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ABSTRACT: We have recently (Valdemoro et al., Sixth International Congress of the
International Society for Theoretical Chemical Physics, 2008; Alcoba et al., Int J Quantum
Chem, in press) reported the form of the G-particle-hole hypervirial equation, which can
be identified with the anti-Hermitian part of the correlation contracted Schrödinger
equation (Alcoba, Phys Rev A, 2002, 65, 032519), as a tool to obtain the second-order
reduced density matrix of an N-electron system without previous knowledge of the
wave-function. The results which have been obtained when solving the G-particle-hole
hypervirial equation with an iterative method also described in (Valdemoro et al., Sixth
International Congress of the International Society for Theoretical Chemical Physics, 2008;
Alcoba et al., Int J Quantum Chem, in press) have been highly accurate. The convergence
of these test calculations has been very smooth, though rather slow. One of the factors
which determines the performance of the method is the accuracy with which the 3-order
correlation matrices (3-CM) involved in the calculations are approximated. It is, therefore,
necessary to optimize to the utmost the construction algorithms of these 3-order matrices
in terms of the 2-CM. In this article, the main theoretical features of the p-CM are
described. Also, some aspects of the correlation contracted Schrödinger equation and of
the G-particle-hole hypervirial equation are revisited. A new theorem, concerning the
sufficiency of the hypervirial of the 3-order correlation operator to guarantee a
correspondence between its solution and that of the Schrödinger equation, and some
preliminary results concerning the constructing algorithms of the 3-CM in terms of the
2-CM, are reported in the second part of this article. © 2009 Wiley Periodicals, Inc. Int J
Quantum Chem 109: 2622–2638, 2009
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1. Introduction

T he direct search for the second-order reduced
density matrix (2-RDM) corresponding to a

given state of a N-electron system, without a previ-
ous determination of the corresponding wave func-
tion, has motivated a great deal of work. This line of
research started more than 50 years ago with the sem-
inal papers of Husimi [1], Löwdin [2], Ayres [3], and
McWeeny [4]. In the sixties, several important results
among which are the two outstanding contributions
by Coleman [5] on the N-representability problem
and the Garrod and Percus study on the so-called
G-matrix [6] were published. The interested reader
may find a comprehensive bibliography in the books
by Davidson [7] and by Coleman and Yukalov [8] as
well as in several excellent reviews [9–11] and, par-
ticularly, in the collective volume recently edited by
Mazziotti [12] on the RDM theory.

In late years, important theoretical and applica-
tive reports have shown that obtaining accurate
results by looking directly for the 2-RDM is at present
possible. One of these developments is based on
the integro-differential equation, proposed in 1976
by Nakatsuji [13] and by Cohen and Frishberg [14].
A matrix equation, represented in the two-electron
space and equivalent to these authors’ integro-
differential equation was reported later on [15]. This
matrix equation was obtained by applying Valde-
moro’s matrix-contracting mapping [15–17] to the
matrix representation of the Schrödinger equation
(SE), to obtain its contracted form in the 2-electron
space. In view of its derivation procedure, this equa-
tion was called contracted Schrödinger equation
(2-CSE).

In 1976, Nakatsuji [13] reported an important
property of his density equation which was later on
confirmed in its matrix form by Mazziotti [18]. Thus,
these authors proved that the 2-RDM which solves
the 2-CSE equation coincides with that which would
be obtained by integrating the N-electron density
matrix over (N-2) electron variables. The drawback
of this equation is that, besides its dependence on the
2-RDM, it is also an averaged function of the 3- and
4-RDMs, which renders it operationally indetermi-
nate. A way out of this difficulty was to approximate
the high-order RDMs in terms of the lower ones.

Thus, Valdemoro’s method for approximating the
2-RDM in terms of the 1-RDM [19] was general-
ized [20] so as to obtain the algorithms for con-
structing the 3- and the 4-RDM elements appearing
in the 2-CSE. By proceeding in this way Colmen-
ero and Valdemoro solved iteratively the 2-CSE in
1994 [21]. In the following years, the constructing
algorithms, as well as the iterative solution proce-
dure, underwent important optimizations, mostly
through the work of the groups headed by Nakat-
suji and coworkers [22–24], Mazziotti [18, 25, 26] and
Valdemoro and coworkers [27–34].

Recently, two important theoretical and applica-
tive developments, closely connected to the 2-CSE,
have been reported. Thus, Mazziotti [35, 36] pro-
posed a method for solving the antihermitian part of
the 2-CSE, theACSE, which can be identified with the
diagonal hypervirial of the 2-order density operator.
An important feature of this method is that, con-
trary to the 2-CSE, it preserves the N-representability
structure of the 2-RDM throughout the iterative pro-
cess applied to solve the ACSE [34–37]. Another
advantage of this equation is that it only involves 2-
and 3-RDM elements because, when obtaining the
anti-Hemitian part of the 2-CSE, the 4-RDM con-
tribution cancels out. These two highly simplifying
facts render this method very attractive . The other
advance in this line of research is still more recent
and concerns the hypervirial of the 2-order corre-
lation operator or, equivalently, the G-particle-hole
hypervirial equation (GHV) [38]. This equation can
be identified with the antihermitian part of the 2-
order correlation contracted Schrödinger equation
(CCSE) [39]. The CCSE results from the application
of a correlation contracting mapping to the matrix
representation of the SE [38]. In 2002, Alcoba [39]
demonstrated that a similar theorem to Nakatsuji’s
one for the 2-CSE is satisfied by the CCSE solution.
Recently, a generalization of Mazziotti’s method for
solving the ACSE has been used for solving the GHV
with very good results [38, 40]. Moreover, it has been
shown that the hypervirial of the 2-order correlation
operator originates an equation which, while retain-
ing the main advantages of the ACSE, implies that
a set of more demanding conditions are satisfied by
its solution [38].

In the CCSE and GHV methodologies the corre-
lation matrices (CM) [28, 30, 32, 34, 37–39, 41–49] or,
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equivalently, the G-matrices play a central role sim-
ilar to that played by the RDMs in the 2-CSE and
ACSE theories.

To provide a clear outlook of the theory on which
these developments are based as well as on the newly
introduced concepts which are not yet familiar to
most Quantum Chemists, the first part of this work
is dedicated to describe the theoretical background
which will be needed later on. Thus, it is shown in
the following section how apparently abstract and
complicated results follow easily from the applica-
tion of the basic second quantization relations. The
RDM’s N-representability properties, the intercon-
nection of the RDMs and the corresponding CMs,
as well as the properties of these latter matrices, are
also described in Section 2. Some aspects of the CCSE
and of the GHV methodologies [38] are revisited in
Section 3. A new relevant theorem, concerning the
sufficiency of the 3-order GHV to guarantee a corre-
spondence between its solution and that of the SE, is
also reported in this section.

One of the critical questions which is a determin-
ing factor when optimizing the GHV method so as to
render it competitive with other ab-initio approaches
is the need for a set of sufficiently accurate algorithms
for constructing the 3-order correlation matrices (3-
CM) in terms of the 2-CM. Until now, and as a provi-
sional solution, the 3-CM elements were evaluated
indirectly [38] in terms of an approximated 3-order
cumulant [28, 31–34, 37]. At present, to improve both
the method accuracy as well as its performance rate,
we deem necessary—although we realize that it is a
complex and difficult task—to change the strategy
used previously for constructing the different GHV
terms and to attempt to evaluate directly the 3-CM
in terms of the 2-CM.

At present, we can only claim to have achieved
part of this task. Thus, we have started by limiting
our study to evaluate the elements of the 3-CM
spin-blocks with highest/lowest spin projection(
Ms = ± 3

2

)
. Moreover, although the results are very

encouraging, there are a few 3-CM elements where
the accuracy must still be improved. In Section 4,
we report those algorithms which we consider reli-
able and discuss the problems which are still under
study. A significant sample of these algorithms per-
formance is given here. The analysis of the results
accuracy is carried out by having as reference the set
of exact 3-CM elements obtained in a full configura-
tion interaction (FCI) calculation of the ground-state
of the BeH2 linear molecule. Finally, in the Appen-
dix, a summary of the graphs, which we find very

helpful and which we currently use in this line of
research, is given.

2. Theoretical Background

In this section, an extended self-contained account
of the main concepts which are at the base of the
CCSE and GHV methodologies is given.

In our notation, the symbol N denotes the num-
ber of electrons of the system under study, and K
is the finite number of real orthonormal orbitals of
the one-electron basis set. Although, later on, when
an explicit distinction of the spin-functions will be
needed, the notation will change; here we will use
the small latin letters to denote each of the different
2K spin-orbitals.

Let us now start by recalling the definitions of
the basic matrices which are at the center of our
theoretical developments. A p-order reduced den-
sity matrix (p-RDM) corresponding to an N-electron
state � [1–4], is defined, in the occupation number
representation of second quantization, as:

pDi1i2..ip ;j1j2..jp = 1
p!

〈
�

∣∣a†
i1

a†
i2

. . . . a†
ipajp . . . . . aj2 aj1

∣∣�〉

≡ 1
p! 〈�|p�̂i1i2..ip ;j1j2..jp |�〉 (1)

where p�̂ is the p-electron density operator.
The properties of the p-RDM are generi-

cally called N-representability properties. The N-
representability of a p-order matrix is an important
concept defined in 1963 by John Coleman [5]. The
properties (or conditions) that a p-order matrix must
satisfy in order to be able to state that there exists an
N-electron wave-function from which this p-matrix
may be derived, by integrating over the variables
of N − p electrons, are called N-representability
properties, or conditions, of a p-RDM. Thus, any p-
order matrix must be N-representable if it is to be
considered to be a p-RDM. We will now consider
the main N-representability properties of the lower-
order RDMs and inter-related matrices. More infor-
mation about the 2-RDM theory and its methodology
may be found in [7–12].

2.1. BASIC N -REPRESENTABILITY
PROPERTIES OF THE TWO LOWER
ORDER RDMs

In this paragraph a series of very well-known for-
mulae are given explicitly, not because we assume
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that the reader ignores them, but because we wish
to stress that these simple relations are at the base of
many subtle and not obvious developments which
are later reported.

From the properties of the fermion operators, as
well as from the definition of the bra and ket which
appear in (1), one deduces that a p-RDM must be a
Hermitian positive semi-definite matrix. Therefore,
at the base of a p-RDM N-representability properties
lies the fermion operators algebra. Two main types of
operations can be distinguished in the fermion oper-
ators algebra. The anticommutator of two fermion
operators and the sum relations describing that there
is a finite number of electrons N in the system consid-
ered and that when the one-electron basis set is finite
(as mentioned earlier), there is also a finite number
of holes with respect to the bare vacuum. There are
very good books [50–52], Quantum-Chemistry ori-
ented, where the second quantization language and
techniques are described in detail. However, to be
self-contained, we are recalling here the five basic
fermion relations which are repeatedly used in our
developments:

[
a†

i , aj
]
+ = δi,j (2)

where δi,j stands for the Krönecker delta,
[
a†

i , a†
j

]
+ = 0 = [ai, aj]+ , (3)

N̂ =
2K∑
i

a†
i ai, (4)

and

(2K − N̂) =
2K∑
i

aia†
i . (5)

These basic operations determine, directly or indi-
rectly, most of the RDM properties. The other basic
relation, which plays a relevant role in RDM and CM
theory is:

Î = |�〉〈�| + Q̂ (6)

where � is the N-electron state in which we are
interested, |�〉〈�| is the projector operator into this
state subspace, and Q̂ is the complementary projec-
tor operator corresponding to the states orthogonal
to �.

Let us now see which are the direct implications of
the relations just given when considering specifically
the 1-, 2-, and 3-RDMs.

2.1.1. 1-RDM and the First-Order
Fermion Relation

When taking the expectation value of Eq. (2) one
obtains:

1Di;j + 1D̄i;j = δi,j (7)

where 1D̄i;j = 〈�|aja†
i |�〉 is the (i; j) element of the

first-order hole-RDM (1-HRDM). Since the 1-RDM
as well as the 1-HRDM are positive semi-definite
matrices, relation (7) tells us that both the 1-RDM and
1-HRDM eigenvalues are constrained to lie between
0 and 1. This is a very important ensemble N-
representability condition reported by Coleman [5].
Also, when taking the expectation value of (4) and
of (5) one obtains the trace of the 1-RDM

N =
∑

i

〈
�

∣∣a†
i ai

∣∣�〉 ≡ tr(1D) (8)

and of the 1-HRDM

(2K − N) =
∑

i

〈
�

∣∣aia†
i

∣∣�〉 ≡ tr(1D̄) (9)

respectively.

2.1.2. The 2-RDM and the Second-Order
Fermion Relation

The so-called D N-representability condition [5,
6, 53, 54] states that the 2-RDM is a positive semi-
definite matrix.Another basic property of the 2-RDM
is that when permuting two indices, either of col-
umn or row labels, the sign of the element changes.
Obviously, this property follows from relation (3).
Let us now reorder the string of operators a†

i1
a†

i2
aj2aj1 ,

which defines the 2-order density operator 2�̂i1i2;j1j2 ,
into the ordering aj2aj1a†

i1
a†

i2
, which is the 2-order

hole-density operator 2 ˆ̄�i1i2;j1j2 , through a repeated
application of (2). The expectation value of this last
chain of operators is 2! times the value of an element
of the 2-HRDM.

When taking the expectation value of the rela-
tion resulting from the reordering just described,
one obtains the second-order fermion relation
which interrelates the 1-RDM, the 2-RDM, and the
2-HRDM,

2! 2D̄i1i2;j1j2 − 2! 2Di1i2;j1j2 = δi1,j1 ∧ δi2,j2

− δi1,j1 ∧ 1Di2,j2 (10)
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where the symbol ∧ denotes a Grassman, or anti-
symmetrized product [18, 55], of the terms linked
by it. The 2-HRDM is also a positive semi-definite
matrix: this is the so-called Q N-representability con-
dition [5, 6, 53, 54] which can be derived from (10)
when knowing the 2-RDM.

2.1.3. The 2-RDM and 2-HRDM Contractions

Let us consider now the 2-RDM and 2-HRDM
properties which follow respectively from relations
(4) and (5). Thus, because of relation (4) one first
obtains the 1-RDM

2!
∑

i

2Dmi;li =
∑

i

〈
�

∣∣a†
ma†

i aial

∣∣�〉 = 1Dm;l(N − 1)

(11)

and, contracting a second time, one obtains the
2-RDM trace

2!
∑
i,m

2Dmi;mi =
∑
i,m

〈
�

∣∣a†
ma†

i aiam

∣∣�〉=2!
(

N
2

)
≡ 2!tr(2D)

(12)

The 2-HRDM contraction into the 1- and 0-body
spaces is carried out by applying relation (5) and
following a similar reasoning as previously.

2.2. THE 2-RDM DECOMPOSITION AND
THE 2-CM DEFINITION

The orderings a†
i1

a†
i2

aj2aj1 and aj2aj1a†
i1

a†
i2

are not the
only possible orderings of a creator pair and an anni-
hilator pair of fermion operators. Thus, through the
use anew of relation (2) one may also obtain

2! 2Di1i2;j1j2 ≡ 〈
�

∣∣a†
i1

a†
i2

aj2aj1

∣∣�〉
= −δi2,j1

〈
�

∣∣a†
i1

aj2

∣∣�〉 + 〈
�

∣∣a†
i1

aj1a†
i2

aj2

∣∣�〉
. (13)

Inserting relation (6) into the second term of the
previous equation, one obtains:

2! 2Di1i2;j1j2 ≡ 1Di1;j1
1Di2;j2 − δi2,j1

1Di1;j2

+ 〈
�

∣∣a†
i1

aj1Q̂a†
i2

aj2

∣∣�〉
. (14)

The last term is an element of the 2-CM which may
be also denoted in the following equivalent ways:

〈
�

∣∣1�̂i1;j1Q̂ 1�̂i2;j2

∣∣�〉 ≡ 〈
�

∣∣ 2Ĉi1i2;j1j2

∣∣�〉 ≡ 2Ci1i2;j1j2 .
(15)

That is, Eq. (14) describes the decomposition of the
2-RDM into three types of matrices [28, 30, 32, 33,
41–45, 47–49]:

• The matrix Z(1)

Z(1)

i1i2;j1j2
= 1Di1;j1

1Di2;j2 (16)

describes two density charges whose interac-
tion will yield a Coulomb term.

• The matrix Z(2)

Z(2)

i1i2;j1j2
= −δi2,j1

1Di1;j2 (17)

describes the exchange and the particle-hole
polarization effect. The interpretation of this
term becomes clear when replacing δi2,j1 by
relation (7)

Z(2)

i1i2;j1j2
≡ −1Di2;j1

1Di1;j2 − 1D̄i2;j1
1Di1;j2 . (18)

The first term of this equation, where
the indices appear interchanged, describes the
exchange effects, and it vanishes when the
two spin-functions involved are different.
The second term describes the particle-hole
polarization effect. Although this term can be
considered to be a two-body correlation one, it
must be underlined that it is a product of two
one-body factors and because of (7) it is fully
determined by the 1-RDM. Therefore, it is not
a connected term. This polarization term also
vanishes when the two electrons have different
spin-functions.

• The matrix Z(3) is the third matrix in the 2-RDM
decomposition. It is the genuine two-body part
of the 2-RDM. Let us rewrite the Q̂ operator
appearing in the 2-CM definition in terms of
the states which are orthonormal to �,

2Ci1i2;j1j2 =
∑
�′ �=�

〈
�

∣∣a†
i1

aj1

∣∣� ′〉〈� ′∣∣a†
i2

aj2

∣∣�〉
. (19)

This matrix may be interpreted as describing
the virtual excitation transitions of two elec-
trons when avoiding each other. It is a corre-
lation matrix which depends on the complete
spectrum of the system (or, equivalently, car-
ries information about it). Note, that the 2-CM
is not determined by the 1-RDM of the state
considered � and, hence, it is what constitutes
the kernel of the two-body problem.
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It is interesting to realize that the elemen-
tary building-blocks of the 2-CM are the 1-order
transition reduced density matrices (1-TRDM)
corresponding to the one body excitations
between the state � under study and the rest
of the spectrum states.

To broaden further our insight about the
2-CM it is useful to rewrite relation (19) as
follows:

2Ci1i2;j1j2 ≡
∑
�′ �=�

〈
� ′∣∣a†

i2
aj2

∣∣�〉〈
�

∣∣a†
i1

aj1

∣∣� ′〉

≡
∑
�′ �=�

〈� ′|T̂ |� ′〉 (20)

where T̂ = a†
i2

aj2 |�〉〈�|a†
i1

aj1 . That is, the infor-
mation about the action of the particle-hole
excitations on the state considered is averaged
over the whole spectrum.

The last paragraph of this introductory section
will be entirely dedicated to developing the lower-
order CMs theory, since they are at the center of the
CCSE and the GHV methodologies.

2.3. THE CORRELATION AND THE
G-PARTICLE-HOLE MATRICES

2.3.1. The G-Particle-Hole Matrix

The G-particle-hole matrix is directly related with
the 2-CM. This matrix is formed by the same num-
bers as the 2-CM although located at different (row,
column) positions. Thus,

2Ci1i2;j1j2 =
∑
�′ �=�

〈
�

∣∣a†
i1

aj1

∣∣� ′〉〈� ′∣∣a†
i2

aj2

∣∣�〉 ≡ 2Gi1j1;j2i2

(21)

Note, that while the 2-CM elements have the same
labels as those of the 2-RDM from which they derive,
this is not the case for the G-matrix. Thus, while a 2-
RDM row/column label refers to a pair of particles,
in the G-matrix case, its row/column label refers to
a particle-hole pair, which is why it is denoted G-
particle-hole matrix.

The properties of the G-matrix, which was first
defined and studied by Garrod and Percus [6], are
extremely important. It is a symmetric, positive
semi-definite matrix and, when contracting it, one
obtains the following relations [47, 56, 57]:

∑
i

2Gij;il =
∑
�′ �=�

〈
�

∣∣a†
i aj

∣∣� ′〉〈� ′∣∣a†
l ai

∣∣�〉

= N(δl,j − 1Dl;j) + (1D − 1D2)l;j (22)

and

∑
i

2Gji;li = (2K − N) 1Dj;l + (1D − 1D2)j;l. (23)

These G-particle-hole matrix properties play a rele-
vant role in the 2-RDM theory. In fact, the positive
semi-definiteness of this matrix is one of the most
important N-representability conditions, which is
the so-called G N-representability condition [9]. It
must be noted that, from relations (22) and (23), one
can obtain the 1-RDM and, therefore, the 2-RDM
and the 2-HRDM. It then follows that the 2-RDM N-
representability problem may be equivalently stud-
ied by focusing on the N-representability conditions
for the G-matrix [47–49].

Another feature of interest is the set of the follow-
ing equalities:

∑
�′ �=�

〈
�

∣∣a†
i1

aj1

∣∣� ′〉〈� ′∣∣a†
i2

aj2

∣∣�〉

= −
∑
�′ �=�

〈
�

∣∣aj1a†
i1

∣∣� ′〉〈� ′∣∣a†
i2

aj2

∣∣�〉

= −
∑
�′ �=�

〈
�

∣∣a†
i1

aj1

∣∣� ′〉〈� ′∣∣aj2a†
i2

∣∣�〉

=
∑
�′ �=�

〈
�

∣∣aj1a†
i1

∣∣� ′〉〈� ′∣∣aj2a†
i2

∣∣�〉

These equalities result from applying the anticom-
mutation relation of the fermion operators and from
the orthonormality of the � and � ′ states.

This last set of relations completes the family of
second-order matrices which can be constructed by
taking the expectation value of two creator and two
annihilators in all the possible ordering of these oper-
ators when they appear in combination with the Q̂
operator. Concerning this point, it should be men-
tioned that other authors [58] prefer to consider
just the different possible orderings of the fermion
operators by themselves. All the relations interlink-
ing the elements of these matrices are necessary
N-representability conditions.

2.3.2. The Higher-Order Correlation
Matrices

Relations similar to Eq. (14) would yield an entire
family of p-CM. While in the two-electron space
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one may define only one 2-CM and one G-particle-
hole matrix, when considering the 3- and 4-electron
spaces, the situation is more complex.

The set of 3-CM which may be derived when
decomposing the 3-RDM are:

(3;2,1)Cijl;pqr = 〈
�

∣∣2�̂ij;pqQ̂ 1�̂l;r

∣∣�〉
(24)

(3;1,2)Cijl;pqr = 〈
�

∣∣ 1�̂i;pQ̂ 2�̂jl;qr

∣∣�〉
(25)

(3;1,1,1)Cijl;pqr = 〈
�

∣∣ 1�̂i;pQ̂ 1�̂j;qQ̂ 1�̂l;r

∣∣�〉 ≡ (3;1,1,1)Gipj;rlq

(26)

All these matrices are 3-CM, since they may be
obtained by decomposing the 3-RDM, but only the
(3;1,1,1)C has a symmetric positive semi-definite coun-
terpart, the (3;1,1,1)G. In the Appendix, the decompo-
sition of the 3-RDM which generates the (3;2,1)C is
reported as well as the decomposition of the (3;2,1)C
which gives rise to the (3;1,1,1)C. It is therefore clear that
the 3-RDM, when its decomposition is completed,
is a functional of the 1-RDM, the Krönecker deltas,
the 2-CM, and the (3;1,1,1)C. It should be noted that
here the anticommutation of the creator and annihi-
lator operators gives rise to different matrices. For
instance, anticommuting the operators appearing in
the (3;1,1,1)G, one has:

(3;1,1,1)Gipj;rlq = 〈�| 1�̂i;pQ̂ 1�̂j;qQ̂ 1�̂l;r|�〉
= δj,q

〈
�

∣∣ 1�̂i;pQ̂ 1�̂l;r

∣∣�〉
− 〈

�
∣∣ 1 ˆ̄�i;pQ̂ 1 ˆ̄�j;qQ̂ 1 ˆ̄�l;r

∣∣�〉
≡ δj,q

2Gip;rl − (3;1̄,1̄,1̄)Gpiq;lrj

where the bar appearing above the different symbols
indicate that the operators have a hole form, i.e., the
annihilators are placed on the left of the creators.
Hence, the family of the 3-CM is enlarged when the
HRDMs are allowed to enter into their definition.

In the 4-CM case one has seven different but
inter-related matrices corresponding to the possible
respective orderings of the fermion and Q̂ opera-
tors. These matrices, whose density operators are of
particle nature (�̂) are: (4;3,1)C, (4;2,2)C, (4;1,3)C, (4;1,2,1)C,
(4;1,1,2)C, (4;2,1,1)C, and (4;1,1,1,1)C. The hole-CM (HCM)
as well as the two mixed matrices related to (4;2,2)C
which involve a 2�̂ and a 2 ˆ̄� operator, although inter-
esting in themselves, do not play a specific role in
what is our object here.

The general CM properties which have been just
described can be easily generalized in the 4-CM case.
The scope of this article does not call for a more

detailed description of these matrices. Nevertheless,
it must be pointed out that the (4;2,2)C, (4;1,1,2)C, and
(4;2,1,1)C play an important role in this theory since it
has been proven [39] that

〈�|ĤQ̂ pR̂|�〉 = 0 (27)

implies that the � is an eigenstate of the system. In
the above relation Ĥ is the Hamiltonian and pR̂ is an
operator of an order p equal or larger than 2.

Using the same fermion algebra tools previously
considered, the following p-CM general properties
may be derived:

1. A p-CM is neither Hermitian nor a positive
semi-definite matrix.

2. A p-CM is not necessarily antisymmetric with
respect to the permutation of two-indices of its
row/column labels.

3. The trace of a p-CM is null.

An important property which directly follows from
property 3 and which is satisfied by all p-CMs is that
no p-CM contributes to the trace of the p-RDM from
which it derives.

2.4. NOTATION OF THE HAMILTONIAN
OPERATOR AND EXPRESSION OF A SYSTEM
ENERGY

In the form of the many-body Hamiltonian oper-
ator which we currently use, the one-electron terms
are included into a unique 2-electron term [15–17,
55]. Thus,

Ĥ = 1
2

∑
i,j,r,s

0Hij;rs a†
i a†

j asar ≡ 1
2

tr(0H 2�̂) (28)

where

0Hij;rs = δi,r εj;s + δj,s εi;r

N − 1
+ 〈ij|rs〉. (29)

The symbol ε stands for the 1-electron integral
matrix and the 〈ij|rs〉 is the 2-electron repulsion inte-
gral in the Condon and Shortley notation which is
equivalent to (ir;js) in Mulliken’s notation.

Because of relation (28) the energy of the � state
is

E = 〈�|Ĥ|�〉 = tr(0H 2D). (30)

Since, as has been shown previously, the 2-CM or,
equivalently, the G-particle-hole are inter-related to
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the 2-RDM, when knowing the 2-CM one also knows
the electronic energy of the state considered.

It is interesting to note that an absolute and com-
pletely general measure of the correlation energy,
which does not have as reference the Hartree–Fock
energy, is given by

E corr = 1
2

tr(0H 2C). (31)

In fact, the decomposition of the 2-RDM given
in (14) generates a partition of the energy in four
terms which have a direct physical interpretation. In
this connection, it must be mentioned that there is
another related energy partition which is based on
the moment expansion of the 2-RDM [59–62] and
where the cumulant of this expansion may be inter-
preted as a statistical description of the correlation
effects. The 2-order cumulant gathers the particle-
hole polarization and the 2-CM terms [28]. We think
that either of these partitions can be supported and,
according to the type of problem in which one is
interested, one may be more advantageous than the
other.

3. The CCSE and the GHV Equations

The derivation of the CCSE and the GHV, as well
as the method developed for solving the GHV, have
been already described in detail [38, 39]. Therefore,
only the main lines of this part of the theory will be
described in this section.

3.1. THE CCSE EQUATION

Let us consider the set of the transition 2-CM
matrices between two orthonormal states spanning
the N-electron space, for instance the complete set of
Slater determinants �, �, . . ..

2C(��)

pl;qm = 〈
�|a†

paqQ̂a†
l am

∣∣�〉 ≡ 〈�| 2Ĉpl;qm|�〉 (32)

where Q̂ is, as in the previous section, the projector
on the complementary space to the � state under
study. Let us now consider the matrix representation
of the SE in this same space:

∑
�

H��〈�|�〉〈�|�〉 = E〈�|�〉〈�|�〉 (33)

where H�� is the (�; �) matrix element of the Hamil-
tonian operator representation in the N-electron

space (H is identical to the FCI matrix), and E is the
energy of state �. Let us now contract this matrix
equation into the 2-body space by multiplying both
sides of the equation by 2C(��)

pq;ml and taking the trace
over the N-electron states:

∑
�,�,�

H
�;�〈�|�〉〈�|�〉〈�| 2Ĉpq;ml|�〉

= E
∑
�,�

〈�|�〉〈�|�〉〈�| 2Ĉpq;ml|�〉.

After performing the sums indicated above, one
obtains the compact form of the CCSE:

〈�|Ĥ 2Ĉpq;ml|�〉 = E〈�| 2Ĉpq;ml|�〉 ∀p, q, m, l. (34)

Note that the matrix representation of the SE may
be contracted into any p-body space, by applying
a similar contraction mapping, which yields the
p-order CCSE.

In 2002, Alcoba showed [39] that there is a one-
to-one correspondence between the CCSE solution
and that of the SE. This theorem is similar to Nakat-
suji’s theorem for the 2-CSE [13]. Both Nakatsuji
and Alcoba underlined that the unknown matrices
appearing in the 2-CSE and CCSE had to be respec-
tively RDMs and CMs. That is, when attempting to
solve these equations, one had to make sure that
these matrices were N-representable.

After replacing Ĥ and 2Ĉ by their expressions
in terms of the fermion operators, one obtains two
alternative and equivalent forms of this equation
[39]:

• The first of these CCSE forms —whose approx-
imate iterative solution method has been
reported [63]— is obtained by rearranging the
string of operators appearing on the left of Q̂
into a normal product form:

E 2Cpq;ml = 1
2

0Hij;pr
(3;2,1)Cijq;mrl − 1

2
0Hij;rp

(3;2,1)Cijq;mrl

+ 1
2

0Hij;rs
(4;3,1)Cijpq;mrsl ≡ E 2Gpm;lq

(35)

where Einstein convention for summation over
repeated indices has been, and will be, used
in the rest of this article unless otherwise
stated.
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• The second alternative form of the CCSE is
obtained by recalling relation (6), thus

E 2Cpq;ml = 〈�|Ĥ1̂ 2Ĉpq;ml|�〉
= E 2Cpq;ml + 〈�|ĤQ̂ 2Ĉpq;ml|�〉

= E 2Cpq;ml + 1
2

0Hij;rs
(4;2,1,1)Cijpq;rsml.

(36)

In 2002, Alcoba also showed [39] that the CCSE is
satisfied iff 〈�|ĤQ̂ 2Ĉpq;ml|�〉 = 0. Because ofAlcoba’s
theorems, solving the CCSE constitutes a relevant
challenge. As shown in these relations, the CCSE
depends on 2-, 3-, and 4-CMs. The method, devised
to solve iteratively the CCSE, starts by choosing a
2-CM corresponding to an N-electron state which
we suppose to have an energy close to that of the
exact Hamiltonian eigenstate in which we are inter-
ested, for instance, a Hartree-Fock one. Then the
3- and 4-CMs are approximated in terms of the 2-
CM. Replacing then these 3- and 4-CMs into (35)
one may obtain a new 2-CM. To obtain an accu-
rate and smooth convergence, a purification of the
new approximate 2-CM must be carried out after
each iteration. This is necessary because the 2-CM N-
representability is not preserved during the iterative
process.

3.2. THE GHV EQUATION

Let us consider the diagonal G-particle-hole
hypervirial equation, GHV, which can be identified
with the anti-Hermitian part of the CCSE [38]:

〈�|[2Ĉpq;ml, Ĥ]|�〉 = 0 ∀p, q, m, l. (37)

This equation is satisfied by all CMs which corre-
spond to a Hamiltonian eigenstate. Although it is not
settled whether there are CMs which solve the GHV
and yet they do not correspond to a Hamiltonian
eigenstate, this equation offers many possibilities.
Concerning this question, a related theorem is briefly
stated below.

When developing the GHV equation, in the spin-
orbital representation, and in the real field, the
compact Eq. (37) becomes [38]:

0Hrs;ij
(3;2,1)Cijq;rsl

1Dp;m − 0Hij;rs
(3;2,1)Crsm;ijp

1Dl;q

+ 2 0Hrs;im
(3;2,1)Cpiq;rsl + 2 0Hij;qr

(3;2,1)Clrm;ijp

+ 2 0Hpr;ij
(3;2,1)Cijq;mrl + 2 0Hjl;rs

(3;2,1)Crsm;qjp = 0 (38)

where, as mentioned above, the Einstein conven-
tion for the sums over repeated indices is used. This
relation does not depend any longer on the 4-CM,
which is a great advantage over the CCSE both from
a computational and a theoretical point of view.

3.2.1. The anti-Hermitian Part of the
3-order CCSE

A very recent theoretical result concerns the anti-
Hermitian part of the p-order CCSE (p > 2). For
simplicity’s sake, let us consider the case p = 3. In
this case, the anti-Hermitian part of the 3-order CCSE
may be identified with the 3-order GHV. Its compact
form is given by:

〈�|[(3;1,1,1)Ĉpqr;mln, Ĥ]|�〉 = 0 ∀p, q, r, m, l, n

= 〈�| (3;1,1,1)Ĉpqr;mlnQ̂Ĥ|�〉 − 〈�|ĤQ̂ (3;1,1,1)Ĉpqr;mln|�〉
(39)

It can be proved that satisfying this equation, or
any other p-order GHV (p > 2), is a necessary and
sufficient condition to guarantee a correspondence
between its solution and that of the SE, as: (i) a
p-order GHV is fulfilled by all CMs which corre-
spond to a Hamiltonian eigenstate, and (ii) contrac-
tion of a p-order GHV into the 2-body space yields
the CCSE/2-CSE, whose fulfillment implies that of
the SE [13, 39]. This important property is counter-
balanced by the fact that it depends on the 4-CM. On
the other hand, it is far more convenient to solve
this 3-order GHV equation than the CCSE/2-CSE
since, as will be seen below, the iterative procedure
for solving this hypervirial equation preserves the
N-representability of the resulting solutions, which
is not the case in the CCSE/2-CSE methods where
an N-representability purification procedure must
be combined with the iterative process [21, 27, 31,
33, 43, 48, 63–65].

As mentioned earlier, although a similar theorem
has not yet been demonstrated for the (2-order) GHV
equation, the results it yielded have proved to be
highly accurate, which is why in what follows we
will focus on this second-order equation.

3.2.2. A Sketch of the Iterative Method for
Solving the GHV

As in the CCSE case, the main idea of the method
for solving the GHV is to proceed iteratively by
starting with an N-representable 2-CM correspond-
ing to a state which we suppose to be sufficiently
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close to the Hamiltonian eigenstate in which we
are interested. In terms of this 2-CM the 3-CM is
approximated, which permits to evaluate the differ-
ent elements of the GHV matrix equation. Since the
2-CM does not correspond to a Hamiltonian eigen-
state, Eq. (37) is not satisfied, i.e., initially its r.h.s.
does not vanish. In this part of the theory, it is more
convenient to use the G-matrix, instead of the 2-CM.
Thus, the equation is:

〈�|[2Ĉpq;ml, Ĥ]|�〉 ≡ 〈�|[2Ĝpm;lq, Ĥ]|�〉 = Apm;lq

∀p, q, m, l (40)

where A is an anti-Hermitian matrix, which permits
to develop a method based on applying to the G-
matrix a sequence of unitary transformations. As a
result, one obtains the following algorithm

2G(n)

pm;lq = 2G(n−1)

pm;lq + 〈�|[Â(n−1), 2Ĝpm;lq]|�〉 (41)

where

Â = Axy;vw
2Ĝxy;vw (42)

and which permits to obtain at the nth iteration
a G-particle-hole matrix expressed in terms of the
G-particle-hole and the A matrices obtained in the
previous iteration. As shown in [38], the results
obtained when applying this algorithm to the study
of several atomic and molecular systems of four and
six electrons were very accurate. On the other hand,
the convergence was rather slow.

4. Towards a Direct Evaluation of the
3-CM Spin-Blocks Needed in the GHV
Methodology

In our previous studies [21, 27, 28, 31–34, 37, 38,
48, 49, 63], we have realized that, when solving the 2-
CSE, the CCSE, the ACSE, and the GHV, it is essential
to consider explicitly the electron spin-functions. In
principle, it is a straightforward task to express Eq.
(38) in terms of the α and β spin-functions.

In what follows, a short-hand notation for denot-
ing the spin-functions is needed. Thus, a spin-orbital
with α spin will be denoted by i, whereas that with
a β spin will be denoted ī.

In practice, the number of the equation-terms, the
number of sum-terms involved in each equation-
term, and the number of 3-CM to be approximated
must be reduced to the outmost. The strategy which

has been chosen to decide upon these matters will
now be described.

4.1. THE GHV SPIN-BLOCKS

In principle, according to Eq. (37), all the 2Ĉpq;ml

should be considered. On the other-hand, the 2-
CM elements do not appear explicitly in the GHV
equation and we know that different 2-CM elements
involving the same set of spin-orbitals may be inter-
related [47–49]. These considerations will prove very
helpful to reduce the size of the problem.

When considering explicitly the spin-functions
for any set of orbital indices (p, q; m, l), there will
be six possible distributions of the α and β spin-
functions among them. It would appear that we
should have to solve six GHV spin-blocks to have
a complete 2-CM (or G-particle-hole matrix). Nev-
ertheless, as has been mentioned, because the inter-
relations among the 2-CM elements, only the follow-
ing spin-blocks need to be considered:αα; αα,ββ; ββ,
αβ; αβ.

Their relations with the elements of the other spin-
blocks which are not considered are:

2Cij̄;pq̄ = 2Cj̄i;q̄p (43)
2Cij̄;q̄p = 1Di;p

1D̄j̄;q̄ − 2Cij̄;pq̄ (44)

and

2Cj̄i;pq̄ = 1Dj̄;q̄
1D̄i;p − 2Cij̄,pq̄. (45)

Some of these relations, which are frequently used,
are given in graph form in the Appendix. We find the
graphs very convenient because they provide a way
of expressing the currently used relations in a form
which is independent of the indices and labels.

4.2. THE RELEVANT TYPES OF 3-CM

It is easy to show that

(3;2,1)Cvtx;wyz ≡ −2Cvx;yzδw,t + 1Dv;w
2Ctx;yz + (3;1,1,1)Cvtx;wyz

(46)

In the Appendix, the graph form of this equation is
also given. Since we aim at constructing the 3-CM
in terms of the 2-CM, one starts by approximating
the value of (3;1,1,1)Cvtx;wyz and then, using this equa-
tion, the corresponding (3,2,1)Cvtx;wyz is evaluated and
entered into the equation.

When considering which are the (3;1,1,1)C spin-
blocks needed, it is easy to see that the only two
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distributions of spin which have to be considered are
(3;1,1,1)Cσσσ ;σσσ and (3;1,1,1)Cσσ σ̄ ;σσ σ̄ where σ may be α or
β. An example of this equivalence of treatment for
different 3-CM spin-blocks will be described later on.

4.3. THE 3-CM APPROXIMATING
ALGORITHMS

Our working hypothesis for this study is that
the information contained in the 2-CM and in the
1-RDM (hence also in the 1-HRDM) must be suffi-
cient to approximate at least those 3-CM elements
describing one and two electron transitions. In all
the cases studied, the relevant transitions appeared
to be those involving a largely occupied spin-orbital
and a largely empty spin-orbital in the state � under
study. The amount of occupied and empty character
of the spin-orbitals can easily be determined by con-
sidering the values of the diagonal elements of the
1-RDM and 1-HRDM, respectively. Thus, a large pos-
itive or negative value of 1Di,i − 1D̄i,i tells us whether
the spin-orbital i can be considered as mostly occu-
pied or empty, respectively. This concept is also
relevant when looking for the 2- and 3-order cumu-
lant elements having relevant values, and caused us
to extend the concept of frontier-orbitals [28].

It may be argued that the information contained
in the 2-CM does not seem sufficient to approximate
those 3-CM elements, which have non-negligible
values and which involve triple electron transi-
tions. There are, however, two theoretical arguments
which permit to assume that the overall effect of
the 3-CM elements describing triple electron tran-
sitions may be neglected [28, 37]. Thus, the energy
expression (30) only involves the 2-CM. Moreover, as
mentioned previously, the second term of the r.h.s.
of Eq. (36), which describes the 4-body correlation
effects, where the 3-body effects are included, has to
vanish for the equation to be satisfied [39]. In fact this
equation shows that, for Hamiltonian eigenstates, all
correlation effects of higher-order than two cancel
out [30, 32, 39, 46, 47, 66].

As has been mentioned, this study is limited to
looking for the algorithms which permit to approxi-
mate the (3;1,1,1)Cσσσ ;σσσ elements. Until now [38], the
third-order correlation effects of the (3;1,1,1)Cσσσ ;σσσ

type were neglected because the great majority of
the elements of these spin-blocks, which played an
active role, were rather small. The other spin blocks
were constructed in two steps. In the first step, the
3-order cumulant spin-blocks 3�σσσ̄ ;σσ σ̄ were evalu-
ated with a set of approximating algorithms devised
in the framework of the 2-CSE and ACSE theory [28,

31, 33, 34, 37]. Then, the corresponding 3-CM was
derived from this cumulant. One of the lines of work
which we are now pursuing is to look for the set
of algorithms which would directly yield accurate
approximations of the 3-CM elements. The present
status of this problem will be analyzed here.

4.3.1. Value of Some Special (3;2,1)

C Elements

Let us recall that when in a string of fermion
operators a repetition of two creators/annihilators
occurs, the term is null. However, when a Q̂ opera-
tor separates these repeated operators, this term does
not necessarily vanish.

Here we consider those (3;1,1,1)Cσσσ ;σσσ ele-
ments which, because they involve repeated cre-
ator/annihilator indices, can be exactly evaluated in
terms of the 2-CM and 1-RDM elements.

• Since (3;2,1)Cpii;qrs = −(3;2,1)Cipi;qrs only the first
element needs to be considered. Recalling that
3Dpii;qrs = 0 one has:

(3;2,1)Cpii;qrs =2!(−2Dpi;qr
1Di;s+δi,q

2Dpi;rs+δi,r
2Dpi;qs)

(47)

• The other non-null element will be:

(3;2,1)Cpqr;sii = 2! 2Dpq;si
1D̄r;i (48)

4.3.2. The Different Alternative Approaches
for Approximating the 3-CM

Previously, when working on the 2-CSE it proved
extremely useful to use a basis set for representing
the 2-, 3-, and 4-RDMs where a unique ordering of the
creators/annihilators spin-orbital indices was con-
sidered, i.e., in 3Dijl;pqr, the only element considered
would be that which corresponded to i < j < l and
p < q < r. In this way, a given element was only con-
sidered once instead of 3!.3! = 36 times if no ordering
of the indices was imposed.

When considering the 3-CM case, one may also
impose a similar ordering of the indices and approx-
imate only the corresponding 3-CM elements. Then,
when the terms appearing in the GHV equations
refer to a different ordering, one may apply the inter-
relations linking different 3-CM elements, to obtain
the appropriate value for the particular case being
considered. In this approach, the number of algo-
rithms needed in order to approximate the different
types of 3-CM elements is optimized. On the other
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hand, the number of inter-relations linking 3-CM
elements involving the same creators/annihilators
although in different orderings is rather large, which
renders more complex the evaluation of the different
GHV terms.

The alternative approach is to look for suitable
algorithms for approximating directly the 3-CM ele-
ments, irrespective of the indices ordering. That is,
if a different algorithm is needed for each order-
ing of the creator/annihilator indices, the number of
algorithms needed is multiplied by 36. In what fol-
lows, we will consider the first alternative and then a
preliminary analysis of the second one will be given.

4.3.3. Approximating Algorithms for
Evaluating (3;1,1,1)Cσσσ;σσσ Elements

In what follows, we focus on approximating the
(3;1,1,1)Cσσσ ;σσσ elements needed for the calculation
of the structure of the singlet ground-state of the
BeH2 linear molecule, using a minimal basis set of 7
orbitals. The 1, 2, and 3 orbitals are of the σg symme-
try, 4 and 5 are σu and 6 and 7 are of the degenerate π

symmetry type. A reference FCI calculation was car-
ried out to obtain the 2-CM and the 1-RDM which are
the initial data, as well as, the 3-CM elements whose
value should be reproduced by our algorithms. As
previously mentioned, the occupation number of the
different orbitals is given by de diagonal elements of
the 1-RDM. Also, the extent of the relative occupancy
or emptiness of an i orbital may be measured by
T(i) = 1Di,i − 1D̄i,i. Thus, when T(i) > 0 the orbital is
occupied, otherwise it may be considered an empty
orbital. According to the diagonal 1-RDM values, the
1, 2, and 4 orbitals are mostly occupied and the rest
of the basis orbitals are mostly empty.

In our first alternative approach, a unique order-
ing of the creators/annihilators indices is assumed.
It is interesting to note that, in this ordered indices
basis, only a very small number of elements have
non negligible values in the 2Cσσ ;σσ as well as in
the (3;1,1,1)Cσσσ ;σσσ . This is the reason why, in pre-
vious calculations [38], this type of 3-CM elements
were considered negligible. However, if one is aim-
ing at a higher degree of accuracy, even these few
non-negligible elements should be evaluated and,
as will be seen, a set of very simple operations yield
excellent results.

Let us now describe the three algorithms which
approximate the elements of the (3;1,1,1)Cσσσ ;σσσ which
are relevant when the 3-CM are represented in the
ordered basis. In what follows, the element consid-
ered will be denoted (3;1,1,1)Cijl;mpq.

• When

i = p; T(i) > 0; 2Cjl;mq �= 0

then

(3;1,1,1)Cijl;mpq ≈ −2Cjl;mq
1Dp,p

• When

i = m; T(i) > 0; 2Cjl;pq �= 0

then

(3;1,1,1)Cijl;mpq ≈ −2Cjl;pq
1Di,i

• When

j = p; T(j) > 0; 2Cil;mq �= 0

then

(3;1,1,1)Cijl;mpq ≈ 2Cil;mqT(j)

Guided by the assumptions which constituted our
working hypothesis, these algorithms were estab-
lished empirically having the exact value of the 3-CM
element as reference. Before analyzing the results
obtained when applying these algorithms, let us
remark that, when two or three of the previous con-
ditions occur, the algorithm to be applied is that
involving the larger 1Dt;t value.

4.3.4. Analysis of the Results in a Basis of
Ordered Indices

In Tables I and II, respectively, we report the val-
ues of the diagonal elements of the 1Dσ ;σ and the
values of 2Cσσ ;σσ having absolute values larger than

TABLE I
Full configuration interaction (FCI) diagonal elements
of the 1-RDM.

Orbital label 1Di,i value

1 0.9999868
2 0.9854037
3 0.0143341
4 0.9874572
5 0.0062057
6 0.0033063
7 0.0033063
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TABLE II
Full configuration interaction (FCI) elements of the 2Cσσ;σσ spin-block with absolute value larger than 10−4.

(row;column)-Labels FCI value (row;column)-Labels FCI value

2 3; 1 2 −0.0001786 4 6; 3 4 −0.0046055
2 6; 1 6 −0.0001143 1 4; 3 5 −0.0002983
3 5; 1 4 −0.0002983 1 7; 2 7 −0.0001143
2 3; 2 3 −0.0055602 2 4; 3 4 0.0001498
2 4; 2 4 0.0001303 2 4; 3 5 −0.0046206
2 4; 2 5 0.0003864 2 5; 3 4 0.0043343
2 5; 2 4 0.0003864 2 7; 2 7 −0.0032005
2 5; 2 5 −0.0025526 3 4; 3 4 −0.0086579
2 6; 2 6 −0.0032005 2 3; 4 5 −0.0046055
2 7; 1 7 −0.0001143 4 5; 4 5 −0.0036221
3 4; 2 4 0.0001498 4 6; 4 6 −0.0001180
3 4; 2 5 0.0043343 4 6; 5 6 −0.0002065
3 5; 2 4 −0.0046206 4 7; 4 7 −0.0001180

10−4, which constitute the building blocks for con-
structing the (3;1,1,1)Cσσσ ;σσσ . As can be seen, the 1,
2, and 4 orbitals may be considered to be double-
occupied while the 3, 5, 6, and 7 are mostly empty
orbitals. It must be signaled that the orbital symme-
try determines also to a great extent the value of a
3-CM element. As we mentioned previously, in our
example, the 1, 2, and 3 orbitals have a σg symmetry,
the 4 and 5 have σu symmetry, and 6 and 7 have
π degenerate symmetry, respectively. It is easy to
appreciate the role played by the electron-transitions
involving frontier electrons corresponding to each
symmetry. It is also worth commenting the very
sparse character of this 2-CM spin-block in this
ordered basis. This underlines the fact that the lead-
ing terms in the corresponding 2-RDM elements are
the Coulomb, the exchange, and the particle-hole
polarization terms.

TABLE III
Exact full configuration interaction (FCI) and
estimated values of the elements of the (3;1,1,1)Cσσσ;σσσ

spin-block with absolute value larger than 10−4.

(row;column) Approximated
Labels value FCI value

1 4 6; 2 4 6 −0.0001114 −0.0001108
2 3 5; 1 2 4 0.0002939 0.0002987
2 4 5; 2 4 5 −0.0024886 −0.0024679
2 4 6; 1 4 6 −0.0001128 −0.0001108
2 4 6; 2 4 6 −0.0031603 −0.0030968
2 4 6; 2 5 6 0.0002035 0.0002199
2 5 6; 2 4 6 0.0002035 0.0002199

A summary of the results concerning the
(3;1,1,1)Cσσσ ;σσ ,σ is given in Table III which collects
the exact and the estimated values of the elements
having absolute value larger than 10−4.

As can be appreciated, our algorithms, although
involving very simple operations, do reproduce with
good accuracy the value of the relevant 3-CM ele-
ments. Obviously this is due to the information
carried by the 2-CM element about the electron
transitions which are present in the 3-CM element
considered.

Let us finish by remarking that when a more
extended basis set having more than one empty
orbital of each symmetry is used, the set of algo-
rithms just given will probably have to be extended,
even when the basis used imposes a unique order-
ing of the creators/annihilators indices. Indeed, with
an extended basis set, different 3-CM topologies,
mixing mostly-empty (e) with mostly-occupied (o)
orbitals such as (3;1,1,1)Coeo;eoo may occur. This question
is discussed in the next paragraph.

4.3.5. Some Accurate and Semi-Accurate
Results in a Nonordered Indices Basis

In the previous paragraph, the 3-CM elements,
derived from the FCI 3-RDM, correspond to the ele-
ments where the fermion row and column indices
are in an increasing order: i < j < l; m < p < q.
In this ordered basis, not all the possible relative
positions of the indices in the 3-CM, Eq. (26), are
taken into account, which is a great advantage but
which complicates the evaluation of the different
GHV terms. On the other hand, when all possible
indices orderings are considered, the number of dif-
ferent topologies and, hence, of different algorithms
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to be investigated is very large. In our opinion, a
partial ordering of the indices should be kept. Thus,
if the ordering of the indices is considered in the
Hamiltonian operator, and only those 2Ĉ elements
with ordered indices are commuted with it, the dis-
order of the indices in the (3;2,1)Cijl;mpq labels thus
generated will only be partial. Moreover, the indices
i and j as well as the m and p can be easily permuted
at convenience. In this way, those 3-CM topologies
which are more difficult to approximate may be
avoided and simultaneously the number of algo-
rithms to be determined is reduced. As a first step
towards this methodological development, we are
analyzing the values of the BeH2 FCI 3-CM when
represented in a nonordered basis. In this way, once
this analysis is completed, the choice of those 3-
CM topologies which is convenient to avoid can be
optimized. Moreover, this study, which generates all
types of topologies, yields a large set of algorithms
which should cover all the possibilities ocurring
when the basis set is an extended one. This last point
is particularly convenient, since a FCI reference cal-
culation would hardly be possible with an extended
basis set.

In this base of representation, there are three main
types of 3-CM elements:

1. Elements in which none of the creators’ indices
matches any of the annihilators ones.

These elements may have non negligible val-
ues, but we do not yet know how to approximate
them. Fortunately, when contracting the 3-CM,
these terms do not contribute to the 2-CM and,
as we mentioned previously, they do not directly
contribute to the energy.

2. A creator and an annihilator have the same index.
The cases given in the previous paragraph,

when an ordered basis was used, are three of the
possible ones. In the nonordered basis, one may
also have

〈
�

∣∣a†
i amQ̂a†

j apQ̂a†
l ai

∣∣�〉 ≈ 〈
�

∣∣a†
j amQ̂a†

l ap

∣∣�〉1Di;i〈
�

∣∣a†
i amQ̂a†

j aqQ̂a†
l aj

∣∣�〉 ≈−〈
�

∣∣a†
i amQ̂a†

l aq

∣∣�〉1Dj;j〈
�

∣∣a†
i amQ̂a†

maqQ̂a†
l ar

∣∣�〉 ≈ 〈
�

∣∣a†
i aqQ̂a†

l ar

∣∣�〉1D̄m;m〈
�

∣∣a†
i amQ̂a†

j aqQ̂a†
mar

∣∣�〉≈−〈
�

∣∣a†
i aqQ̂a†

j ar

∣∣�〉1D̄m;m〈
�

∣∣a†
i amQ̂a†

j aqQ̂a†
qar

∣∣�〉 ≈ 〈
�

∣∣a†
i amQ̂a†

j ar

∣∣�〉1D̄q;q

That is, the fermion operators with the same
indices disappear as well as a Q̂ operator. Note

that when the operators ordering is ai . . . a†
i , the

multiplying matrix element is the 1-HRDM while
the structure a†

i . . . ai involves the 1-RDM ele-
ment. Clearly, when the multiplying element is
the 1-HRDM, the spin-orbital should be mostly
empty and vice versa when the matrix involved
is the 1-RDM. On the l.h.s. of these equations,
the three sets of creator/annihilator are sepa-
rated by the Q̂ operators. When the indices that
match are either in adjacent sets or in more dis-
tant sets, the signs of the approximation for the
holes and for the particles are opposite to each
other.

3. Two or three matchings occur between creators
and annihilators.

These matchings may involve empty as well
as occupied orbitals. Within this 3-CM type some
topologies are somewhat more complex. As an
example of the type of difficulties which may
arise, let us consider some examples:

• Approximating (3;1,1,1)C534;354 whose FCI value is
−0.0035208:

This case is comparatively simple since the
operators involved, the a†

4a4 and a3Q̂a†
3, corre-

spond to different sets (their inter-linking is not
important), and since 1D4;4 = 0.9874572 and
1D̄3;3 = 0.993794, the appropriate approxima-
tion is similar to the third one in the previous
account. The value thus obtained is −0.0035995.

• Approximating (3;1,1,1)C126;612 whose FCI value is
0.985374:

There are three possible approximations.
The approximation involving the product
of 1D̄6;6 = 0.9966937 and 2C12;12 will be
nearly null since this 2-CM element does not
describe any transition. The other two pos-
sibilities involve only occupied orbitals and,
as in the cases appearing in the ordered
basis, the higher 1-RDM element value deter-
mines the approximation to be applied.
Thus the approximation is 2C26;62

1D1;1 =
−0.9853265.

• Approximating (3;1,1,1)C126;261 whose FCI value is
0.0113472:

This is an interesting topology. Here the val-
ues of the 1-RDM and 1-HRDM elements are
very similar, the 2-CM elements involved in
each of the possible approximations describe
electron transitions, both approximations are
interlinked and both have the same sign. In this
case the algorithm combines both possibilities.
Thus, 2C26;62

1D1;1 + 2C12;21
1D̄6;6 = 0.0113473.
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• Approximating (3;1,1,1)C132;231 whose FCI values
is −0.0228953:

This is a rather complex case. In the graph
form given in the Appendix, the lines join-
ing creators and annihilators with equal labels
would present a triple crossing. Also the cen-
tral set o operators correspond to an empty
orbital. Until now, we have not figured out how
to approximate the elements having this type of
topology. Therefore, one must either avoid their
appearance through a reordering of the indices
or obtain them through the use of the inter-
relations between another topology involving
the same orbitals such as that appearing in the
previous example.

In the tests that we have carried out, the accuracy
has been higher than 10−4 which renders us confident
that, provided that the exceptional elements such as
the last described, are either indirectly evaluated or
its appearance in the calculation is avoided, a high
accuracy can be attained when solving the GHV
equation.

Let us conclude by saying that when the occu-
pancy of the orbitals is close to 0.5, the role played
by the 1-RDM and 1-HRDM diagonal elements
becomes ambiguous. This is another question which
is now being studied.

Appendix

The criterium for constructing the graphs which
are reported here is similar to that used previously
[27, 41]. Thus, the creator indices are on the top of
the graph and those corresponding to annihilators
are at the bottom of the graph.

I. BASIC GRAPHS

δi;j graph −→ �

�

�

�

�

�

�

〈�|a†
i aj|� ′〉 graph−→

〈�|a†
i a†

j alak|� ′〉 graph−→ 2!
i j

k l
−→ 2!

〈�|a†
i a†

j a†
karaqap|�〉 graph−→ 3!

〈�|a†
i akQ̂a†

j al|�〉 graph−→

〈�|a†
i a†

j araqQ̂a†
l ap|�〉 graph−→ 2!

〈�|a†
i aqQ̂a†

j arQ̂a†
l ap|�〉 graph−→

II. BASIC RELATIONS

The graph relations given here are very general
since they do not depend on the indices.

Decomposition of the 2-RDM, Eq. (14)

2! = − �
����
�

�

�

�

�

�

+

Equation (43)

i j̄

p q̄
=

ij̄

pq̄

Decomposition of the 3-RDM

3! = −2! − 2! �
��
�

�

�

�

�

�

�

�

�

�

�

�

�

+ 2! �
��

�
��

�

�

�

�

�

�

�

�

�

�

�

�

�

+ 2!

Inter-relation of (3;2,1)C and (3;1,1,1)C

2! = + − �
��

�

�

�

�

�

�

�

�

�

�

�

�

�

III. TWO EXAMPLES OF 3-CM TOPOLOGIES
AND APPROXIMATIONS

An approximation example in graph form:

i j l

m p i
≈ �

��
�

��
�

��

i j l

m p i

Type of topology where i and l are occupied
orbitals and j is empty which should be avoided.

i j l

l j i
≈ ????
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