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We study the doping driven Mott metal-insulator transition in the periodic Anderson model set
in the Mott-Hubbard regime. A striking asymmetry for electron or hole driven transitions is found.
The electron doped MIT at larger U is similar to the one found in the single band Hubbard model,
with a first order character due to coexistence of solutions. The hole doped MIT, in contrast, is
second order and can be described as the delocalization of Zhang-Rice singlets.

PACS numbers:

I. INTRODUCTION

The nature of the Mott transition, i.e. the metal-
insulator transition driven by electronic correlations, is
a central problem in physics of strongly correlated elec-
trons systems. The relevance of the problem was initially
emphasized by Mott1 in the 40’s, trying to explain why
some materials with odd electrons per the unit cell, like
NiO, are insulators. In a Mott metal-insulator transi-
tion (MIT), a metallic system with a partially filled elec-
tron band suddenly opens an insulating gap. In practice
the transition is usually driven by temperature, applied
pressure, or chemical doping. The origin of the mecha-
nism is in the correlation effects due to the strong on-site
Coulomb repulsion experienced by electrons occupying
rather localized orbitals, such as d in transition metal
oxides or f in heavy fermion compounds.

The classical example of an experimental system ex-
hibiting a Mott transition is vanadium oxide V2O3, which
has received continuous attention since the pioneering
work of McWhan2 in the 70’s. That compound has a
finite temperature first order metal-insulator transition
that terminates at a high temperature 2nd order critical
point, in analogy with the finite liquid-gas transition line
in water.

From a theoretical perspective, it is considered that
the Hubbard model, which contains a tight binding band
plus an interaction term that describes local Coulomb re-
pulsion between electrons occupying the same site, is a
minimal Hamiltonian that may capture the basic physics
of the Mott MIT. The most significant work on this model
was initiated by Hubbard3 in the 60’s, where, starting
from the insulating state at large interaction values, he
described how the system may close the correlation gap
as the bandwidth is increased to values of the order of the
Coulomb repulsion energy. Later, in the 70’s Brinkman
and Rice4, using a variational approach, started from the
metallic state and showed how it can be destroyed by in-
creasing correlation effects when the interaction strength
becomes of the order of the bandwidth. Finally in the
90’s the theoretical development of the dynamical mean-
field theory (DMFT)5,6 allowed to get new insight on

this problem. In the scenario for the Mott transition
realized in the DMFT solution of the Hubbard model,
for low temperatures and moderate interaction, the half
filled Mott insulator can be driven to a correlated metal-
lic state through a first order transition6,7. This transi-
tion can occur as a function of correlation strength6,7,9,
temperature6,7,10 or doping6,14,15,25,43. The solution of
the Hubbard model within DMFT provided not only
a connection between the approaches of Hubbard and
Brinckman-Rice by showing how the system evolves from
a metal to an insulator, but also produced a detailed de-
scription of the basic experimental phenomenology ob-
served in the V2O3 compound7,11. In addition, it was
later shown that the MIT can be described in terms of a
Ginzburg-Landau scenario42 with theoretical predictions
for the critical behavior of observables near the 2nd or-
der critical point12, that were eventually confirmed by
experiments16.

The physics of the Mott transitions, especially
those driven by doping at low temperatures, became
of unparalleled interest in condensed matter physics
with the discovery of the high temperature cuprate
superconductors17 in the 80’s and, in smaller but also sig-
nificant measure, by the discovery of the non-Fermi liquid
behavior in heavy fermion systems18. In those systems,
the effect of strong correlations is undisputed, since the
active electronic degrees of freedom involve the localized
d and f orbitals. Therefore, these systems are identified
as doped Mott insulators, however their phase diagrams
and the evolution of their physical properties cannot be
associated to the DMFT scenario for the Mott transition
that was so successfully applied to V2O3.

Besides the Hubbard model, the periodic Anderson
model (PAM) is another minimal Hamiltonian that is
often investigated in the context of strongly correlated
electron systems. That model contains two orbitals per
unit cell, one local with on-site Coulomb repulsion and
the other non-interacting and itinerant. At each lattice
site, the two orbitals are hybridized. This model is more
realistic than the Hubbard, since it describes with greater
detail the actual situation in real compounds. For in-
stance, in transition metal oxides where the overlaps be-
tween neighboring oxygen p−orbitals provide itineracy to
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the electrons, while the localized d−orbitals of the tran-
sition metal experience the stronger correlation effects.

Despite the higher degree of detail included in the
PAM, it is often assumed in theoretical approaches that
the physical behavior of the PAM would result qualita-
tively similar to that of the Hubbard model at low fre-
quencies. That statement can be mathematically jus-
tified in certain parameter regimes, however its general
validity is less evident.

The DMFT is a theoretical approach that is mathemat-
ically exact in the limit of large lattice dimensionality5,6

which has been extensively used to study the Mott tran-
sition in the Hubbard model, and, to a lesser degree,
has also been employed to investigate the physics of the
PAM20–23. Therefore, in the light of the previous dis-
cussion, a natural question to address is whether within
DMFT the Mott transition scenario of the PAM is in-
deed qualitatively similar to that of the Hubbard model
or, if contrary to usual expectations, it brings about new
physical behaviors. This issue has been the focus of our
recent investigations24, where we showed that in fact a
different type of doping driven Mott MIT is realized in
the PAM, even in a parameter regime whether it might be
expected that the identification with the Hubbard model
may hold. The present study will be devoted to provide
a more detailed description of the MIT that is realized
in the PAM and the origin of the differences with the
Hubbard model scenario for the Mott transition will be
discussed.

The paper is organized as follows. In Sec. II we in-
troduce the PAM and justify the choice of the param-
eter regime. We also summarize the DMFT equations
and provide details on the numerical techniques we use
to solve the associated impurity problem. In Sec. III
we present the results and discuss the Mott transitions
found in the PAM. In Sec. IV we present a discussion of
the physical origin of the different scenario for the MIT
found in the PAM with respect to the HM. In Sec.V we
present the conclusions.

II. METHODOLOGY

A. Model

The Hamiltonian of the PAM is given by

H =−
∑

<ij>σ

tij(p+
iσpjσ + p+

jσpiσ) + (εp − µ)
∑

iσ

p+
iσpiσ

+ (εd − µ)
∑

iσ

d+
iσdiσ + tpd

∑

iσ

(
d+

iσpiσ + p+
iσdiσ

)

+ U
∑

i

(
ndi↑ − 1

2

) (
ndi↓ − 1

2

)

(1)

Here piσ and p+
iσ operators destroy and create electrons

at p orbitals on site i with spin σ. The p orbitals have

FIG. 1: Schematic representation of the periodic Anderson
model for the case of a one dimensional chain. At each site of
the lattice, a d orbital (open circle) hybridizes with a p orbital
(full circle) through the amplitude tpd (dotted line). Two
electrons in the d orbital experience a Coulomb repulsion U .
The hopping amplitude between the p orbitals at neighboring
sites i and j is tij = t (solid line).

site energy εp and overlap via the hopping term tij = t
to form a band. diσ and d+

iσ operators destroy and create
electrons at d orbitals on site i with spin σ. The local
d orbitals have site energy εd and are hybridized to the
p orbitals with the constant on-site amplitude tpd. U is
the energy cost of double occupation of the d orbitals at
each site and µ is the chemical potential. ∆0 = εd − εp,
the difference between the d level and the center of the
p band, defines the bare charge-transfer energy. Fig. 1
shows a schematic representation of the Hamiltonian.

The action associated with the Hamiltonian (1) reads

S =−
∑

k,σ

∫ β

0

dτ

∫ β

0

dτ ′ψ+
kσ(τ)Ĝ−1

0σ (τ − τ ′)ψkσ(τ ′)

+ U
∑

i

∫ β

0

dτ
[
nid↑(τ)− 1

2

] [
nid↓(τ)− 1

2

] (2)

where ψkσ = {dσ, pkσ}, ψ+
kσ = {d+

σ , p
+
kσ} and the inverse

matrix propagator Ĝ−1
0 is given by:

Ĝ−1
0σ (k, iωn) =

(
iωn + µ− εd tpd

tpd iωn + µ− εp − εk

)
(3)

where εk is the Fourier transform of the hopping term t.
The lattice Green’s function Ĝ is then written using the
Dyson equation Ĝ−1 = Ĝ−1

0 − Σ̂, where

Σ̂σ(k, iωn) =
(

Σσ(k, iωn) 0
0 0

)
(4)

and Σσ(k, iωn) is the d−electron self-energy. Here we
are interested in a magnetically disordered state, thus
the spin index can be dropped. In this case, the lattice
Green’s functions for the p and d electrons are explicitly
given by:

G−1
pp (k, iωn) = iωn + µ− εp − εk −

t2pd

iωn + µ− εd − Σ(k, iωn)

(5)

G−1
dd (k, iωn) = iωn + µ− εd − Σ(k, iωn)− t2pd

iωn + µ− εp − εk
(6)
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The local Green’s functions are then obtained performing
the integration over momenta,

Gα(iωn) =
1
N

∑

k

Gα(k, iωn) =
∫
ρ0(ε)Gα(ε, iωn)dε

(7)
where α = pp, dd and ρ0(ε) =

∑
k δ(ε − εk) is the free

(U = 0 and tpd = 0) density of states.
The PAM has some simply solvable limits such as of

vanishing hybridization, tpd = 0, or of vanishing corre-
lation strength, U = 0. For the latter case, the PAM
describes two hybridized one-particle bands, that are ob-
tained diagonalizing the Hamiltonian and read:

E±(k) =
1
2

(
εd + εp + εk − 2µ±

√
(εk −∆0)2 + 4t2pd

)

(8)

From the many interesting parameter regimes that this
model has, we shall focus our study on a particular one
where the low energy physics of the PAM is a priori
expected to correspond to that of the Hubbard model.
Thus, we consider the case where the localized d orbital
is near the Fermi energy and with an occupation close to
one, while the p orbital band is well beneath in energy
and almost fully occupied. By virtue of the hybridiza-
tion term, the d electrons acquire a finite dispersion and
form a narrow band that crosses the Fermi energy. This
band is subject to strong correlation effects when the on-
site Coulomb term is turned on and has a bandwidth
∼ t2pd/∆, where ∆ is the distance between the two hy-
bridized bands, ∆ ≈ E+ − E− > ∆0.

For reference, the solution of the non-interacting case
in the chosen parameter regime is shown in Fig. 2, where
we have used a linear dispersion relation. In the upper
panels we show the single particle dispersion E± and the
resulting density of states for ∆0 = 1, tpd = 0.9 and
µ = 0.529, that gives a total occupation per site ntot

equal to 3. In the lower panel we plot the total occupation
ntot = np +nd together with the partial occupation. The
plateaux in the curves signal incompressible states that
correspond to insulators. These are observed at ntot = 2
and ntot = 4. In the first case, ntot equal to 2, one has
a hybridization gap insulator, since the band E− is full
and E+ is empty. For ntot = 4 the state is of a full band
insulator. For 2 < ntot < 4 the system is metallic, since
the lower band with mostly p character is full and the
narrow band with mainly d character is partially filled.

We shall now focus on the effects of correlation on such
a metallic case, realized for ntot = 3, where the lower elec-
tron band with mostly p character is close to being full
(i.e. is occupied by two electrons) and the narrow d elec-
tron band is half-filled (i.e. with an occupation nd close to
1). This is relevant for systems such as early transition-
metal oxides like titanates and vanadates. In the cho-
sen parameter regime, there is a single band crossing the
Fermi energy which has mostly d electron character. So
correlations effects will affect it strongerly. For values
of the interaction U larger than its bandwidth ∼ t2pd/∆
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FIG. 2: Top left panel: solid lines are the two branches E±(ε)
for U = 0, ∆0 = 1, tpd = 0.9 and µ = 0.529, that gives ntot =
3. Top right panel: density of states for the p and d electrons
(dashed and solid line), for the same model parameters as
in the left panel. Note that the effective distance between
the bands, ∆ ≈ 2, results to be larger than the bare value
∆0 = εd − εp = 1. We used the simple linear dispersion
relation εk = ε. The free (U = 0 and tpd = 0) DOS of
the conduction electrons is semi-elliptical with with a half-
bandwidth equal to unity. Bottom panel: particle occupation
nd (solid line), np (dashed) and ntot (dotted) as a function of
the chemical potential for U = 0, ∆0 = 1, tpd = 0.9.

one may expect that a correlation gap would open and
the system becomes a Mott insulator. This is the regime
where the identification of the low energy physics of the
PAM with the one band Hubbard model may hold.

B. DMFT and the limit of infinite dimensions

To go beyond this qualitative discussion we need to
obtain reliable solutions of the model Hamiltonian in the
strongly interacting regime. We thus recur to the DMFT
formulation where exact numerical methods can be used
to solve the problem6.

The DMFT solution becomes exact in the limit of large
spatial dimensionality5 or, equivalently, large lattice con-
nectivity z. For this limit to remain physical one is re-
quired to rescale the hopping t amplitude as t/

√
z, so that

the density of states ρ0(ε) =
∑

k δ(ε − εk) gives a finite
value for the mean kinetic energy5. As is well known in
DMFT, the specific lattice structure is not essential, and
several lattice types could be used. For instance, the free
(i.e., tpd = 0, U = 0) density of states of the hypercubic
lattice, which is the generalization of the square lattice
to the limit of high z, reads:

ρhyper
0 (ε) =

1
t
√
π

exp
(
− ε2

2t2

)
(9)

where ε denotes the noninteracting single particle energy.
Another lattice type which is often adopted is the Bethe
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lattice (Cayley tree), whose density of states reads

ρ0(ε) =
1

2πt2
√

4t2 − ε2 (10)

In the following we shall consider a Bethe lattice struc-
ture, as it is better suited for some of the numerical meth-
ods that we shall employ. As unit of energy we set the
half-bandwidth of the Bethe lattice semi-circular DOS,
D = 2t = 1. The key mathematical simplification arising
from the z → ∞ limit is the locality of the self-energy,
i.e. its k independence. Thus, there is no longer need to
keep the momentum label in the single particle energies
of the band structure εk, and the energy ε itself is simply
kept as the quantum number.

C. Mean-field equations

In the limit of large lattice connectivity z → ∞, the
PAM can be exactly mapped onto a single impurity An-
derson model supplemented with a self consistency condi-
tion. The derivation of the DMFT equations has already
been presented in detail elsewhere6,26,27, so here we shall
just briefly summarize the main steps and the final ex-
pressions.

A direct way to derive the DMFT equations is to ap-
ply the cavity method6. The key idea is to focus on a
given (any) site of the lattice and to integrate out the
degrees of freedom on all the other lattice sites in order
to obtain the local effective action at the selected site. In
doing that, one shall also obtain a self-consistency condi-
tion which restores the translational invariance that was
(temporarily) broken with the selection of a given lat-
tice site. After integration of all sites other than the one
selected, the local effective action is obtained,

Seff =−
∫ β

0

dτ

∫ β

0

dτ ′
∑

σ

ψ+
σ (τ)Ĝ−1

0 (τ − τ ′)ψσ(τ ′)

+ U

∫ β

0

dτ
[
nd↑(τ)− 1

2

] [
nd↓(τ)− 1

2

]

(11)

where ψσ = {dσ, pσ}, ψ+
σ = {d+

σ , p
+
σ } correspond to the

two atomic orbitals of the given (arbitrary) site of the
lattice. The local inverse propagator reads

Ĝ−1
0 (iωn) =

(
iωn + µ− εd tpd

tpd iωn + µ− εp − t2G̃pp

)

(12)
where G̃pp is the cavity Green’s function that encodes
the information of the propagation of electrons in the
lattice, restricted not to return to the local site. These
two equations define the so called associated impurity
problem of the model.

In order to restore the translational invariance and to
obtain a closed set of equations, one has to relate the
local inverse propagator G0 to the Green’s function of

the original lattice. In the Bethe lattice this relation
is simple6: the p−electron cavity Green’s function G̃pp

becomes the local p−electron Green’s function, G̃pp =
Gpp. From this relation and (12), one obtains the self-
consistency condition for the impurity problem. It can
be casted only in terms of [G0]dd and reads,

[G−1
0 ]dd(iωn) = iωn + µ− εd −

t2pd

iωn + µ− εp − t2Gpp
.

(13)
In practice an iterative procedure is implemented to

solve the set of DMFT equations: given an ansatz for
[G0]dd, and the fact that the interactions are local and
only act on the d orbital, the impurity many-body prob-
lem (11) can be solved to produce a local d−electron
Green’s function Gdd = −〈dd+〉Seff . This defines a lo-
cal self-energy Σ = [G−1

0 ]dd − G−1
dd , that allows for the

calculation of the local p−electron Green’s function Gpp

(6)

Gpp(iωn) =
∫

ρ0(ε) dε

iωn + µ− εp − t2pd

iωn+µ−εd−Σ(iωn) − ε

(14)
The obtained Gpp and Σ are then used as input to the
self-consistency condition Eq. 13 to produce a new [G0]dd.
This process is iterated until convergence is reached. At
the self-consistent point, the Green’s functions Gdd, Gpp

and the self-energy Σ correspond to the local propaga-
tors of the original lattice model. Moreover, since in the
z → ∞ limit Σ is local, then all the k dependent (or ε
dependent) propagators of the original lattice can also be
computed from this self-energy.

It is useful rewrite the local Green’s functions in terms
of the Hilbert transform of the density of states D̃(ξ) =∫∞
−∞ dερ0(ε)/(ξ− ε). For the conduction electron Green’s

function Gpp we get

Gpp(iωn) =D̃

(
iωn + µ− εp −

t2pd

iωn + µ− εd − Σ(iωn)

)

(15)

and for the d−electron Green’s function Gdd we obtain

Gdd(iωn) =
1

iωn + µ− εd − Σ(iωn)

+
[

tpd

iωn + µ− εd − Σ(iωn)

]2

Gpp(iωn)

(16)

This expression has a transparent physical interpretation:
there are two processes that a d−electron can undergo:
either remain fluctuating at the local site (first term),
or fluctuate for some time, then jump to the p site and
propagate, and then return and fluctuate some more time
(second term).
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D. Numerical solution

For the solution of the associated impurity many-body
problem (11), one may use a variety of techniques6. Here
we shall employ two numerical methods which are both a
priori exact: Hirsch-Fye quantum Monte Carlo (QMC)29
and exact diagonalization (ED). The interest of using dif-
ferent techniques is that they have complementary range
of applicability and that they allow for a crosscheck of
the numerical results. The first method, QMC, is a finite
temperature calculation and is exact in the statistical
sense. The other method is formulated at T = 0 and re-
lay in a finite size representation of the local site environ-
ment (i.e., the cavity Green’s function) by a bath of non-
interacting atomic sites connected to the local impurity.
In the limit of large number of atomic sites in the bath,
this approach also becomes a priori exact. Both methods
have already been well documented in the literature6, so
here we shall limit ourselves to briefly provide the rele-
vant technical details.

To implement the QMC, it is useful to first perform
the integration on the non-interacting local p−site in the
action (13), so that in the many-body problem the in-
teracting d−orbital is the only explicit degree of free-
dom. We then solve the impurity problem using the stan-
dard Hirsch-Fye QMC algorithm29, where the imaginary
time interval [0, β] is discretized in L time-slices of width
∆τ = β/L (where β is the inverse temperature). We set
U∆τ < 1 to limit the systematic errors introduced by
the Trotter decomposition. The precision of the calcu-
lations then basically depends on two remaining factors,
the statistical error and the criterion for the convergence
of the solution of the DMFT equations. For the former,
we typically perform 105 sweeps. When required, we may
do up to 106 sweeps, such as near the Mott transition, or
to compute the analytic continuation of data to the real
axis using the maximum entropy method30. The quality
of the convergence is controlled by monitoring the be-
havior with iteration number of Gdd(iω1), the imaginary
part of the d−electron Green’s function at the first Mat-
subara frequency, which shows the largest variations. We
stop the DMFT iterations when the fluctuations of this
quantity become of the order of the QMC statistical error
and remains stable for a few more iterations. In generic
regions of the parameter space we have studied, the solu-
tion converge in less than 20-30 iterations, but hundreds
may be necessary close to a phase boundary.

The ED algorithm is based on the representation of the
cavity Green’s function by finite number auxiliary atomic
sites6. They conform the “bath” or environment of the
local impurity. In general, an infinite number of sites
may be required to faithfully represent the dynamic en-
vironment, however, this is not possible to do in practice.
Therefore, one has to adopt a strategy to best represent
the environment with a finite number of auxiliary sites.
One may use two different “geometries” to represent the
bath: either the “chain” geometry, as described in Ref. 31
or the “star” geometry, as described in Refs. 32,33. In

both cases, the effective impurity problem consists of a
central impurity site, composed of an explicit d−orbital
and a p−orbital, where, by virtue of (12) only the latter is
connected to the bath. In practice, less than 10 sites can
be dealt with in this method and the ED is performed at
T = 0 using the Lanczos technique, which is convenient
to obtain the Green functions. In the case of the chain,
parameters of the auxiliary atomic sites can be obtained
in terms of a continued fraction expansion of the com-
puted Green’s functions6,31. On the other hand, in the
case of the star geometry, the parameters are obtained
by a χ2 minimization of the difference between the com-
puted local Green function and a finite size parametriza-
tion of the cavity6,32.

The ED method can be dramatically improved by
supplementing it with the Density Matrix Renormaliza-
tion group (DMRG) technique35–37. Several ED-DMRG
procedures for the solution of the DMFT equations
have been proposed recently28,35,37,38. The ED-DMRG
method that we use here is in essence identical to the
ED with the linear chain28,34. Since the linear geometry
is perfectly adapted for the DMRG procedure, we can
“grow” the bath to contain a higher number of auxiliary
sites with respect to the standard ED37. In practice, we
use up to 40 sites.

III. RESULTS

A. The Mott insulating state

In this section we shall present our results for the Mott-
Hubbard regime. In the Hubbard model, the system un-
dergoes a Mott metal-insulator transition when the den-
sity is n = 1 and the interaction strength U becomes of
the order of the bandwidth6. Here, a similar phenomenon
is expected as U is increased to a value of the order of
the effective bandwidth at the Fermi energy ∼ t2pd/∆
and keeping nd at about 1. As described before, the
Mott state is realized by setting a value of the interac-
tion larger than the effective bandwidth U > t2pd/∆ and
keeping the total occupation ntot = np + nd = 3. Simi-
larly to the Hubbard model case, in the PAM there is an
on-site Coulomb interaction acting on d−orbitals. This
interaction punishes the double occupation of d sites, and
consequently favors the tendency to localization and to
magnetic moment formation of the d electrons.

Notice that we have chosen in the definition of our
Hamiltonian (1) and (11) the so called non-magnetic form
for the interaction. This is motivated by the fact that
we are interested in the Mott physics of a paramagnetic
correlated state at nd ≈ 1, i.e. nd↑ = nd↓ ∼ 1/2. There-
fore the interaction term U

(
nd↑ − 1

2

) (
nd↓ − 1

2

)
approxi-

mately cancels at the Hartree-Fock level. This allows to
obtain some immediate physical insight. The cancella-
tion implies that for low values of U , where first order
perturbation holds, the interacting density of states of
the model remains essentially identical as in the non-
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FIG. 3: Density of states for the p− and d−electrons (dashed
and solid line) as obtained from ED-DMRG calculations (with
a 40 sites chain) at ∆0 = 1, tpd = 0.9, and ntot ≈ 3. Top panel
has U = 0.5 and µ = 0.612. Bottom panel has U = 2 and
µ = 1.029. The arrow indicates the width of the Mott gap
∆M. Insets: imaginary part of the p− and d−electron Green’s
functions. Data are from QMC at T = 1/128 (open symbols)
and ED-DMRG (lines). The finite (zero) value at ωn → 0
shows the metallic (insulating) character of the solution at
U = 0.5 (U = 2).

interacting case (see Fig. 2, lower panels). Therefore, the
position of the correlated narrow band remains approx-
imately fixed at the Fermi energy. Since the position
remains unrenormalized, at higher values of U one would
expect that the narrow band splits, forming a lower Hub-
bard band and an upper Hubbard band, below and above
the Fermi energy respectively and both carrying half of
the spectral intensity of the narrow band. At the Fermi
energy a large charge gap would then open and the sys-
tem becomes a Mott insulator.

1. Opening of the Mott gap

This scenario is in fact borne out in the actual model
solution that is shown in Fig. 3. The data corresponds to
a T = 0 calculation using the ED-DMRG method with
40 sites in the bath. The values of the interaction are
U = 0.5 (upper panel) and U = 2 (lower panel). This lat-
ter value of U is sufficient to drive the system to the Mott
insulating state. The insets of the figure contain a com-
parison of the results for the Green’s functions in Mat-
subara frequency from ED-DMRG at T = 0 and QMC at
the low temperature T = 1/128. The agreement is very
satisfactory. The ED-DMRG method also provides the
propagators in real frequency, we thus plot the more intu-
itive DOS in the main panels of the figure. In the weakly
correlated case (upper panel), the DOS resembles the non
interacting one: at lower energies −3 <∼ ω <∼ −1.5 there
is a band with dominant p−character, while at the Fermi
energy there is a narrower band with mainly d−character.
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FIG. 4: Top panel: nd (solid line), np (dashed line) and ntot

(dotted line), as a function of the chemical potential µ, for
U = 2. Data are from QMC calculations at ∆0 = 1, tpd = 0.9
and T = 1/64. A large Mott gap opens at U = 2 around
0.7 <∼ µ <∼ 1.2. Bottom panel: charge compressibility, κ =
∂n/∂µ versus µ for the same model parameter as in the top
panel.

In the Mott insulating state shown in the lower panel, the
DOS consists of three features: similarly as before, there
is a p−like band at high (negative) energies. However,
the main qualitative difference is that now the narrow
band at EF is splitted in a lower Hubbard band and an
upper Hubbard band respectively below and above the
Fermi energy. The Mott-Hubbard character of the tran-
sition in this parameter regime is seen from the fact that
both lower and upper Hubbard band have dominant d
character. Moreover, one also observes that the p com-
ponent is not negligible, especially in the lower Hubbard
band.

We should also mention that the apparent multiple
peak structure of the main three features appearing in
the DOS are merely due to the discreteness of the finite
number of sites used to describe the environment in the
ED technique. Though we are using as many as 40 aux-
iliary sites in the environment, the discretization effect
still remains rather noticeable. Nevertheless, the split-
ting of the narrow band at the Fermi energy with the
consequent opening of a large Mott gap ∆M that signals
the Mott insulator state is clearly observed.

The transition from metallic to insulating state with
the consequent opening of the Mott gap, can be also
observed from the behavior of the partial p, d and to-
tal particle occupation np, nd and ntot respectively, as
a function of the chemical potential. In Fig. 4 we show
these quantities and their first derivative κ = ∂n/∂µ pro-
portional to the charge compressibility, for U = 2. The
plateaux observed in the occupations, with the respec-
tive vanishing of the compressibility for ntot = 0 and
ntot = 4, correspond to the completely empty or com-
pletely full band insulators. The case ntot = 2 corre-
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FIG. 5: Top panel: size of the Mott gap ∆M as a func-
tion of U , for different position of the p electron band εp =
−6,−3,−2,−1 (top to bottom). Lower panel: mix-valence
character ν = nd−1 as a function of U , for the same position
of the p band as in the upper panel (bottom to top). The
results are obtained from ED.

sponds to the hybridization band insulator, similar to the
one already discussed in the non-interacting case. How-
ever, in contrast to the results for the non-interacting
case, the strong value of the interaction creates additional
plateaux in the n(µ) curves. The new plateaux occur
when the total number of particles is exactly ntot = 3,
which is odd and signals the Mott state.

An important aspect that we should mention is that
the Mott insulator state occurs where the correlated d
site has an occupation close to one, but not exactly unity.
This can be seen is Fig. 4 (top panel), where the Mott
plateau occurs at nd = 1 + ν (and np = 2 − ν), with
ν ≈ 0.13. The specific value of ν depends on the hy-
bridization and therefore one can consider it as a measure
of the mix-valence character of the Mott insulating state.
It is the total number of particles exactly equal to three
(or one hole) what is required for the onset of the Mott
insulator state. This implies that in this model where
the mixed p−d valence is explicitly included through the
hybridization, the Mott localization occurs for a “com-
posite” object which has a mixed p and d character.

2. Size of the Mott gap

The size of the Mott gap is naively expected of be of or-
der U , since it should mostly reflect the energetic cost to
doubly occupy the d orbitals. However our results show
that the size of the Mott gap ∆M may be substantially
smaller than the bare value U . In Fig. 5 we plot ∆M as
a function of U , for several values of the bare position
of the p−band εp, which amount to increase the charge
transfer energy ∆0. As the energy of the p−orbitals is
shifted down to larger (negative) energies, the effective
bandwidth of the narrow band at the Fermi energy de-
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FIG. 6: Top panel: imaginary part of the d−electron Green’s
functions in the Mott state, from ED-DMRG (for a large finite
clusters of 30 sites) at T = 0 and µ = 0.729, 0.829, 0.929, 1.029
(solid, dashed, dotted-dashed, dotted line respectively). Cir-
cles are the same quantity from QMC at T = 1/64. Lower
panel: imaginary part of the p−electron Green’s functions; all
model parameters are the same as in the top panel.

creases. In addition, the p−electron band becomes es-
sentially full with np → 2 as εp → −∞ (and keeping tpd

fixed). This implies a decrease in the mix-valence char-
acter of the electrons at the Fermi energy ν, as shown
in the lower panel of Fig. 5. In this limit the size of the
Mott gap approaches the “bare” value ∆M ≈ U . How-
ever, it is interesting to observe that the smaller values of
εp lead to a substantial renormalization of the size of the
expected Mott gap. This effect can be thought as due to
an effective screening that the p−electrons provide, or,
in more naive terms, because the electrons only “feel”
the repulsive term U during the time they spend on the
d−orbital, but not when they visit the p site. So as the
mixed p− d character is increased, the effect of the U is
renormalized downwards.

For completeness we show the behavior of the imag-
inary part of the Green’s functions at low Matsubara
frequency. In Fig. 6 we present numerical results for
several insulating states obtained varying the chemical
potential within the Mott plateau. The data were ob-
tained with both QMC and ED-DMRG, so also serve to
illustrate the good agreement between the two methods.
Note that the imaginary part of both the p and the d
electron Green’s functions go to zero at ωn → 0. By an-
alytic continuation this implies that the p and d electron
DOS vanish at the Fermi level, consistent with the insu-
lating character of the solutions. Accordingly, when the
chemical potential µ is varied within the Mott plateau,
the p− and d−electron DOS simply experience a rigid
shift in energy. However, as we shall see later, there are
dramatic changes in the DOS lineshapes as the system
turns metallic upon doping.
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B. Doped Mott insulator

So far we have shown that the model does have a Mott
insulator state which similarly as in the Hubbard model
case develop two incoherent Hubbard bands above and
below the Fermi energy. However, unlike in the Hubbard
model case, the size of the gap, i.e. the separation be-
tween the Hubbard bands, may be substantially smaller
than U if the hybridization is relatively high. In the
following section we shall proceed to dope this Mott in-
sulator with δ carriers, with δ = ntot−3. As was already
reported in Ref. 24, we will observe that the insulator to
metal transitions that can be obtained by either particle,
δ > 0, or hole doping, δ < 0, are qualitatively different.
The former will essentially reproduce the known scenario
for the Mott MIT that is realized in the DMFT solution
of one band Hubbard model6,25,34,43. This was to be ex-
pected since we have tuned the parameters of the model
to the regime where the identification of the low energy
physics of the PAM and the one band Hubbard model,
was expected to hold. However we shall see that, rather
surprisingly, the hole doping insulator to metal transition
bears out a qualitatively different scenario.

1. particle doping (δ > 0)

In this section we shall first describe the MIT driven
by particle doping and demonstrate that it realizes the
same first order transition scenario as the one in the sin-
gle band Hubbard model. The metallization of the Mott
insulator is most directly seen from the changes that take
place in the density of states. In Fig. 7 we show the evo-
lution of that quantity for the p− and d−electron com-
ponents as a function of doping. The data are obtained
with ED-DMRG at U = 2. In the top left panel we see
the DOS for the case where the chemical potential µ is
at the upper energy edge of the Mott gap, therefore still
in the insulator state with δ = 0. The top right panel
shows the metallic state that is obtained when the chemi-
cal potential enters the upper Hubbard band, doping the
parent Mott insulator with particles. We observe a broad
peak at the Fermi energy and a strong transfer of spectral
weight from the lower to the upper Hubbard band. The
d orbital character remains dominant in the DOS upon
doping.

In the bottom panel of Fig. 7 we show the DOS ob-
tained from analytically continued high quality QMC
data at low temperatures in the region of small doping,
very near the transition. The data reveal that both the
p and d electron components of the DOS show a nar-
row quasiparticle peak at the Fermi energy, flanked by
the incoherent upper Hubbard band at higher energies.
This coherent peak carries a small fraction of the spec-
tral intensity which is of order δ. In addition, from the
enhancement of the slope of the self-energy, one observes
that the quasiparticles acquire a heavy mass. All these
features are consistent with the MIT scenario found in
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FIG. 7: Density of states for the p and d electrons (dashed
and solid line) at U = 2, ∆0 = 1, tpd = 0.9. Top left panel
has µ = 1.199 (Mott insulator). Top right panel has µ =
1.299 corresponding to high doping δ = 0.264. Data are from
ED-DMRG calculations with 30 sites chain. Bottom panel:
DOS from analytically continued QMC data at T = 1/64,
µ = 1.244, corresponding to small doping δ ≈ 0.02.

the one band Hubbard model.
The most dramatic confirmation that the particle dop-

ing driven MIT scenarios in the PAM and in the HM
are in fact qualitatively analogous comes, however, from
the observation of the hysteresis effect in the particle
number n(µ) curve. The hysteresis is a hallmark of the
first order nature of this doping driven transition and
it was observed and studied in detail in the Hubbard
model8,9,25,41,43. We also find it here in the PAM, and it
is most clearly appreciated in the behavior of nd versus
µ. There is a strong dependence of the nd(µ) curves as
the temperature is lowered, signaling strong correlation
effects been active with very low energies. In Fig. 8 we
show the occupation of the d electrons as a function of
the chemical potential µ, obtained from QMC. The main
panel shows a detail of the QMC data at the low temper-
ature T = 1/64, where the hysteresis loop can be clearly
seen. These results were verified using the T = 0 ED
technique.

In order to observe the hysteresis cycle, we use as a
seed for the iterative procedure the converged solution
from the previous set of parameters8,25. Thus, the solu-
tions can be continuously “followed” in parameter space,
until it shows a sudden jump. The discontinuous jump
occur at the approximate position of the spinodal lines.
Similarly as in previous studies on the Hubbard model7,
the hysteresis defines a region of parameters where two
solutions of the DMFT equations can be stabilized. The
true physical transition should occur where the free en-
ergy of the solutions cross. The precise determination
of that line is beyond the scope of our present study and
probably would require further refinement of the numeri-
cal techniques due to the very low energy scales involved.

One key point that provides further support to our re-
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FIG. 8: Hysteresis loop for the nd(µ) curve at the upper en-
ergy edge of the Mott insulating state. Data are obtained
from QMC for T = 1/64 at U = 2, ∆0 = 1, tpd = 0.9. The
arrows indicate the solution obtained by following the insulat-
ing (circles) and the metallic solution (squares). Inset: root
mean square (RMS) of the imaginary part of the d−electron
Green’s function value at the first Matsubara frequency as a
function of the chemical potential. It shows the enhancement
of the fluctuation near the two critical values of chemical po-
tential, where the continued solution ceases to exist.

sults is the critical slowing down phenomenon observed in
the QMC calculation at the phase boundaries of the co-
existence region25,41. This phenomenon is characterized
by an enhancement of the number of iterations required
to achieve self-consistency and also by an enhancement
of the statistical Monte Carlo fluctuations that reveal the
shallowness of the energy landscape when two solutions
merge. The root mean square deviation of the lowest fre-
quency component of the d−electron Green’s function is
plotted in the inset of Fig. 8 as a function of µ for the
low temperature T = 1/64. As we approach the phase
boundaries of the coexistence region, we can see that the
root mean square deviation increases. Starting with an
insulating solution, if we increase the chemical potential,
the RMS increases until we reach a critical value of µ,
where the insulating solution disappears (open circles).
Similarly, starting form a metallic solution at low dop-
ing, if we reduce the chemical potential, the RMS grows
until a critical value of µ, where the metallic solution
disappears (open squares).

Evidently, the coexistence of solutions can also be ob-
served from the behavior of other quantities, such as
the double occupancy, or the low frequency part of the
Green’s functions. The latter is shown in Fig. 9 for both
p− and d−electron components.

These results support the claim that the MIT scenario
for δ > 0 in the PAM is completely analogous to the one
found in the Hubbard model investigations25,34,43.
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FIG. 9: Main panel: imaginary part of the d−electrons
Green’s function as a function of the Matsubara frequency
for ∆0 = 1, tpd = 0.9, U = 2, T = 1/64 and µ = 1.234,
corresponding to tiny particle doping δ = ntot − 3 ≈ 0.01.
Open symbols correspond to the metallic solution, while full
symbols to the insulating one. Inset: the correspondant
d−electron density of states ρd(ω). Thick line is the metallic
solution, thin line is the insulating one.

2. hole doping (δ < 0)

In the previous section we showed that upon particle
doping, δ > 0, the Mott MIT in the PAM realizes the
same physical scenario as the one observed in the single
band Hubbard model. While in the latter the particle-
hole symmetry implies an identical transition for δ < 0,
we shall see that this is not the case in the PAM. A key
point to appreciate is that we shall keep all model param-
eters fixed, with the obvious exception of the chemical
potential, which controls the occupation. Therefore, if
the chosen model parameters led, for δ > 0, to the iden-
tification of the PAM with the HM physics, then one may
also expect that this would be the case for δ < 0 as well.
Rather surprisingly this turns not to be the case24. In
this section we shall describe the main physical behavior
of the model for the hole doping driven MIT, and in the
next we shall argue about the origin of this unexpected
result.

We begin by showing the effect of large hole doping
in the DOS. In Fig.10 we plot the change in the p and
d components of the DOS as the system evolves from
Mott insulator (top left panel) to a hole-doped metallic
state (top right panel). In the insulator state we observe
that the chemical potential is located within the corre-
lation gap, and the lower and upper Hubbards bands
can be well appreciated at ω ≈ ±0.5. As we already
discussed, in this Mott insulator state the DOS at low
frequencies has mostly d electron character, since the d
orbital was initially located at the Fermi energy. Upon
hole doping, the chemical potential moves within the
lower Hubbard band. The metallization produces a wide
and strong quasiparticle peak at the Fermi energy. The
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FIG. 10: Density of states for the p−electrons (dashed line)
and d−electrons (solid line) for U = 2, ∆0 = 1, tpd = 0.9. Top
left panel has µ = 0.729, corresponding to a Mott insulating
state (δ = 0). Top right panel has µ = 0.329, corresponding
to heavy doping δ = ntot−3 = −0.28. Data are obtained with
ED-DMRG method using an environment of 30 sites. Bottom
panel: detail of the DOS from analytically continued QMC
data at T = 1/64 for µ = 0.554, corresponding to a small
doping δ = −0.03. The QMC data show the appearance
of a broad quasi-particle peak (ZRP) at the Fermi level, in
addition to the lower and upper Hubbard bands (LHB, UHB)
at high energies.

DOS of the lower Hubbard band remains of predomi-
nant d−character. However, in contrast to the particle
doped case, it also has a has a substantial p−electron
component at low ω. We observe a transfer of spectral
weight, with an increase of the weight of the lower Hub-
bard band at the expense of a decrease of the intensity
of the upper one. The structures that are partially seen
below ω ≈ −1.5 correspond to the fully filled band which
remains with predominantly p−electron character. How-
ever, upon metallization, there is a redistribution of the
spectral weight also in this band. Similarly as before (cf.
Fig. 7), the results shown were obtained with ED-DRMG
and the apparent multi-peak substructures are not phys-
ical and only due to the discrete number of poles that
result from a finite number of atomic sites in the auxil-
iary bath.

In the bottom panel of Fig. 10 we present the behav-
ior of the DOS for the correlated metal at small doping.
The results were obtained with high quality QMC data
and performed the analytic continuation to the real axis
using the maximum entropy method30. Unlike ED, this
method produces smooth spectra. The low frequency
part of the spectrum has a characteristic three peaks
structure: the lower Hubbard band around ω ∼ −0.4,
the quasiparticle peak that crosses the Fermi level, and
the upper Hubbard band at ω ∼ 0.6 (the high frequency
band of mainly p−character is not shown). The most
interesting aspect to appreciate is that the quasiparticle
peak has a substantial p and d electron components.
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FIG. 11: Partial occupation of the d electrons, nd, as a func-
tion of the chemical potential µ at U = 2, ∆0 = 1, tpd = 0.9.
Data are obtained from QMC calculations. Main panel has
T = 1/128. No trace of coexistent solutions are found. In-
set has T = 1/16, 1/32, T = 1/64 (dotted, dashed and full
lines). Notice the strong temperature dependence on the par-
ticle doped side of the transition (where only one branch of
the hysteresis cycle at T = 1/64 is shown), and the much
less temperature dependence on the hole doped side of the
transition.

The emergence of a quasiparticle peak at the Fermi en-
ergy may seem, at first sight, similar to the metallic state
obtained from particle doping. However this turns not to
be the case24,44. The reason for this striking asymmetry
of the quasiparticle peak upon particle or hole doping
will be discussed in the next section; however here we
can anticipate that it is due to a different nature of the
carriers introduced in the Mott insulator (i.e. a different
nature of the metallic state).

In order to fully underpin the nature of the order of
the hole doped transition, we now look for hysteresis ef-
fects. Thus, as we did before, we continuously follow
the solutions in parameter space. First, we start from
the insulator and lower the chemical potential till we ob-
tain a significantly doped metal; and then, we start from
the metal and increase µ until we reach again the insu-
lator. Neither our QMC numerical simulations nor the
ED-DMRG studies showed any indication of hysteresis
effects. The QMC data down to T = 1/128 are shown
in Fig. 11. Compared to the results for particle doping
(inset), the present ones show a negligible temperature
dependence. Thus, up to our current numerical capacity
we have to conclude that the metal-insulator transition
in the hole doped case occurs through a T = 0 second or-
der quantum critical point. Therefore it is qualitatively
different from the particle doped case, and, consequently,
also qualitativley different from the Hubbard model sce-
nario. Of course, we cannot rule out that at even lower
temperatures the transition may be first order. This is-
sue cannot be resolved nor by ED or ED-DMRG data due
to the finite frequency cut-off set by the finite size of the
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FIG. 12: Phase diagram of the PAM in the U − µ plane that
maps the Mott insulator (MI) and its boundaries with the
metallic state (M). The boundary between the metal and the
band insulator (BI) at ntot = 4 is also shown. The bound-
ary lines are for T = 0 ED star geometry calculations. The
dashed line denotes the region of the parameters where there
is coexistence between two solutions, one metallic-like and the
one insulating-like.

clusters to diagonalize. Resolving this issue would prob-
ably require NRG study. However this is not fully clear
since NRG method requires a good separation of energy
scales, which is not the case here. However, here the main
point our results indicate, is the asymmetry hole/particle
found for a large range of temperatures –range of temper-
atures that has a physical experimental relevance. In fact
the lowest temperature we have reached is T = 1/128 in
units if the half bandwidth D, so T ∼ 50K, assuming a
bandwidth ∼ 1eV.

IV. DISCUSSION

Our results for the doping driven MIT, that arise from
either particle or hole doping the Mott insulator, show
a qualitative asymmetry, thus questioning the expected
mapping of the PAM onto the Hubbard model. In this
section we shall address in more detail this issue from the
perspective of the physical nature of the two MIT taking
place in the PAM.

A. Phase diagram

To begin, we map out the phase diagram in U − µ
parameter space to explore the respective ranges of the
first and the second order transitions. Our results are
summarized in Fig. 12, that contains finite T quantum
Monte Carlo and T = 0 ED data (the latter are obtained
with the “star” geometry, which is better suited6,32 than
“chain” geometry to study the possible coexistence be-
tween the metallic and the insulating region).

The phase diagram in the U − µ plane shows a cen-
tral V-shaped Mott insulator region with the correlated
metallic phases for particle and hole doping, respectively
to the right and to the left. A threshold value for the
strength of the interaction U (tip of the V-shape bound-
ary) is required to obtain a Mott insulator state. This
threshold depends on the value of the “bandstructure”
parameters ∆0 and tpd. This feature is analogous to the
existence of critical value of the ratio U/D in the one
band Hubbard model6.

The central V-shaped Mott insulating region shows a
remarkable asymmetry comparing the hole and the elec-
tron sides. In contrast, in the one band Hubbard model,
due to the particle-hole symmetry, the V-shape onset of
the Mott insulator is symmetric respect to the tip and
behaves as Uc ∼ Uc1 ± 2µ, where Uc1 is the value of
the interaction at which the insulator disappears6. In
the PAM, the transition line to the particle doped side
behaves as well like Uc ∼ const.+2µ. However, the tran-
sition line to the hole doped metal is almost vertical.

We also mapped out the order of the transition along
the boundary lines. Upon hole doping, both QMC cal-
culations down to the low temperature T = 1/128, and
ED calculations at T = 0 show no trace of coexistent so-
lutions along all the transition line, indicating a second
order transition. On the other hand, upon particle dop-
ing, the dashed line in the phase diagram displays the
region of the parameter space where, for sufficient low
temperatures, an insulating state coexists with a metal-
lic state. In fact within ED method at T = 0 we find
that the DMFT equations have two different solutions
all along the transition line. Within QMC, and down to
the low temperature T = 1/128, we found a coexistence
region only for a sufficiently large strength of the repul-
sive interaction U (approximately U ≈ 2 for our specific
choice of parameters). However, for smaller values of
U , the phase boundary remains strongly dependent on
temperature. This suggests that the temperature below
which there is a coexistence between metallic and insu-
lating state decreases rapidly approaching the tip of the
V-shape. This should be expected, since the two bound-
ary lines, to holes and particle doped metal, eventually
merge at the tip.

A natural issue to consider is whether the physics as-
sociated to the “exhaustion problem” of Nozieres42,45,46
(see also related works on the Kondo lattice model47,48
and on the PAM49–51) may play a role in the different
transitions at δ greater or smaller than 0. In this re-
spect, we realize that at the Mott insulator state (δ = 0)
the occupation of the conduction p−electrons is almost
saturated at np = 2 − ν (with ν << 1). On the other
hand, the occupation of the non dispersive d−electrons
which carry strong magnetic moments due to the on-site
repulsion is close to one, with nd = 1 + ν (cf Fig. 5).
Therefore, there is only a small number ∼ ν of p−holes
available to screen a number of order one of d magnetic
moments. This situation indeed corresponds to the one
associated to the “exhaustion problem”. Therefore we
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conclude that exhaustion physics may play a role in the
parameter regime where the transition take place in our
model. However, an important point to realize is that
the exhaustion situation is even more extreme on the
particle side than on the hole-doped side. In fact, while
the number of d−electron remain always of order one
on both sides, the number of available p−holes is sub-
stantially smaller for δ > 0 with respect to the δ < 0
case. Nevertheless, the Hubbard-like first-order transi-
tion scenario takes place only on the particle-doped side.
In other words, the PAM metal-insulator transition sce-
nario is analogous to the one in the Hubbard model when
the PAM is even deeper in the exhaustion limit (δ > 0,
np ≈ 2). This implies that while exhaustion should play
a role, it is not obviously responsible for the failure of the
mapping of the PAM onto the HM for δ < 0.

B. Nature of the carriers as we dope the Mott
insulator

We now address the issue of the physical nature of
the metallic states in this system. Although the low fre-
quency part of the DOS of both, particle and hole doped
metals, have a similar three peaks structure with domi-
nant d character, they realize physically different states.
For instance, their charge compressibility has a very con-
trasting temperature dependence. In Fig. 13 we show
the derivative of the total occupation with respect to the
chemical potential, κ = ∂ntot/∂µ (an observable propor-
tional to the compressibility) as a function of doping.
In the Mott insulator (δ = 0) κ is zero, indicating the
incompressible Mott state. As expected, upon doping,
k increases, indicating that the system becomes com-
pressible. For small particle doping, the compressibility
rapidly increases with the temperature. Upon hole dop-
ing, κ is much less dependent on temperature.

In the PAM the physics of the metallic states is usually
discussed in terms of the screening between the p conduc-
tion electrons (or holes) and the magnetic moment of the
local d−electrons. In fact, at each lattice site a p− and a
d−electron may form a local singlet, which is the under-
lying idea in the argument of Zhang and Rice (ZR) in the
context of high temperature cuprate superconductors39.
However, if on the particle side of the Mott MIT we have
argued that there are essentially no available holes, then
the question is, what is screening the d−moments so to
produce a normal (but heavy) Fermi liquid metal, analo-
gous to the one in the doped Mott insulator in the Hub-
bard model?

The answer to this question is that, similarly to the
one band Hubbar model case, the d−electrons are screen-
ing themselves. In fact, the local ZR singlet formation
does not take place for δ > 0 simply because there are
no holes available for screening. Nevertheless, despite the
high filling of the p−orbitals, the strong hybridization tpd

still allows for delocalization of the d−electrons, through
charge fluctuations across the p−sites. The key physical
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FIG. 13: κ = ∂ntot/∂µ as a function of doping δ, for sev-
eral values of the temperatures T = 1/16, 1/32, 1/64 (circels,
squares, and triangles respectively). Data are obtained from
QMC calculations at ∆0 = 1, tpd = 0.9, U = 2. On the
particle doped side, we followed the metallic solution.

point in this process is that since the p−orbitals are al-
most full, they have a negligible local magnetic moment,
so these charge fluctuations take place without signifi-
cant magnetic p − d coupling. Therefore the magnetic
phase coherence of the d−electrons is preserved and, in
consequence, a superexchange mechanism between neigh-
boring d sites occurs. Thus, from the point of view of
the d−electrons, they have strong magnetic moments,
they delocalize keeping their quantum mechanical phase
through essentially non-magnetic p-sites, and therefore
also experience antiferromagnetic correlations with near-
est neighbor d−sites. These physical ingredients are ev-
idently also realized for the carriers in the single band
Hubbard model. Therefore we can now rationalize the
underlying mechanism for the mappping of the PAM onto
the one band Hubbard model at δ > 0.

On the other hand, the situation is very different as
the chemical potential is lowered to dope holes into the
system. There, the number of available holes become
more significant and they can lock up with the robust
d−magnetic moments to form local ZR singlets. How-
ever, when the d−electrons of these singlets want to de-
localize, i.e. hop to the neighboring sites and eventually
form a quasiparticle band, they completely loose the in-
formation of their spin phase, thus the antiferromagnetic
correlations between neighboring d do not build up. In
consequence, Hubbard model like physics does not take
place and the nature of both the MIT and the ensuing
correlated metallic state becomes fundamentally differ-
ent. That is the key physical reason why the mapping of
the PAM with a one band HM is no longer valid.

In order to substantiate the previous qualitative dis-
cussion, we show in Fig. 14 the d and p local moment
formation as a function of doping for a large strength of
the interaction U and for a value slightly above the tip.
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FIG. 14: Top panel: 〈(mz
d)2〉 (circles) and 〈(mz

p)2〉 (squares)
as a function of doping δ for ∆0 = 1, tpd = 0.9, U = 2
(full symbols) and U = 1.2 (open symbols). Bottom panel:
〈mz

pmz
d〉 as a function of doping δ, for the same values of the

parameters as in he main panel. The results are obtained
with ED with star geometry.

The local moment formation is defined as

〈(mz
α)2〉 = 〈(nα↑ − nα↓)2〉 = nα − 2〈nα↑nα↓〉 (17)

where α = p, d. Notice that the difference between the
particle occupation n and the moment directly measures
the double occupancies of the sites. In the Mott in-
sulator (δ = 0) the local moment of the d electrons,
〈(mz

d)
2〉, is large because the d−sites are predominantly

single occupied due to the effect of U . On the other
hand, the p−band is almost fully occupied, and thus
the local moment of the p−electron, 〈(mz

p)
2〉, is signif-

icantly smaller. As one dopes the Mott insulator with
particles or holes, the relative distribution of the local
moments among both p and d sites is strikingly asym-
metric. Upon particle doping, δ > 0, 〈(mz

p)2〉 becomes
even smaller, since the occupation of the p band get satu-
rated. On the other hand, the d moment decreases more
rapidly (and linearly) with the doping, since the charge
fluctuations between the single occupied and double oc-
cupied d states increase. Therefore these results support
the view that for the particle doped side of the transi-
tion the p−sites are magnetically inert and consequently
the d electrons are screened by the d−electrons. For the
hole doped metal, δ < 0, the p−electron local moment,
〈(mz

p)
2〉, increases linearly with the doping because holes

are mostly added to p−sites. In contrast, the opposite
behavior occurs for the d local moment, which slightly
linearly decreases with hole doping. Thus, the increase of
the magnetic character of p−electrons is consistent with
our argument for the formation of local singlets in the
hole doped case.

To fully underpin our hypothesis we compute the mag-
netic moment correlation between the d− and p−sites,

〈mz
pm

z
d〉 = 〈(nd↑ − nd↓)(np↑ − np↓)〉 (18)

The results are shown in the bottom panel of Fig. 14.
They illustrate that in fact on the particle doped side the
magnetic correlations are negligible, however on the hole
doped side they increasingly grow as the chemical poten-
tial moves into the lower Hubbard band. The growth of
the expectation value is commensurate with the increase
in hole doping and signals that the doped p−holes bind
magnetically to the local d−electron magnetic moments.
This represents the formation of the equivalent to Zhang
Rice singlets in the present model, that only occurs at
δ < 0.

In the Mott insulating state (δ = 0) the magnetic cou-
pling between the d and the p electrons is negligible be-
cause the p sites are basically full and they cannot de-
velop a magnetic moment, thus they cannot screen the
magnetic moments of the d sites. However, one should
realize that the electrons on the d orbitals are localised,
but they indeed may “jump” to the nearest d orbital sites
through a quantum mechanical virtual process through
two neighboring p sites. As a consequence, the mag-
netic correlations develops directly among the d orbitals
and these correlations have an antiferromagnetic charac-
ter due to the superexchange mechanism.

Upon particle doping, there is no significant p−d mag-
netic binding because the extra particles mainly go to oc-
cupy the d sites, so the p orbitals simply allow the charge
fluctuations of the d electrons. Thus the correlated d
electrons of the PAM experience local Coulomb repulsion
and can hop to neighbor sites via superexchange mecha-
nism, therefore can play the same role as the single type
carriers in the HM and produce a qualitatively similar
MIT scenario.

Upon hole doping, the doped holes binds magnetically
to the d local moments, and the object that delocalise
through the lattice is this composite object. Therefore
the nature of both the insulator to metal transition and
of the correlated metallic state is qualitatively different
from that found upon particle doping (and in the Hub-
bard model).

C. d−electron delocalization versus Zhang-Rice
singlet delocalization

The origin of the two different MIT scenarios and the
resulting correlated metallic states can also be argued
from an energetic point of view. The doping introduces
new states inside the Mott gap ∆M , which is renormal-
ized by the hybridization tpd. These states are a mixture
of p and d states. An estimate of gain of the Zhang Rice
singlet formation is

EZR ∼ ν(1− ν)
t2pd

∆±∆M
(19)

This results from the the hopping of a p−hole (2−np = ν)
on a d−site singly occupied (1− ν). We should compare
the above binding energy with the delocalization energy



14

of a d−electron between two neighboring sites, which is
proportional to

ESE ∼ (1− ν)2
t4pd

∆2U
= (1− ν)2

t2eff
U

(20)

This results from the virtual hopping of a d−electron
to its nearest neighbor d site (i.e. through two p sites).
A priori this gain is of order one, since the d site are
approximatively all singly occupied, and 1 − ν electrons
participate in the superexchange process. In fact, in the
region of parameter we are investigating, the parameters
tpd, ∆ and U are of order one. Therefore, the energy
gain in the delocalization of a d−electron (20) is of order
(1− ν)2.

Upon particle doping, the energy gain of singlet for-
mation (19) is of order ν(1− ν), thus for small but finite
ν, it is much smaller than the spin exchange energy gain
(20). Thus we can understand that for particle doping
the spin exchange energy gain dominates on the energy
gain of singlet formation. This imply that the metallic
state realized upon particle doping, is due to the delocal-
ization of mostly d electrons. Therefore the d electrons
play the same role as the single type of carriers in the
single band Hubbard model and produce qualitatively
similar MIT scenario.

On the other hand, upon hole doping, the energy gain
of Zhang Rice singlet formation can be substantial. In
fact, in our region of parameters, ∆ is of the same order
of ∆M , and the partial cancellation of the denominator
in (19) explains that for a small but finite ν (which is con-
trolled by the hybridization), the energy gain of singlet
formation in the hole doped transition case dominates on
the spin exchange energy gain. Thus we can understand
that, upon hole doping, the ensuing metallic state is due
to the delocalization of these composite objects. The na-
ture of this metallic state has been studied in detail in
our recent work44.

D. How to restore the mapping of the PAM onto
the Hubbard model

Before we demonstrated that the PAM has a region of
parameters where the expected mapping to the Hubbard
model does not hold. Now we may ask the following
question: where the mapping to the Hubbard model does
hold?

We have shown that the new physics in the PAM re-
spect to the Hubbard model comes from the local cou-
pling between the p− and d−electrons. Thus we ex-
pect that disfavoring this binding can restore the valid-
ity of the mapping. To test this hypothesis, we lower
the energy position of the p−band, εp (i.e. we increase
the charge transfer energy ∆0). We already noticed in
Sec. IIIA that upon increasing the bare charge transfer
energy ∆0 = εd − εp, the Mott gap approaches the bare
value U and the mix-valence character of the electrons is
in fact decreased.

-1 -0.5 0 0.5 1
µ

0

0.5

1

1.5

2

U

FIG. 15: Phase diagram of the PAM in the U − µ plane
that maps the Mott insulator and its boundaries with the
metallic state. Data are for tpd = 0.9 and ∆0 = 1, 2, 3, i.e.
εp = −1,−2,−3 (circles, squares and triangles). Data are
obtained with T = 0 ED calculations.

In Fig. 15 we show the phase diagram in the plane
U − µ for different values of the position of the p band.
Upon increasing ∆0, the threshold value of U to obtain
the Mott insulator region becomes smaller. This results
from the fact that the interaction U is competing with a
decreasing bandwidth ∼ t2pd/∆. In addition, as expected,
the V-shaped boundaries of the Mott insulator become
more symmetric at larger ∆0.

To verify whether the character of the transition can
be modified on the hole doped side, we observed at the
temperature behavior of the particle number, n. Upon in-
creasing ∆0, we find that n versus µ curves becomes more
temperature dependent, which is a first indication of the
possible realization of the Hubbard model scenario also
in the hole doped side. However, due to the reduction of
the effective bandwidth teff ∼ t2pd/∆, the temperature
below which we may obtain the hysteresis cycle in the n
versus µ curves should be extremely low. Nevertheless,
we succeeded in obtaining evidence of a small hysteresis
at ∆0 = 3.

To complete this study we also computed the local
moment of p− and d−electrons upon increasing ∆0. In
Fig. 16 we plot the moments (top panel) and the mag-
netic binding between the p− and d−electrons (bottom
panel) as a function of doping for several values of the
position of the p−band. In the Mott insulator (δ = 0),
upon decreasing the position of the p band, 〈(mz

p)2〉 is
decreased and 〈(mz

d)
2〉 is increased. This is because

the mix-valence character of the electrons is reduced,
since the p band become essentially full with np → 2
as εp → −∞. Thus the doping has just a small effect
on 〈(mz

p)
2〉. On the other hand, upon hole doping, the d

local moments decreases more rapidly when the p−band
is deep in energy. As a result, the magnetic correlation
between the p− and d−electrons, 〈mz

pm
z
d〉, shown in the

bottom panel of Fig. 16, is expectedly punished by higher
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FIG. 16: Top panel: 〈(mz
d)2〉 (circles) and 〈(mz

p)2〉 (squares)
as a function of doping δ for tpd = 0.9 and U approximately
two times larger than the threshold value to have a Mott gap
(tip in the V shape of the phase diagram) and εp = −1,−2,−3
(black, red and green symbols). Explicitly: εp = −1 and
U = 2, εp = −2 and U = 0.8, εp = −3 and U = 0.4. Bottom
panel: 〈mz

pmz
d〉 as a function of doping δ, for the same values

of the parameters as in the top panel. The results are obtained
with T = 0 ED star geometry calculations.

values of ∆0 . This is fully consistent with the mentioned
recovery of the mapping of the PAM onto the Hubbard
model. Therefore we can understand that for lowering
in energy the position of the p−band the mapping of the
PAM onto the HM should holds: the p−electrons are dis-
favored to couple magnetically with the d−electrons, and
thus they cannot screen them.

V. CONCLUSIONS

In this paper we considered the doping-driven Mott
transitions in the periodic Anderson model set in the
Mott-Hubbard regime and we discuss it with respect to
the transition realized in the single band Hubbard model.
We use the dynamical mean-field theory as theoretical
tool to study this issue.

In contrast to the Hubbard model, the PAM has a
qualitatively different metal-insulator transition for par-
ticle or hole doping. Upon particle doping of the Mott

insulator, the metallic state is reached through a first or-
der transition, that is analogous to that of the Hubbard
model. However, upon hole doping the Mott insulator,
there is a continuous (i.e. second order) insulator-metal
transition through a quantum critical line in the param-
eter space U − µ.

We argued that the hole doped metal has delocalized
Zhang Rice singlets that fail to build substantial superex-
change as compared to the Hubbard model (and particle
doped case). In fact, we discussed the qualitative differ-
ences between these two transitions, showing that it is
not due to the physics of the “exhaustion”, but indeed
is related to the magnetic interaction that develops be-
tween the two species of electrons in the model. Our re-
sults on the magnetic correlation between the d− and the
p−electrons (see lower panel of Fig. 14) show that upon
particle doping the p−electrons permit the charge fluctu-
ations and the delocalization of the d−electrons without
magnetic p − d coupling. On the hole doped case, in
contrast, the system favors the formation of singlet pairs
p− d.

Upon increasing the charge transfer energy, we could
recover the mapping of the PAM to the Hubbard model
for the hole doped case. This signifies that a substan-
tial mix-valence character was the key ingredient for the
realization of the second order transition in this model.

Our findings may be important looking at the present
effort to apply DMFT calculation in regard to real
materials52,53. Those studies usually carry the implicit
assumption of the Hubbard model as the underlying low
energy Hamiltonian of complex systems. Our work in-
dicates that the Hubbard model scenario may be ques-
tionable when the hybridization of the correlated band
with another band is high. In particular, our work is rel-
evant for the analysis of the metal-insulator transitions
of transition-metal oxides, that usually have oxygen or-
bital mediating the delocalization of the d correlated elec-
trons of the transition-metal. Therefore the role of the
oxygens band and their hybridization with the localised
band should be explicitely considered in the investigation
of the Mott transition.
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