitored at the reactor exit, and the reactor was considered clean when the concentration of these gases became zero at a given temperature. Experiments were performed by pumping the reaction gases into the reactor at constant flow rate and constant temperature. The CO_2 and SO_2 concentrations were monitored at the reactor exit until they reached constant values. Then, the temperature was increased and the procedure was repeated again. The production of CO_2 was finally plotted as a function of temperature. In our continuous flow reactor, the flow rate determines (at constant reactor length) the residence time in the reactor, i.e., the time during which the reagents are in contact and therefore the extent of reaction.

Figure 2 shows curves concerning reactions (1)-(3) with and without $Cr_2O_3/\gamma - Al_2O_3$ as catalyst. The reaction in Eq. (2) does not occur without catalyst. Each curve was obtained by averaging about 10 independent experiments (done with new catalyst samples) and the error bars indicate the standard deviations. The surface of the $Cr_2O_3/\gamma - Al_2O_3$ catalyst changes with the temperature and exposure time (variations in the nitrogen BET specific surface were detected by measuring the catalyst samples before and after controlled heating experiments). This effect was studied and considered in the present study, and the experimental conditions were adjusted to avoid significant catalyst aging during the experiments. Our test results revealed that two different experiments done with the same catalyst sample, in the present experimental conditions, give similar

 CO_2 production curves. As temperature increases, the CO_2 amount produced by reaction during the residence time grows until a constant value, which is reached when the reactive gases are completely consumed by the reaction, i.e., when the reaction rate prevails over the flow rate in the reactor.

As temperature increases the CO_2 amount produced by reaction during the residence time grows until a constant value which is reached when the reactive gases are completely consumed by reaction that is when the reaction rate dominates on the flow rate in the reactor.

As temperature increases, the CO_2 amount produced by reaction during the residence time grows until a constant value, which is reached when the reactive gases are completely consumed by the reaction, i.e., when the reaction rate prevails over the flow rate in the reactor.

To determine the activation energies (E_i) , we assumed an Arrhenius dependence on temperature for the reaction constants (k_i) .

$$log(k_i) = log(A_i) - \frac{E_i}{kT}$$
(4)

where $k = 8.6173324(78) \times 10^{-5} eV/K$ is the Boltzman constant, T the absolute temperature and A_i 's are the pre-exponential constant.

Figure 3 shows the Arrhenius plots obtained from Figure 2.

To determine the activation energies from linear plots, our reactor must be operating in a regime where the reaction proceeds slowly and the reagent amounts consumed inside the reactor are small. Then, the reaction rate only depends on temperature.

As the temperature increases, the reaction rate depends on the local concentration of the reagents inside the reactor, and concentration gradients may appear. Finally, CO_2 production will tend to a constant value as discussed above. In fact, this limits the temperature range in which E_i can be determined, which is specified in each case in Table 1.

Finally, we note that reactions (1) and (3) occur also in the gas phase without catalyst. To determine the activation energies with the catalyst, the CO_2 curve

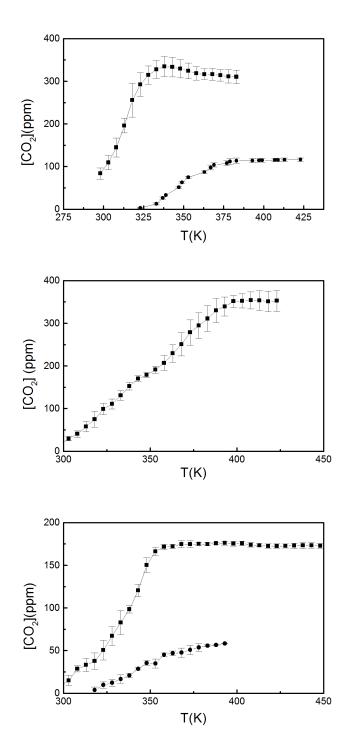


Figure 2: CO_2 production during the reactions of SO_2 , CH_4 and O_2 as a function of temperature without catalyst (circles) and with $Cr_2\overline{O}_3/\gamma - Al_2O_3$ (squares). (a) $SO_2 + CH_4$ (Eq. 1), (b) $CH_4 + O_2$ (Eq. 2), (c) $SO_2 + CH_4 + O_2$ (Eq. 3).

- 2 3 4 5 6 7 8 23

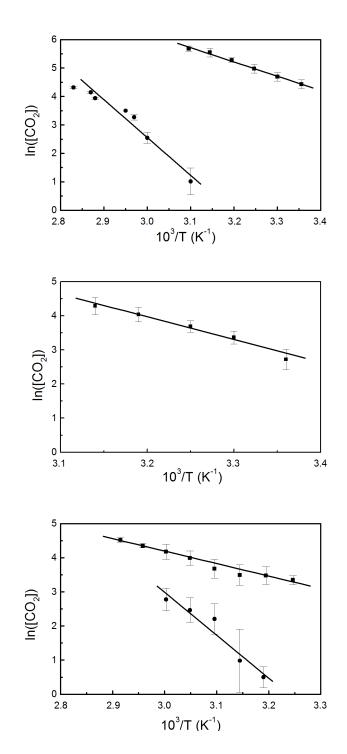


Figure 3: Arrhenius plots for the reactions of SO_2 , CH_4 and O_2 without catalyst (circles) and with $Cr_2O_3/\gamma - Al_2O_3$ (squares). (a) $S\Theta_2 + CH_4$ (Eq. 1), (b) $CH_4 + O_2$ (Eq. 2), (c) $SO_2 + CH_4 + O_2$ (Eq. 3).

- 2 3 4 5 6 7 8 9

Reaction	Catalyst mass (gr)	$E_i(eV)$	Temperature range (K)
$CH_4 + 2SO_2 \rightarrow 2S^0 + CO_2 + 2H_2O$	0	1.0 ± 0.1	313 - 333
$CH_4 + 2SO_2 \rightarrow 2S^0 + CO_2 + 2H_2O$	0.1	0.43 ± 0.02	298 - 319
$2O_2 + CH_4 \rightarrow CO_2 + 2H_2O$	0	No reaction	298 - 1273
$2O_2 + CH_4 \rightarrow CO_2 + 2H_2O$	0.1	0.57 ± 0.06	298 - 319
$SO_2 + CH_4 + O_2 \rightarrow S^0 + CO_2 + 2H_2O$	0	1.1 ± 0.1	323 - 354
$SO_2 + CH_4 + O_2 \rightarrow S^0 + CO_2 + 2H_2O$	0.1	0.31 ± 0.04	308 - 338

Table 1: Activation energies E_i with and without catalyst determined in the present work.

must be corrected by subtracting the amount of CO_2 produced without catalyst at each temperature.

4. Discussion and Conclusions

In this work the activation energies of the reactions (1) - (3) on $Cr_2O_3/\gamma - Al_2O_3$ were experimentally determined under stoichiometric conditions.

Preliminary results (not shown here for simplicity) indicate that E_i 's values in Table 1 are independent of the catalyst mass but dependent on the reactants flux relationship.

To determine the velocity laws of these reactions, experiments and simulations are being performed to simultaneously calculate the reaction orders and pre-exponential factors A_i . Results will be presented in further work.

To our knowledge, there are no previous studies on the reduction of SO_2 with CH_4 and O_2 on $Cr_2O_3/\gamma - Al_2O_3$. In Ref. [10] activation energies for the catalytic oxidation of methane in the presence and absence of SO_2 on palladium catalysts supported on $\gamma - Al_2O_3$ and $CeO_2/\gamma - Al_2O_3$ washcoats are reported. Values in the absence of SO_2 were 0.4 + / - 0.1eV and 0.6 + / - 0.15eV for the 3% wt and the 3% wt catalysts, respectively. They must be compared with the 0.57 + / -0.06eV value obtained in the present work. The presence of SO_2 seems to deactivate the palladium catalyst, while we observed that SO_2 favors methane oxidation on the chromium oxide catalyst, decreasing the activation

energy to 0.31 + / -0.04eV, the lowest value found so far. The molecular chemisorption of SO_2 on $Cr_2O_3/\gamma - Al_2O_3$ was studied in a previous paper within the DFT+U framework, showing the formation of sulphite-like species involving surface oxygen atoms [5]. The sulfur atom binds to an oxygen atom on the surface, while SO_2 oxygen atoms bind to chromium atoms. Preliminary DFT+U theoretical studies also indicated that the adsorption of SO_2 and CH_4 on $Cr_2O_3/\gamma - Al_2O_3$ is favored by co-adsorbed atomic oxygen [11]. Also CH_4 adsorption on $Cr_2O_3/\gamma - Al_2O_3$ is favored by co-adsorbed SO_2 , explaining the catalytic activity for reaction (1) (CH_4 does not adsorb on clean $Cr_2O_3/\gamma - Al_2O_3$).

We also performed FT-IR spectroscopy studies on the catalyst samples used in the present work [11]. We could identify CH_x (x=1, 2, 3) and OH species chemically adsorbed on the surface, as well as S - O and C = C bonds. These studies are being analyzed together with theoretical DFT+U calculations and will be presented in a future work.

We hope that the information presented in this work will inspire further research and applications of this system.

Acknowledgments

This work was supported by Consejo de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (AN-PCyT), Universidad Nacional de La Plata and the Faculty of Chemistry and Engineering Fray Roger Bacon

References

- X. Liu, B. Lin, and Y. Zhang. Sulfur dioxide emission reduction of power plants in china: current policies and implications. *Journal of Cleaner Production*, 113:133–143, 2016. 1
- [2] I. Coria, S. Medina, I.R. Ramos, and A.G. Ruiz. Estudio comparativo de la

retención del SO_2 en diferentes óxidos de metales de transición soportados sobre alúmina. *Energeia*, 1:49–67, 2003. 1, 2

- [3] V.A. Ranea, S.N. Hernández, S. Medina, I.M. Irurzun, I.D. Coria, and E.E. Mola. Formation of sulfite-like species on Cr₂O₃ after SO₂ chemisorption. Surface Science, 605:489–493, 2011.
- [4] D. Scarano, S. Bordiga, S. Bertarione, G. Ricchiardi, and A. Zecchina. The ir spectroscopy of methane and hydrogen adsorbed on α-chromia. *Catalysis Letters*, 68(3):185–190, 2000. 1
- [5] C.-L. Chen, C.-H. Wang, and H.-S. Weng. Supported transition-metal oxide catalysts for reduction of sulfur dioxide with hydrogen to elemental sulfur. *Chemosphere*, 56(5):425–431, 2004. 1, 4
- [6] C.-H. Wang, S.-S. Lin, P.-C. Sung, and H.-S. Weng. Catalytic reduction of SO_2 over supported transition-metal oxide catalysts with C_2H_4 as a reducing agent. Applied Catalysis B: Environmental, 40:331–345, 2003. 1
- [7] T. Hamzehlouyan, C. S. Sampara, J. Li, A. Kumar, and W. S. Epling. Kinetic study of adsorption and desorption of SO₂ over γ-Al₂O₃ and Pt/γ-Al₂O₃. Applied Catalysis B: Environmental, 181:587–598, 2016. 1
- [8] T. Hamzehlouyan, C. S. Sampara, A. Kumar J. Li, and W. S. Epling. Experimental and kinetic study of SO₂ oxidation on a Pt /γ-Al₂O₃ catalyst. *Applied Catalysis B: Environmental*, 152:108–116, 2014. 1
- [9] P. Stefanov, S. Todorova, A. Naydenov, B. Tzaneva, H. Kolev, G. Atanasova, D. Stoyanova, Y. Karakirova, and K. Aleksieva. On the development of active and stable Pd - Co / γ-Al₂O₃ catalyst for complete oxidation of methane. *Chemical Engineering Journal*, 266:329–338, 2015.
- [10] G.L. Rickett, V. Dupont, and M.V. Twigg. Methane oxidation over palladium-washcoated foils in the presence of sulphur dioxide. *Catalysis Today*, 155:51–58, 2010. 1, 4

[11] S. N. Hernández Guiance. Estudio teórico experimental de la adsorción y reducción catalítica de SO₂ sobre óxido de cromo soportado sobre alúmina en presencia de CH₄ y O₂ a altas temperaturas. PhD thesis, University of La Plata, apr 2016. 4

LaTeX Source Files Click here to download LaTeX Source Files: Hernandez-Latex source files.zip