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Abstract In this paper we analyze a recent application of perturbation theory by the
moment method to a family of two-dimensional anharmonic oscillators. By means
of straightforward unitary transformations we show that two of the models studied
by the authors are separable. Other is unbounded from below and therefore cannot
be successfully treated by perturbation theory unless a complex harmonic frequency
is introduced in the renormalization process. We calculate the lowest resonance by
means of complex-coordinate rotation and compare its real part with the eigenvalue
estimated by the authors. A pair of the remaining oscillators are equivalent as they can
be transformed into one another by unitary transformations.

Keywords Anharmonic oscillators · Group theory · Unitary transformations ·
Complex rotation method

1 Introduction

Witwit and Killingbeck [1] applied the perturbation theory by the moment method
developed by Fernández and Castro [2–4] to a family of two-dimensional anharmonic
oscillators with “mixed parity potentials”. By means of renormalization of the per-
turbation series they obtained reasonably accurate eigenvalues for a particular set
of potential parameters. The authors did not take into account the symmetry of the
perturbation which had proved to be extremely useful in the treatment of similar
quantum-mechanical models [5,6]. In fact, the application of point group symmetry
(PGS) has recently proved suitable for the analysis of a variety of non-Hermitian anhar-
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monic oscillators [7–11]. In a recent paper Fernández [12] showed that oversimplified
symmetry arguments are unable to overcome all the problems posed by degenerate
states and explained why some authors had to avoid perturbations of certain symmetry
in the application of the moments method.

An attempt to apply PGS to the anharmonic oscillators studied by Witwit and
Killingbeck revealed some interesting facts that we want to discuss in this paper. In
Sect. 2 we briefly summarize some aspects of unitary transformations and point groups
that will be useful in the subsequent sections. In Sect. 3 we apply those concepts to
the anharmonic oscillators studied by Witwit and Killingbeck. Finally, in Sect. 4 we
summarize the main results of this paper and draw conclusions.

2 Unitary transformations and point group

IfU is an invertible operator, then the Hamiltonian operators H and H̃ = UHU−1 are
isospectral. In this paper we are interested only in unitary transformationsU−1 = U †,
where U † is the adjoint of U .

The set of unitary transformations Ui , i = 1, 2, . . . , h that leave a given Hamil-
tonian operator H invariantUiHU

†
i = H form a groupwith respect to the composition

UiU j [13,14]. It follows from the invariance of H that [H,Ui ] = 0. Clearly, ifψ is an
eigenfunction of H with eigenvalue E then Uiψ is also eigenfunction with the same
eigenvalue as follows from HUiψ = Ui Hψ = EUiψ . The eigenfunctions of H are
bases for the irreducible representations (irreps) of the point group G of H and can
therefore be classified according to them [13,14].

If G = {Ui , i = 1, 2, . . . , h} is the point group for H and H̃ = UHU † then
G̃ = {Ũi = UUiU †, i = 1, 2, . . . , h} is the point group for H̃ . Both groups are
isomorphic as follows from Ũi Ũ j = UUiU jU †. In the following section we apply
these simple well known results to the anharmonic oscillators studied by Witwit and
Killingbeck.

3 The anharmonic oscillators

Witwit and Killingbeck [1] applied perturbation theory by the moment method (which
they baptized inner product method) to anharmonic oscillators of the form

H = p2x + p2y + x2 + y2 + λV (x, y)

V (x, y) = axx x
4 + 4bxyx

3y + 6cxyx
2y2 + 4byx xy

3 + ayy y
4, (1)

where λ is the perturbation parameter.
Present strategy is based on a change of variables given by the orthogonal matrices

Urot =
(
cos θ sin θ

− sin θ cos θ

)

Ure f =
(
cos θ sin θ

sin θ − cos θ

)
(2)
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that carry out a rotation and a reflexion, respectively. Then we look for an appropriate
value of θ that leads to a simplified form of the potential V (x, y). Note that any of
those transformations leaves H0 = H(λ = 0) invariant.

Those authors chose a few different sets of potential parameters that we analyze in
what follows:

Case 1 axx = bxy = cxy = byx = ayy = 1. It leads to

H = p2x + p2y + x2 + y2 + λ
(
x4 + 4x3y + 6x2y2 + 4xy3 + y4

)
. (3)

The unitary transformation

U : (x, y) →
(

x√
2

− y√
2
,− x√

2
− y√

2

)
, (4)

decouples the degrees of freedom and leads to

H̃ = p2x + p2y + x2 + y2 + 4λy4, (5)

facilitating the calculation enormously. For instance, a straightforward application of
the Riccati-Padé method (RPM) [15,16] for λ = 1 yields

EC1
0 = 2.903136945459000022293850722201023931817 (6)

that is accurate to the last digit and, therefore, considerably improves the estimate of
Witwit and Killingbeck [1] E00 = 2.9035.

Case 2 axx = cxy = ayy = 1, bxy = byx = 0. This problem

H = p2x + p2y + x2 + y2 + λ
(
x4 + 6x2y2 + y4

)
(7)

is also separable by means of the unitary transformation

U : (x, y) →
(

x√
2

+ y√
2
,

y√
2

− x√
2

)
, (8)

that leads to

H̃ = p2x + p2y + x2 + y2 + 2λ
(
x4 + y4

)
. (9)

The RPM for the ground state of this problems with λ = 106 yields

EC2
0 = 267.2002503791361424618416691534920465128, (10)

which is also accurate to the last digit and improves the result reported by those authors
E00 = 267.2002505.
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Case 3 axx = ayy = 0, cxy = bxy = byx = 1. The resulting anharmonic oscillator

H = p2x + p2y + x2 + y2 + λ
(
4x3y + 6x2y2 + 4xy3

)
(11)

is obviously unbounded from below and does not support bound states. For this reason
the results ofWitwit and Killingbeck [1] for this example were considerably less accu-
rate than for the other ones. They did not mention this fact and did not report results
for λ > 0.12, probably because the increasingly greater imaginary part of the res-
onances made the straightforward perturbation calculation unreliable. In principle,
one can obtain a convergent perturbation series if the harmonic frequency intro-
duced for renormalization is allowed to be complex instead of being restricted to real
values.

This problem exhibits symmetryC2v and the same change of variables shown above
in equation (8) leads to

H̃ = p2x + p2y + x2 + y2 + λ

(
7y4

2
− 3x2y2 − x4

2

)
, (12)

with obviously the same symmetry C2v . However, since this potential exhibits only
even powers of the variables the authors could have simplified the calculation by
resorting to the simple symmetry analysis already used in earlier papers [18,19]. For a
more rigorous discussion of the interplay between symmetry and perturbation theory
by the moment method for this kind of anharmonic oscillators see a recent paper by
Fernández [12].

We calculated the lowest resonance for the anharmonic oscillator (11) by means of
the complex rotation method [20–23] using finite basis sets of eigenfunctions of H0 of
increasing dimension up to 302×302 and a roughly optimal rotation angle θ = 0.06π .
Table 1 shows present results and those of Witwit and Killingbeck [1] for some values
of λ. Note that the error in the eigenvalue estimated by those authors is of the order of
|�E | that increases with λ as argued above. We have chosen the greatest values of λ

considered by those authors in order to illustrate this point more clearly.
Case 4: axx = ayy = cxy = 1, bxy = byx = −1. The inclusion of this case

in the discussion is surprising because the resulting Hamiltonian becomes the one
for Case 1 by means of the unitary transformations U : (x, y) → (−x, y) or U :
(x, y) → (x,−y). Note that the authors obtained exactly the same eigenvalues with
the same accuracy for both cases as expected. There is no point in discussing this case
here.

Table 1 Lowest resonance for
the anharmonic oscillator (11)

λ Ref.[1] �E �E
0.10 2.0733 2.07335064 −0.000459014

0.12 2.08 2.0746525 −0.0022857

0.13 2.0738983 −0.0041665

0.14 2.0724187 −0.0068909
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Case 5: cxy = 1, axx = ayy = bxy = byx = 0. The resulting Hamiltonian

H = p2x + p2y + x2 + y2 + 6λx2y2, (13)

does not exhibit “mixed parity” but symmetry C4v [5] and has been chosen as bench-
mark many times in the past (other references are given elsewhere [17]) even for an
earlier application of perturbation theory by the moment method [18,19].

4 Conclusions

The aim of the addendum by Witwit and Killingbeck [1] was the application of the
perturbation theory by themomentmethod to two-dimensional oscillators withmixed-
parity potentials; that is to say: with even and odd powers of the variables x and y.
However, present analysis shows that two of themodels studied by those authors (Case
1 and Case 2) are trivial in the sense that they are separable by unitary transformations.
What is more, the resulting Hamiltonians exhibit only even powers of the coordinates.
The Hamiltonian operator for Case 3 is unbounded from below and therefore cannot
be successfully treated by perturbation theory unless a complex harmonic frequency
is introduced in the renormalization process. Besides, this Hamiltonian can be trans-
formed into one with only even powers of the coordinates. The Hamiltonian for Case
4 is trivially isospectral to the one for Case 1 and, therefore, does not add anything
relevant to the discussion. Finally, the Hamiltonian for Case 5 does not exhibit mixed
parity and was treated before by the same authors [18,19] (see Fernández [12] for a
discussion based on PGS).

In closing we want to stress the fact that group theory is an extremely useful tool for
the analysis of the spectrum of anharmonic oscillators. It greatly simplifies the appli-
cation of approximate methods like perturbation theory and the variational method
[7,9–12] . In addition to it, in this paper we have clearly shown that an unitary trans-
formation of the Hamiltonian operator may in some cases lead to considerably simpler
problems.
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