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ABSTRACT: The equation obtained by mapping the matrix representation of the
Schrödinger equation with the 2nd-order correlation transition matrix elements into the
2-body space is the so called correlation contracted Schrödinger equation (CCSE) (Alcoba,
Phys Rev A 2002, 65, 032519). As shown by Alcoba (Phys Rev A 2002, 65, 032519) the
solution of the CCSE coincides with that of the Schrödinger equation. Here the attention is
focused in the vanishing hypervirial of the correlation operator (GHV), which can be
identified with the anti-Hermitian part of the CCSE. A comparative analysis of the GHV
and the anti-Hermitian part of the contracted Schrödinger equation (ACSE) indicates that
the former is a stronger stationarity condition than the latter. By applying a
Heisenberg-like unitary transformation to the G-particle-hole operator (Valdemoro et al.,
Phys Rev A 2000, 61, 032507), a good approximation of the expectation value of this
operator as well as of the GHV is obtained. The method is illustrated for the case of the
Beryllium isoelectronic series as well as for the Li2 and BeH2 molecules. The correlation
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energies obtained are within 98.80–100.09% of the full-configuration interaction ones. The
convergence of these calculations was faster when using the GHV than with the ACSE.
© 2009 Wiley Periodicals, Inc. Int J Quantum Chem 109: 3178–3190, 2009
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1. Introduction

T he seminal works of Husimi [1], Löwdin [2],
Mayer [3], Ayres [4], McWeeny [5], and Coul-

son [6], in the fifties and of Coleman [7] and Garrod
and Percus [8] in the early sixties, drew attention
on the advantages of using reduced density (RDM)
and G-particle-hole matrices in the study of the elec-
tronic structure of atoms and molecules. Many and
valuable contributions followed these early works
which have been reviewed and discussed in the
books of Davidson [9] and Coleman and Yukalov
[10] as well as in many proceedings and reviews
[11–14].

In late years the applicability of the methodol-
ogy based on the properties of the 2-RDM, and the
matrices related to it, has become noteworthy [10,
13, 14]. Thus, several novel approaches shed light
on the RDM’s theory which, at present, permits
an accurate ab-initio study of the electronic struc-
ture of fermion systems without having recourse to
the N-electron wave-function [13, 14]. One of these
2-RDM oriented approaches consists in mapping
the matrix representation of the Schrödinger equa-
tion from the N-electron space into the 2-electron
space. The resulting equation was reported in 1987
by Valdemoro [15], who called it second-order con-
tracted Schrödinger equation (2-CSE). This matrix
equation is equivalent to Nakatsuji’s [16] density
equation as well as to Cohen and Frishberg’s [17] hier-
archy equation which had been obtained in 1976 by
integration over the variables of N-2 electrons. An
important theorem by Nakatsuji [16], later on con-
firmed by Mazziotti [18], establishes that there is a
one to one correspondence between the solutions of
the 2-CSE and of the Schrödinger equation. To solve
the 2-CSE, which depends not only on the 2-RDM
but also upon the 3- and 4-RDMs, Valdemoro et al.
proposed to approximate these high order matrices
[19, 20] and solve iteratively the equation. It permit-
ted Colmenero and Valdemoro to report in 1994 [21]
the first iterative solution of the 2-CSE. This started
a successful line of work which was mainly devel-
oped by the groups lead by Nakatsuji, Valdemoro,
Mazziotti, Harriman, and Kutzelnigg [18, 22–42].

Recently, Mazziotti [43] proposed a variational
method for solving the 2nd-order density hyper-
virial [44], which this author identified with the anti-
Hermitian part of the contracted Schrödinger equa-
tion (ACSE). This method yields excellent results
[45–49] and, because the ACSE only depends on the
2- and 3-RDM, it is more effective than the 2-CSE
methodology.

The correlation contracted Schrödinger equation
(CCSE) [50] is an equation related to the 2-CSE
where the 2nd-order correlation operators, or equiv-
alently the G-particle-hole operators, play a role
similar to the 2-body density operators in the 2-CSE.
The matrix formed by the expectation values of the
correlation operators (2-CM or G-matrix) have out-
standing orbital and spin properties [51, 52] and
it has enough information to calculate the 1- and
2-RDMs and, hence, the electronic energy of the sys-
tem. Those properties suggested the convenience to
investigate whether it was possible to obtain directly
the correlation matrices, which determine the solu-
tion of the CCSE [50]. Our main objective here is to
study how best to solve the G-particle-hole hyper-
virial equation (GHV), to apply this method to the
calculation of several electronic systems and to carry
out a comparative analysis of the relative strength of
the necessary conditions implied respectively by the
ACSE and GHV equations.

The article is organized as follows. In the
next section, the notation, definitions, and neces-
sary background information are summarized. An
Appendix is also given to provide the intermediate
steps leading to the formulae that are reported here.
In Section 3, we give explicitly the forms of the CCSE
and the GHV as well as the description of the method
for solving the GHV. In Section 4, a relation linking
the ACSE and the GHV is reported and its conse-
quences are discussed. The results obtained in a set
of applications of the ACSE and GHV methods are
reported in Section 5. The calculations on the Beryl-
lium isoelectronic series as well as of the Li2 and BeH2

molecules show that, in these cases, the correlation
energies accounted for lie within 98.80% and 100.09%
of the full-configuration interaction one. It is also
found that the final two-body matrices describing
the correlation effects very nearly satisfy the N- and
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S-representability conditions [7, 52, 53]. In these cal-
culations, both the ACSE and GHV methods yielded
equivalent results as far as the energy and properties
of the matrices were concerned. However, the GHV
rate of convergence was considerably faster than the
ACSE one. A brief description of the conclusions of
this work is given in the last section.

2. Theoretical Background

Each one of the four interrelated 2-body matri-
ces: the 2-RDM, the hole 2-RDM (2-HRDM), the
2-correlation matrix (2-CM), and the particle-hole G-
matrix carry all the necessary information about an
electronic system [51]. This article describes why the
2-CM, as well as the higher order n-CMs, are impor-
tant and how to obtain an accurate approximation of
a matrix corresponding to the solution of the GHV.

2.1. DEFINITION AND BASIC PROPERTIES OF
THE CORRELATION MATRICES

To appreciate the relevance of the CMs let us start
by recalling [54] that:

2! 2Dpq;rs ≡ 1Dp;r
1Dq;s − δq,r

1Dp;s + 2Cpq;rs (1)

where

1Di;j = 〈
�

∣∣a†
i aj

∣∣�〉
(2)

and

2Dij;kl = 1
2!

〈
�

∣∣a†
i a†

j alak

∣∣�〉 = 1
2! 〈�|2�̂ij;kl|�〉 (3)

The operators a†
i and ak refer to the creator/annihilator

operators associated to a finite set of 2K orthonormal
spinorbitals and 2�̂ij;kl is a 2-body density operator.
Those equations define the elements of the 1-RDM
and and 2-RDM, respectively. The 2C-matrix is the
2-CM, first member of a family of matrices which
will be considered in what follows. From a statisti-
cal point of view, the first term of the r.h.s. of Eq. (1)
describes the product of two independent one-body
probabilities whereas the second and third terms
represent the exchange-correlation contributions to
the 2-RDM. This exchange part is rendered explicit
when the Krönecker delta is replaced in Eq. (1) by

δi,j = 1Di;j + 1D̄i;j (4)

where 1D̄ is the 1st-order hole-RDM. By so doing,
what remains is the 2nd-order cumulant of a moment

expansion of the 2-RDM, which accounts for the
statistically irreducible two-body correlation effects
[55–57].

2�pq;rs = − 1Dp;s
1D̄q;r + 2Cpq;rs (5)

The form of the 2C matrix is:

2Cpq;rs = 〈
�

∣∣a†
par Q̂ a†

qas

∣∣�〉
(6)

where

Q̂ =
∑
�′ �=�

|� ′〉〈� ′| (7)

is the orthogonal complement of the projection oper-
ator P̂ = |�〉〈�| on the space of the state being
studied.

The 2-CM describes the simultaneous virtual exci-
tations and de-excitations of two electrons. It can also
be interpreted as representing a connected particle-
hole pair. Although with a different ordering, the
same elements which form the 2-CM appear in the
G-matrix [58]. Thus,

2Cpq;rs ≡ 2Gpr;sq (8)

The G-matrix has attracted a great deal of attention
[59, 60] because it has important properties, i.e. it is a
positive semi-definite Hermitian matrix. Moreover,
its contractions

∑
p

2Gpr;pq = − 1Dq;r(N − 1) + Nδq,r − (1D2)q;r (9)

∑
p

2Gqp;rp = (2K − N + 1)1Dq;r − (1D2)q;r (10)

yield the corresponding 1-RDM.
Therefore, the 2nd-order correlation operator

2Ĉpq;rs ≡ a†
par Q̂ a†

qas ≡ 2Ĝpr;sq (11)

may be considered as a member of a family of Ĉ- or
Ĝ-operators [61].

On the other hand, the CM family is more general
than the G one, because it includes many matri-
ces whose elements cannot be cast in the form of
a positive semidefinite Hermitian G-matrix.
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Let us now consider the three types of 3-CM which
play a relevant role in this article:

(3;2,1)Cijm;pqr = 〈
�

∣∣a†
i a†

j aqap Q̂ a†
mar

∣∣�〉
(12)

(3;1,1,1)Cijm;pqr = 〈
�

∣∣a†
i ap Q̂ a†

j aq Q̂ a†
mar

∣∣�〉 ≡ (3,1,1,1)Gipj;rmq

(13)

(3;1,2)Cijm;pqr = 〈
�

∣∣a†
i ap Q̂ a†

j a†
maraq

∣∣�〉
(14)

As can be seen, only the (3;1,1,1)C elements have
the same value, although located differently in the
matrix, as in the Hermitian (3;1,1,1)G-matrix.

In what follows, whenever the G-matrix proper-
ties are needed, as in Section 3.2, we will resort to this
matrix but in general it is convenient to carry out the
theoretical developments in terms of the correlation
matrices whose row/column labels are the same as
the RDM ones from which they derive.

The form of the two different 4-CMs which will
be considered here are:

(4;3,1)Cijkl;pqrs = 〈
�

∣∣a†
i a†

j a†
karaqapQ̂a†

l as

∣∣�〉
(15)

(4;2,1,1)Cpqij;rsml = 〈
�

∣∣a†
pa†

qasarQ̂a†
i amQ̂a†

j al

∣∣�〉
(16)

and similar definitions for the multiple possibilities.

2.2. THE HAMILTONIAN OPERATOR

The form of the Hamiltonian operator used here
is

Ĥ = 1
2

∑
p,q,r,s

0Hpq;rsa†
pa†

qasar (17)

where

0Hpq;rs = δp,rεq;s + δq,sεp;r

N − 1
+ 〈pq|rs〉 (18)

The symbol ε represents the 1-electron integral
matrix whereas the 〈pq|rs〉 is the 2-electron repul-
sion integral in the Condon and Shortley notation
(〈p(1)q(2)|r(1)s(2)〉).

2.3. THE CORRELATION CONTRACTED
SCHRÖDINGER EQUATION

Before describing the CCSE it may be convenient
to consider first its precursor, the 2nd-order con-
tracted Schrödinger equation (2-CSE). This equation
was obtained in 1987 by Valdemoro [15] within the
second quantization formalism in the occupation

number representation. It is the result of apply-
ing a contraction mapping [62, 63] to the matrix
representation of the Schrödinger equation in the
form

∑
�,�,�

〈�|Ĥ|�〉〈�|�〉〈�|�〉〈�∣∣a†
i a†

j alam

∣∣�〉

= E
∑
�,�

〈�|�〉〈�|�〉〈�∣∣a†
i a†

j alam

∣∣�〉
(19)

where the states �, �, � denote the Slater determi-
nants spanning the N-electron space.

When obtaining the 2-CSE, the transition 2-RDMs,
〈�|a†

i a†
j alam|�〉, are the mathematical tools in the con-

traction of the Schrödinger matrix equation from the
N-electron space into the 2-electron reduced space.

When instead of the transition 2-RDMs we per-
form the same operation with the transition 2-CM
〈	|2Ĉ|	′〉 one has:

∑
�,�,�

〈�|Ĥ|�〉〈�|�〉〈�|�〉〈�| 2Ĉij;ml|�〉

= E
∑
�,�

〈�|�〉〈�|�〉〈�|2Ĉij;ml|�〉 (20)

This expression clearly shows that this contract-
ing mapping consists in taking the trace in the
N-electron space of the product of the matrix rep-
resentation of the Schrödinger equation with the
transition correlation elements 〈�| 2Ĉij;ml|�〉. Conse-
quently, this equation really is a contracted form
of the Schrödinger equation involving the 2-CM
which is why we name it “correlation contracted
Schrödinger equation” (CCSE). Its compact form is:

〈�|Ĥ 2Ĉij;ml|�〉 = E 2C ij;ml ≡ E 2Gim;lj = 〈�|Ĥ 2Ĝim;lj|�〉
(21)

This equation may be developed in two equiv-
alent ways. The more obvious way is to transform
the product Ĥa†

i am implicitly appearing in (21) into
its normal product form with respect to the bare
vacuum, which gives the equation [50]:

∑
p,q,r

0Hpq;ir
(3;2,1)Cpqj;mrl −

∑
p,q,r

0Hpq;ri
(3;2,1)Cpqj;mrl

+
∑
p,q,r,s

0Hpq;rs
(4;3,1)Cpqij;mrsl = E 2C ij;ml (22)
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Alternatively one may insert in (21) the unit
operator after the Hamiltonian operator, thus

E 2C ij;ml = 〈�|Ĥ(P̂ + Q̂) 2Ĉij;ml|�〉
= E 2C ij;ml +

∑
p,q,r,s

0Hpq;rs
(4;2,1,1)Cpqij;rsml (23)

That is,

∑
p,q,r,s

0Hpq;rs
(4;2,1,1)Cpqij;rsml = 0 ∀i, j, m, l (24)

To demand that Eq. (22) be satisfied is equivalent [50]
to demand the fulfilment of condition (24). These
results show a similar pattern to those involving
the 2-body density operator recently discussed [64].
The important question from the applicative point
of view is that both forms of the CCSE involve not
only the 3-CM but also the 4-CM.

3. Form and Solution of the
Hypervirial Equation of the
Expectation Value of the Correlation,
or G-Particle-Hole, Operator

For eigenstates of the Hamiltonian, there are
many relations based on the diagonal hypervirial
theorem, that must vanish. The simplest ones are
those constructed with density operators for a given
state � such as the 1st- and 2nd-order hypervirial
equations (1-HV and 2-HV respectively)

〈
�

∣∣[a†
i al, Ĥ

]∣∣�〉 = 0 〈�|[2�̂ij;kl, Ĥ]|�〉 = 0

But their vanishing does not necessarily imply for �

to be an eigenstate.
Analogously, the anti-Hermitian part of the CCSE

(21) is the vanishing hypervirial of the correlation
operator (GHV) whose form, for a given state �, is:

〈�|[2Ĉij;ml, Ĥ]|�〉 = 〈�|[2Ĝim;lj, Ĥ]|�〉 = 0 ∀i, j, l, m
(25)

The explicit form of this equation in terms of the
1-RDM and of the 3-CM is derived in the Appendix.

Here we report its final expression,

∑
p,q,r,s

0Hpq;rs
(3;2,1)Cpqj;rsl

1Di;m −
∑
p,q,r,s

0Hpq;rs
(3;2,1)Cpqm;rsi

1Dj;l

+ 2
∑
p,q,r

0Hpq;jr
(3;2,1)C lrm;pqi + 2

∑
p,q,r

0Hpl;qr
(3;2,1)Cqrm;jpi

+ 2
∑
p,q,r

0Hpq;ir
(3;2,1)Cpqj;mrl + 2

∑
p,q,r

0Hpm;qr
(3;2,1)C ipj;qrl = 0

(26)

This hypervirial equation does not depend on the
4-CM elements, which is why it is more convenient
to attempt to solve it than the CCSE.

3.1. APPROXIMATING THE HIGH-ORDER
CORRELATION MATRICES

Let us now consider the terms appearing in Eq.
(26). These terms depend on the 3-CM elements
which in principle we do not know. To solve this
problem an approximative evaluation of this matrix
is being developed but, until this task is accurately
achieved, one can replace the direct evaluation of
the 3-CM elements in terms of the antisymmetric
3rd-order cumulant, 3� [55–57] and lower order
matrices

(3;2,1)Cijk;pqr = 2 1Di;r
1Dj;q

1Dk;p − 1Di;r
1Dj;p

1Dk;q

− 1Di;q
1Dj;r

1Dk;p − 2 1Di;r
1Dj;qδk;p

+ 1Di;rδj;p
1Dk;q + 1Di;q

1Dj;rδk;p

− 1Di;rδj;q
1Dk;p + 1Di;r

1Dj;pδk;q

+ 1Di;rδj;qδk;p − 1Di;rδj;pδk;q

+ 1Di;p
2C jk;qr + 1Dj;q

2C ik;pr − 1Dk;q
2C ij;pr

− 1Dj;r
2C ik;pq − 1Di;q

2C jk;pr − 1Dj;p
2C ik;qr

+ 1Di;r
2C jk;pq + 1Dk;p

2C ij;qr

− δk;p
2C ij;qr + δk;q

2C ij;pr + 3�ijk;pqr (27)

Valdemoro et al. [27] solve this problem by propos-
ing an approximation to the cumulant matrix 3�

based on the role played by the frontier electrons,
the so called VTP functional. To define the fron-
tier orbitals in this context, these authors consider
the configuration which is expected to dominate
in the state under study. Then, the set of fron-
tier spin-orbitals is formed by the highest-occupied
spin-orbital (HOMO) and lowest empty spin-orbital
(LUMO) within each molecular-orbital symmetry.
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The approximations used for the elements of 3�

are:

3�iojeke ;peqero = 1
6

(2�iol;peqe
2�jeke ;lro

)
(l = HOMO)

(28)
and

3�ie joko ;poqore = −1
6

(2�ie l;poqo
2�joko ;lre

)
(l = LUMO)

(29)

where the o’s and e’s denote occupied and empty (or
unoccupied) spin-orbitals, and 2� is given in Eq. (5).
The remaining elements of 3� are set to zero.

The VTP reconstruction contains many contri-
butions from higher orders of perturbation theory
via the 1-RDM and 2-body correlation matrix and,
thus, may be described as highly renormalized [65].
The CCSE requires a 2nd-order correction of the
3-body correlation matrix functional to generate
2nd-order 2-body correlation matrices and energies,
but the GHV can produce 2nd-order 2-body corre-
lation matrices and 3rd-order energies from only a
1st-order reconstruction of the 3-body correlation
matrix.

3.2. SOLUTION OF THE GHV

At this stage, it is more convenient to refer to the
G-matrix rather than to the 2-CM because the sym-
metry and eigenvalues properties of the G-matrix
render more obvious the arguments proposed here.

Because of Eq. (21) one has

1
E

〈�|Ĥ 2Ĝim;lj|�〉 = 2
l Gim;lj (30)

and

1
E

〈�| 2Ĝim;ljĤ|�〉 = 2
r Gim;lj (31)

where the subscripts l/r indicate that the matrix is the
result of the Hamiltonian operating on the left/right
of 2Ĝ. Hence,

1
E

〈�|[Ĥ, 2Ĝim;lj]|�〉 = Aim;lj (32)

where A = 2
l G − 2

r G represents the error of the
G-matrix when its hypervirial does not vanish.

Let us now consider a Heisenberg-like unitary
transformation of the operator 2Ĝ, which can be rep-
resented by the exponential of an anti-Hermitian

operator Â. According to the well-known Campbell-
Baker-Hausdorff relation [66, 67], such transforma-
tion can be rewritten as

eÂ 2Ĝim;lje−Â = 2Ĝim;lj + [Â, 2Ĝim;lj]

+ 1
2! [Â, [Â, 2Ĝim;lj]] + 1

3! [Â, [Â, [Â, 2Ĝim;lj]]] + · · ·
(33)

The expectation value of both sides of Eq. (33) is
equivalent to a Taylor series for 2Ĝ with respect to
a common variable of Â and 2Ĝ [67].

Let us now identify Â with the operator whose
representation is the G-error

Â =
∑
i,m,l,j

Aim;lj
2Ĝim;lj ≡

∑
i,m,l,j

Âim;lj (34)

which is anti-Hermitian by construction.
In view of this definition, the product EÂ can be

considered to represent an effective or mean hyper-
virial operator which approximates the three-body
hypervirial operator—which includes an operato-
rial trace over one electron variable– by a connected
particle-hole pair operator. Although arising from
different arguments, this approximation is rather
similar to that proposed by Mazziotti [43] when
solving the ACSE and constitutes a very powerful
operative procedure which renders feasible the cal-
culation of the expectation value 〈�|[Â, 2Ĝim;lj]|�〉
in terms only of 3-body correlation matrices while
preserving the essence of the theory.

Because the A-matrix is the difference of two
approximate positive G-matrices, the expectation
value of the operator series (33) must be conver-
gent. In practice, it may be convenient, in order to
accelerate convergence, to replace the factor 1

E by an
infinitesimal one, ε, in units of an inverse of energy.

The sequence of operations in the procedure used
in the calculations which are reported in Section 5
consists in an iterative calculation which may be
summarized as follows:

2G(n)

im;lj = 2G
(n−1)

im;lj + 〈�|[Â(n−1), 2Ĝim;lj]|�〉 (35)

It is important to note that the primary aim is to
approximate the G-matrix and, as a consequence,
to satisfy the GHV, which is only approximately
achieved at convergence. The G-matrix obtained
after each iteration is then contracted in order to
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obtain the corresponding 1-RDM [52]. Then, by
applying Eq. (1) one has

E =
2K∑

i,j,m,l

0Hij,ml
[1Di;m

1Dj;l − δj,m
1Di;l + 2Gim;lj

]
(36)

or, when � is a state with null z-component of the
electronic spin, the spin-adapted formula for the
energy is [68]:

E =
K∑
i,l

{
2hc

i;l−hx
i,l

}1Di;l−
K∑

i,j,l,m

0Hij;ml

(
2 2Gil̄;mj̄ − 2Gim̄;lj̄

)

(37)

where the bar over the indices denotes that the spin-
orbital has a beta spin and where

hc
i;l =

∑
j

0Hij;lj hx
i;l =

∑
j

0Hij;jl

are one-body contractions of the 0H of the coulomb
and exchange types respectively.

4. Theoretical Comparative Analysis
of the ACSE and GHV Equations

It is now well established that it is more conve-
nient to attempt to solve the ACSE rather than the
2-CSE and that, similarly, it is far easier to solve
the GHV than the CCSE. Mazziotti [46] as well as
the authors of this article (Valdemoro, C.; Tel, L. M.;
Pérez-Romero, E.;Alcoba, D. R. Unpublished results)
have tried whether a set of accurate RDM/CM matri-
ces corresponding to multireference self-consistent
and configuration interaction functions satisfied the
ACSE/GHV conditions with negative results. A rea-
sonable conjecture has been, therefore, that these
equations are only satisfied by the matrices corre-
sponding to an eigenstate of the Hamiltonian [69].
Nevertheless, because this is just a conjecture, the
more demanding is the condition that we impose, the
more plausible is the conjecture. This is the question
which is analysed in this section.

When we recently analysed the possible suffi-
ciency of the ACSE condition [64] we found that

〈�|[2�̂ij;ml, Ĥ]|�〉
=

∑
p,q,r,s

0Hpq;rs(
(4;2,2)Gijml;rspq − (4;2,2)Gpqrs;mlij)

≡ (4;2,2)
r 
ij;ml − (4;2,2)

l 
ij;ml = 0 (38)

where the r/l subscripts indicate that the Hamilton-
ian operator acts on the right/left respectively of the
2-body density operator 2�̂.

Because Alcoba showed that the (4;2,2)
 terms van-
ish iff they correspond to a Hamiltonian eigenstate,
the fulfilment of any of them is equivalent to the
fulfilment of the 2-CSE. For the ACSE solution to cor-
respond to an eigenstate, the relation (4;2,2)

r 
 − (4;2,2)

l 


should only cancel when each of these two 
-terms
vanishes. Very recently, Davidson (Private Commu-
nication, July 2008) has proved that this is not the
case, as relation (38) presents solutions others than
those corresponding to eigenstates, thus rendering
the conjecture concerning the ACSE void.

When a similar analysis is applied to the CCSE
and the GHV, the situation, in spite of an apparent
similarity, is different. Thus one has

〈�|[2Ĝim;lj, Ĥ]|�〉 = 〈�|[2Ĉij;ml, Ĥ]|�〉
=

∑
p,q,r,s

0Hpq;rs
(
(4;1,1,2)C ijpq;mlrs − (4;2,1,1)Cpqij;rsml

)

≡ (4;1,1,2)
ij,ml − (4;2,1,1)
ij,ml = 0 (39)

which is the condition for the GHV to be satisfied.
The answer to the question of whether this con-

dition can be fulfilled when neither of the two 


matrices vanishes is still open. Nevertheless, when
comparing the formal structures of (39) and (38), it
follows that the GHV condition is stronger than the
ACSE one. Thus, while in the ACSE the r
 as well as
the l
 depend on the same Hermitian (4;2,2)G-matrix,
in the GHV case the two 
 terms depend on two dif-
ferent non-Hermitian correlation matrices with many
more degrees of freedom. It renders the probability
of both non-null 
 matrices being equal consider-
ably smaller than in the ACSE case. The following
theorems confirm this expectation.

Theorem. For quantum systems, with only pair-
wise interactions, the 1-, 2-, and 3-RDM derived from
the 2- and 3-CM satisfying the GHV, also satisfy
the 1st-order contracted Schrödinger equation (1-
CSE) [16, 17], which derive from contraction of the
Schrödinger equation onto the space of one particle.
In general, the converse is false.

Proof. By contracting the GHV onto the one par-
ticle space,

∑
p,q,r,s

0Hpq;rs
(3;2,1)Cpqj;rsl = 0 (40)
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TABLE I
The ground-state energies from the GHV with VTP 3-body (correlation matrix) reconstruction are compared with
the energies from the ACSE with VTP 3-body (density matrix) reconstruction as well as Hartree–Fock (HF) and
full configuration interaction (FCI) wave function methods, for isoelectronic series in double-ζ basis sets and
molecules in minimal basis sets.

Energy (hartree)

Wave function methods Contracted equation methods

System FCI HF ACSE GHV

Be −14.5871556 −14.5723689 −14.5871461 −14.5871552
B+ −24.2484047 −24.2338257 −24.2484062 −24.2484069
C+2 −36.4148907 −36.4007173 −36.4148954 −36.4148737
N+3 −51.0837830 −51.0698086 −51.0837898 −51.0837257
O+4 −68.2519572 −68.2381775 −68.2519629 −68.2519703
Li2 −14.8470867 −14.8323167 −14.8469091 −14.8470472
BeH2 −15.7640945 −15.7345453 −15.7638044 −15.7638136

which is a condition equivalent to the 1-CSE [50].
Hence, the set of solutions of the GHV is a subset of
those of the 1-CSE. Furthermore, as the set of solu-
tions of the 1-CSE is a subset of those of the 1-HV,
the set of GHV solutions is also a subset of those of
the 1-HV.

As a consequence, it follows that

Theorem. For quantum systems, with only pair-
wise interactions, the 2- and 3-CM which satisfy the
GHV also satisfy the ACSE. In general, the converse
is false.

Proof. To prove this statement let us rearrange the
second-quantized operators appearing in Eq. (38),
one has:

〈
�

∣∣[Ĥ, a†
i a†

j alam
]∣∣�〉

= 1Dj;l
〈
�

∣∣Ĥa†
i am

∣∣�〉 − 1Di;m
〈
�

∣∣a†
j alĤ

∣∣�〉

− δj;m
〈
�

∣∣[Ĥ, a†
i al

]∣∣�〉 + 〈�|[Ĥ, 2Ĉij;ml]|�〉 (41)

Hence, as the set of the GHV solutions is a subset of
those of the 1-HV, and of the solutions of the 1-CSE,
it follows that the RDMs derived from the 2- and 3-
CM satisfying the GHV also satisfy the ACSE which
is what had to be proven. In general, the converse is
false. Thus, a wavefunction of the type considered in
(Davidson, E. R. Private Communication, July 2008),
which is not a Hamiltonian eigenstate, yields 2- and
3-RDM (and the corresponding 2- and 3-CM) which
satisfy the ACSE, but not the GHV.

Consequently, the iterative algorithm solves the
GHV, the ACSE and the 1-CSE in an approximate
and simultaneous way.

5. Some Numerical Results

As a test of the possibilities that the GHV method
may provide for the study of the electronic structure
of atoms and molecules, a few numerical calcula-
tions have been performed. The iterative process
has been initiated at the Hartree–Fock (HF) level
and has continued until no further decrease in the
energy is attained or the root-mean-square devi-
ations between RDMs in successive iterations fall
below a preset accuracy limit.

The calculations have been performed on the
Beryllium isoelectronic atoms and on the Li2 and
BeH2 molecules. Bond lengths of Li2 and of linear
BeH2 molecules have been taken as of 5.50 a0 and
2.54 a0, respectively. A double-ζ [70] basis set has
been used in the atoms and ions calculations and for
the molecules we used a minimal basis set. Electron
integrals have been computed with the SMILES [71]
program.

In Table I, we report the singlet ground-state
energies obtained for these electronic systems with
the GHV and the ACSE methods. In these calcula-
tions the VTP functional reconstruction of the 3-body
correlation matrix was applied.

The results show that the GHV with VTP recon-
struction produces 99.05–100.09% of the correlation
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TABLE II
N -representability defect of the 2-RDM, 2-HRDM, 2

{0,0}G, and 2
{1,0}G given by the deviations from the

positive-/negative-semidefiniteness.

N -representability error (lowest/highest eigenvalue)

System Method Iteration ε 2-RDM 2-HRDM 2
{0,0}G

2
{1,0}G

Be ACSE 10,000 3.30 [–4] –2.29 [–6] –1.58 [–6] –1.24 [–6] 1.20 [–6]
GHV 2,500 3.30 [–4] –3.02 [–6] –6.52 [–7] –2.90 [–5] –1.54 [–6]

Li2 ACSE 1,100 2.50 [–2] 1.81 [–6] –8.03 [–5] –6.64 [–5] 1.96 [–5]
GHV 250 2.50 [–2] 2.04 [–4] –9.69 [–5] –4.72 [–5] 1.32 [–4]

BeH2 ACSE 2,000 2.50 [–3] –2.25 [–5] –1.95 [–6] –1.65 [–5] 7.93 [–6]
GHV 1,000 2.50 [–3] –2.28 [–5] –4.47 [–6] –9.46 [–4] 9.57 [–6]

energy which slightly improves upon the 98.80–
100.05% recovered by the ACSE with VTP recon-
struction.

As a test of accuracy a variety of related matri-
ces are reported. Most of the results quoted in
Tables II, III, and IV should vanish for an exact
full-configuration-interaction (FCI) calculation. The
deviations are, hence, a measure of the error or defect
upon convergence of the iterative processes. The
quoted values of the 2G-matrix are split into contri-
butions from different spin states [52] in its defining
Eqs. (6) and (8). The labels indicating the contri-
butions are given as left-lower indices in the form

2
{S′ ,M′}G. Because the states studied are singlets, the
only possible contributions to 2G arise from other
singlets, 2

{0,0}G, or from triplets, 2
{1,0}G.

The selected value of the ε parameter, mentioned
in Section 3.2, although not fully optimized, repre-
sents a compromise between lengthy calculations
and the guarantee of convergence.

The Tables II–IV just mentioned show that a
steady convergence for the ACSE, 1-CSE, 1-HV, and

GHV is observed in every case studied. On the other
hand, for a similar convergence, a much smaller
number of iterations is enough for the GHV case in
comparison with the ACSE.

We finish this account of the applicative results by
showing in Figures 1 and 2, the smooth convergence
of the process in the Beryllium atom and BeH2 mole-
cule, respectively. These figures display the resulting
energies as a function of the number of iterations. The
HF and FCI results are also included for reference.As
can be seen, for the Beryllium atom the GHV recov-
ers 99.99 % of the correlation energy by converging
to 0.4 microhartree above the FCI energy, whereas
for BeH2 the GHV recovers 99.05 % of the correla-
tion energy by converging to 0.3 millihartree above
the FCI energy.

6. Conclusions

In this article, we have studied the G-particle-hole
hypervirial equation. The GHV is the anti-Hermitian

TABLE III
Deviations from the FCI results of the 1-RDM, 2-RDM, 2

{0,0}G, and 2
{1,0}G at convergence of the iterative process.

Root-mean-square deviation (from FCI values)

System Method Iteration ε 1-RDM 2-RDM 2
{0,0}G

2
{1,0}G

Be HF — — 2.91 [–3] 5.01 [–3] 2.81 [–3] 2.79 [–3]
ACSE 10,000 3.30 [–4] 8.68 [–4] 8.16 [–4] 4.45 [–4] 4.36 [–4]
GHV 2,500 3.30 [–4] 7.07 [–4] 7.66 [–4] 4.26 [–4] 4.14 [–4]

Li2 HF — — 2.92 [–2] 2.89 [–2] 1.67 [–2] 1.37 [–2]
ACSE 1,100 2.50 [–2] 2.06 [–3] 1.61 [–3] 8.99 [–4] 6.59 [–4]
GHV 250 2.50 [–2] 2.72 [–3] 2.12 [–3] 1.19 [–3] 8.56 [–4]

BeH2 HF — — 4.57 [–3] 4.38 [–3] 2.58 [–3] 2.48 [–3]
ACSE 2,000 2.50 [–3] 4.12 [–4] 2.73 [–4] 1.58 [–4] 1.51 [–4]
GHV 1,000 2.50 [–3] 3.23 [–4] 2.57 [–4] 1.23 [–4] 1.12 [–4]
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TABLE IV
Deviations from the FCI results of the 1-HV, 1-CSE, ACSE, and GHV at convergence of the iterative process.

Root-mean-square deviation (from FCI values)

System Method Iteration ε 1-HV 1-CSE ACSE GHV

Be HF — — 6.33 [–9] 3.17 [–9] 1.33 [–2] 4.34 [–2]
ACSE 10,000 3.30 [–4] 2.22 [–4] 7.87 [–4] 1.47 [–3] 4.89 [–4]
GHV 2,500 3.30 [–4] 1.49 [–4] 7.77 [–4] 3.36 [–3] 7.95 [–4]

Li2 HF — — 3.29 [–8] 1.65 [–8] 3.76 [–3] 3.67 [–3]
ACSE 1,100 2.50 [–2] 4.16 [–5] 1.24 [–3] 7.84 [–4] 5.71 [–4]
GHV 250 2.50 [–2] 2.89 [–5] 1.22 [–3] 7.95 [–4] 5.98 [–4]

BeH2 HF — — 7.97 [–8] 3.01 [–8] 1.40 [–3] 4.47 [–3]
ACSE 2,000 2.50 [–3] 9.90 [–5] 6.11 [–5] 2.29 [–4] 8.58 [–5]
GHV 1,000 2.50 [–3] 2.79 [–5] 6.30 [–5] 5.10 [–4] 1.99 [–4]

part of the CCSE, that is, the relation connecting these
two equations is similar to that connecting the ACSE
with the 2-CSE. The GHV has very important prop-
erties which emphasize its practical utility: (i) it only
depends on the 3-order correlation matrices, 3-CM,
(ii) it yields second-order accuracy from only first-
order reconstruction of the 3-CM from the 2-CM,
and (iii) it guarantees that the 1-CSE, the 1-HV, and
the ACSE are satisfied. The iterative algorithm pro-
posed to solve the GHV appears to be more efficient
than that proposed in the ACSE solution. The GHV

algorithm yields correlation energies in the range
99.05–100.09% while leading in a direct way to a
quasi N- and S-representable 2-CM without making
any call to the N-electron wave-function. In sum-
mary, the direct calculation of the 2-CM through the
GHV method offers new possibilities for an accu-
rate calculation of many electrons systems. Our next
project is to work towards an optimization of the 3-
CM reconstruction algorithms as well as improving
the present GHV computational implementation in
order to accelerate convergence.

FIGURE 1. For Be the GHV energy converges to 0.4 µEh above the FCI energy.
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FIGURE 2. For BeH2 the GHV energy converges to 0.3 mEh above the FCI energy.
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Appendix: Main Steps in the
Derivation of the GHV Equation

The hypervirial relation

〈�|[2Ĉij;ml, Ĥ]|�〉 = 〈�| 2Ĉij;ml Ĥ|�〉 − 〈�|Ĥ 2Ĉij;ml|�〉
(A.1)

should vanish for eigenstates.

• Let us consider the first term of the r.h.s. of this
equation in terms of the fermion operators and
the operator Q̂,

∑
p,q,r,s

〈
�

∣∣a†
i am Q̂ a†

j al a†
pa†

qasar

∣∣�〉0Hrs;pq (A.2)

Move the pair a†
j al to the far right of the chain of

creators-annihilators by means of the fermion
anticommutation relations.

〈
�

∣∣a†
i am Q̂ a†

j al a†
pa†

qasar

∣∣�〉 0Hrs;pq

= 〈
�

∣∣a†
i am Q̂ a†

j a†
qasar

∣∣�〉 0Hrs;lq

− 〈
�

∣∣a†
i am Q̂ a†

j a†
pasar

∣∣�〉 0Hrs;pl

+ 〈
�

∣∣a†
i am Q̂ a†

pa†
qaral

∣∣�〉 0Hrj;pq

− 〈
�

∣∣a†
i am Q̂ a†

pa†
qasal

∣∣�〉 0Hjs;pq

+ 〈
�

∣∣a†
i am Q̂ a†

pa†
qasar Î a†

j al

∣∣�〉 0Hrs;pq (A.3)

Notice the identity operator Î inserted in the
last term to give way for the next step.

• Perform a similar transformation on the second
term in Eq. (A.1)

∑
p,q,r,s

0Hrs;pq
〈
�

∣∣a†
pa†

qasar a†
i am Q̂ a†

j al

∣∣�〉
(A.4)

moving the pair a†
i am to the left of Ĥ

0Hrs;pq
〈
�

∣∣a†
pa†

qasar a†
i am Q̂ a†

j al

∣∣�〉

= 0His;pq
〈
�

∣∣a†
pa†

qasam Q̂ a†
j al

∣∣�〉

− 0Hri;pq
〈
�

∣∣a†
pa†

qaramQ̂ a†
j al

∣∣�〉

+ 0Hrs;pm
〈
�

∣∣a†
i a†

pasar Q̂ a†
j al

∣∣�〉
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− 0Hrs;mq
〈
�

∣∣a†
i a†

qasar Q̂ a†
j al

∣∣�〉

+ 0Hrs;pq
〈
�

∣∣a†
i am Î a†

pa†
qasar Q̂ a†

j al

∣∣�〉
(A.5)

• Let us now develop the last terms on the r.h.s.
of both (A.3) and (A.5) replacing Î by P̂ + Q̂.
Thus,

〈
�

∣∣a†
i am Q̂ Ĥ Î a†

j al

∣∣�〉

= 〈
�

∣∣a†
i am Q̂ Ĥ

∣∣�〉〈
�

∣∣a†
j al

∣∣�〉

+ 〈
�

∣∣a†
i am Q̂ Ĥ Q̂ a†

j al

∣∣�〉
〈
�

∣∣a†
i am Î Ĥ Q̂ a†

j al

∣∣�〉

= 〈
�

∣∣a†
i am

∣∣�〉〈
�

∣∣Ĥ Q̂ a†
j al

∣∣�〉

+ 〈
�

∣∣a†
i am Q̂ Ĥ Q̂ a†

j al

∣∣�〉

The symmetry 0Hpq;rs = 0Hqp;sr of the Hamiltonian
matrix permits to collect all terms in Eq. (A.1) in the
form
∑
p,q,r,s

0Hrs;pq
(3;2,1)Cpqj;rsl

1Di;m −
∑
p,q,r,s

(3;1,2)C ipq;mrs
0Hrs;pq

1Dj;l

+ 2
∑
p,r,s

0Hrs;pm
(3;2,1)C ipj;rsl − 2

∑
p,q,r

(3;1,2)C ipq;mlr
0Hrj;pq

+2
∑
p,q,r

0Hir;pq
(3;2,1)Cpqj;mrl − 2

∑
q,r,s

(3;1,2)C ijq;mrs
0Hrs;lq =0

(A.6)

which, for the real case, reduces to the form given in
Eq. (26).
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