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Abstract 
In the polymers industry, models are heavily parametrizised, and the effect of each 
parameter on model outputs has not been extensively studied. A wide range of values 
for most of model’s parameters can be found in literature [1], a thorough analysis 
regarding the model’s sensitivity to the parameters’ values is needed to find the set of 
parameters that have the most impact in the output results and consequently deserve an 
extra effort and care during their estimation. In this work, a global sensibility analysis of 
a styrene emulsion polymerization reactor model is carried out in order to determine the 
set of critical parameters. 
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1. Introduction 
In the case of the chemical industry uncertainty sources are found due to the model 
which includes all kinds of information arising from experimental and pilot plant data 
(kinetic constants, physical properties and transfer coefficients) and the process 
including information regarding stream quality, (variations in flow rate, pressure and 
temperature). Other uncertainty sources are external uncertainty including variability 
regarding information that is outside the system boundary and finally discrete 
uncertainty which is related to equipment availability and other random events [2]. 
During the last decades, polymerization processes have played a central part in 
petrochemical industry for the production of plastics, rubbers, paints and other many 
kinds of products. The many possible phases present inside some types of 
polymerization reactors and transfer phenomena occurring between them make 
emulsion polymerization systems very difficult to model. In addition to the common 
difficulties of modelling mass transfer phenomena and equilibrium conditions between 
several phases, the lack of reliable values for parameters makes the modelling task even 
more complex. 
 
The big disparity between parameters values used in those models, either, related to 
reaction kinetics or used within transfer and equilibrium equations, causes serious 
problems when one attempts to validate the model. Some of these parameters like pre-
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exponential constants or activation energies for the different polymerization reactions 
involved (propagation, termination, chain transfer etc) may differ in more than one 
order of magnitude in similar conditions [1]. This big disparity, can also be found in 
other parameters like diffusion coefficients or phase surface tension values [3,4]. 
 
Due to this big parameter uncertainty ranges, it is important to estimate the actual effect 
of each one of these uncertain parameters on the final model outcomes, aiming at 
determining which are the most influential ones. The knowledge of this set of critical 
parameters can focus attention on them for more accurately estimation via physical 
experiments or for further model enhancements. Moreover, it also allows for the 
modeller to know which parameters are the least influential to model outcomes, to ease 
the modelling of such model parts, by assuming model simplifications. 
 
A sensibility analysis (SA) [5], is the study of how the variation in the output of a model 
can be apportioned, qualitatively or quantitatively, to different sources of variation and 
of how this model depends on information fed into it. Various methods have been 
proposed to make uncertainty operational due to parameter uncertainty, such as the use 
of analytical uncertainty propagation methods; calculations based on intervals; applied 
fuzzy logic computations; and stochastic modelling describing parameters as 
uncertainty distributions [6]. 
 
The usage of analytical propagation methods suffers from complexity in algebra that 
increases rapidly with the complexity of the model, the method produces moments of 
distributions (mean and variance) making hard to obtain reliable estimates for the tails 
of the output distribution. It is basically a local approach and will not be accurate if the 
uncertainties are large, if the model is not smooth or if important covariance terms are 
omitted. In this respect Saltelli [5] points out that the usage of error propagation 
methods (derivative methods) provide only of a local glimpse at model factors effect on 
model outputs. The usage of sampling methods which explore the full space of possible 
model parameters values is recommended. 
 

2. Problem statement 
Several metrics can be calculated based on sampling results, such as standard statistics 
(mean, standard deviations and confidence intervals) or regression analysis metrics. 
Regression metrics are based on a linear correlation resulting from input variables (x) 
and model output results (y). Standardization of input variables and output results is 
performed by subtracting the mean value and normalizing the standard deviation. SRCs 
are obtained from a fit to a minimum square difference optimization. A value of any 
SRC close to zero indicates that the output variable is not correlated to that input 
variable. The sign of SRC also indicates the relationship between input and output 
variables.  
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Another commonly used metrics are Partial Correlation Coefficients (PCCs); which are 
calculated by performing several regressions including or not the variable under study. 
In this case a PCC tries to show how much each input variable affects the behaviour of 
the output variables. This can be obtained by performing two separate regressions one 
where all input variables are used (ylf

xh) and one with the subject input variable ignored 
(ylf

~xh) [5]. 
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PCCs have only positive values; the values that are closer to one represent more 
important variables. 

3. Paper approach  
In this work we adopt a stochastic sampling approach, which varies input data (model 
and process parameters) according to given probability distributions. The model is run 
for a given set of input values realizations and stores its output results. This procedure is 
repeated until the appropriate uncertainty ranges are obtained for the output variables. 
 
3.1. Methodology and Case Study 

An isothermal batch reactor model for styrene emulsion polymerization is considered. 
The model includes the mass balances for initiator, surfactant, monomer, radical and 
polymer species. Both, micellar and homogeneous nucleation are considered and the 
radical flow into particles and micelles and also its desorption from particles are 
included following a similar approach as in Gao et al. [3]. The model also includes 
polymer molecular weight calculations by using the moments approach. The model 
renders a detailed description of the physical phenomena and chemical reactions that 
take place in the aqueous and polymer phases. Model results have been able to 
reproduce experimental data provided in the literature [1,3,4]. 

 
3.2. Sampling methodology 
A Monte Carlo sampling (MCS) methodology was used. Variable input probability 
distribution functions (pdfs) can be seen in table 1. In order to set these pdfs data from 
literature was used. Uniform distribution functions were used for parameters for which 
no information except a range was found, while normal distributions were used in the 
case of parameter for which more information was available (process operating 
conditions). 
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Table 1. Input parameter tested distributions 

Variable 
Name 

 

Unit Distribu-
tion 

shape 

Distribution parameters Variable 
Remark Mean / Lower 

Bound 
STD / Upper 

Bound 
Akt [l/mol·min] Uniform 3.33E+15 4.50E+15 A 
Ekt [kJ/mol·K] Uniform 7.54E+03 1.02E+04 A 
Akt

w [l/mol·min] Uniform 3.33E+15 4.50E+15 A 
Ekt

w [kJ/mol·K] Uniform 7.54E+03 1.02E+04 A 
Akp [l/mol·min] Uniform 9.64E+10 1.30E+11 A 
Ekp [kJ/mol·K] Uniform 8.84E+03 1.20E+04 A 
Akp

w [l/mol·min] Uniform 9.64E+10 1.30E+11 A 
Ekp

w [kJ/mol·K] Uniform 8.84E+03 1.20E+04 A 
alfaTerDes [1] Uniform 0.00E+00 1.00E+00 A 
Akf

m [l/mol·min] Uniform 4.69E+03 6.34E+03 B 
Ekf

m [kJ/mol·K] Uniform 2.86E+04 3.86E+04 B 
Chi [1] Uniform 4.00E-01 7.00E-01 C 
Dw [dm2/min] Uniform 1.20E-07 1.76E-09 D 
Dp [dm2/min] Uniform 1.20E-08 1.76E-12 D 
mmd [1] Uniform 8.50E+11 1.15E+12 D 
Jcr [1] Uniform 5.00E+00 8.00E+00 D 
DMM  [dm2/min] Uniform 8.72E-12 1.18E-11 D 
F [1] Uniform 5.00E-01 7.00E-01 E 
Akd [l/mol·min] Uniform 1.30E+18 1.75E+18 E 
Ekd [kJ/mol·K] Uniform 2.83E+04 3.83E+04 E 
rmic [dm] Uniform 2.00E-08 5.00E-08 F 
Surfactant [g] Normal 1.43E+01 2.00E+00 G 
Monomer [g] Normal 3.00E+02 1.67E+01 G 
Initiator [g] Normal 7.07E+00 1.00E+00 G 
Reactor Temp. [K] Normal 3.23E+02 6.67E+00 H 
Reactor Vol. [l] Normal 7.00E-01 3.33E-02 H 

Variables marked as A, represent values associated to the propagation-termination 
reaction system, B related to inhibition and chain transfer mechanisms, C, D, E and F 
are related to monomer, radical, initiator and surfactant physical properties respectively. 
G and H refer to initial charge and reactor working conditions. In the case of kinetic 
related parameters the superscript refers to the phase where reaction occurs. 
 
Each scenario was created by sampling all variables from their respective distributions, 
these variables realizations were used to run the model. Output variables were 
calculated at three different time intervals namely: 0-10, 45-55 and 90-100 minutes. 
These three time regions were defined due to expected different model behaviour. 
Random variable value generation and SRC and PCC calculation were performed using 
Matlab®. The number of scenarios used to compute SRCs and PCCs was gradually 
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increased until the obtained values did not change appreciably. The total number of 
simulation runs performed was 5000. 
 
3.3. Results and discussion 
The model output results studied were monomer conversion (X), polymer molecular 
weight (MW) and polydispersion (PD). These variables allow for a global interpretation 
of model results.  

Table 2. Calculated time average SRCs and PCCs 

Variable X MW PD 
Metric SRC PCC SRC PCC SRC PCC 

Akt 0,003 0,005 -0,012 0,016 0,024 0,026 
Ekt -0,011 0,048 0,064 0,082 -0,110 0,115 
Akt

w -0,002 0,004 -0,001 0,001 -0,010 0,010 
Ekt

w -0,015 0,065 0,024 0,031 0,006 0,007 
Akp 0,020 0,042 0,020 0,026 -0,005 0,008 
Ekp -0,306 0,521 -0,215 0,268 0,014 0,017 
Akp

w -0,009 0,020 0,005 0,007 0,008 0,008 
Ekp

w 0,000 0,005 0,000 0,003 -0,006 0,006 
alfaTerDes -0,005 0,029 0,021 0,028 0,085 0,089 
Akf

m -0,011 0,022 -0,003 0,004 0,002 0,002 
Ekf

m 0,147 0,295 0,114 0,146 0,056 0,058 
Chi -0,006 0,017 -0,003 0,004 -0,009 0,010 
Dw 0,003 0,011 -0,008 0,010 0,004 0,005 
Dp -0,076 0,159 0,073 0,095 0,011 0,012 
mmd 0,009 0,022 0,001 0,001 -0,010 0,011 
Jcr 0,000 0,003 0,013 0,017 -0,005 0,005 
DMM  -0,002 0,022 -0,004 0,005 -0,021 0,022 
F 0,018 0,038 0,003 0,004 0,010 0,011 
Akd 0,019 0,039 -0,018 0,023 -0,004 0,004 
Ekd -0,757 0,839 0,629 0,625 0,295 0,292 
rmic 0,037 0,079 -0,041 0,053 -0,066 0,069 
Surfactant -0,015 0,039 0,025 0,033 -0,010 0,014 
Monomer -0,009 0,029 0,008 0,010 0,017 0,018 
Initiator 0,029 0,061 -0,012 0,016 0,001 0,004 
Reactor Temp. 0,217 0,414 -0,111 0,142 -0,041 0,043 
Reactor Vol. -0,005 0,011 -0,002 0,003 0,017 0,018 

The values were calculated for each variable at three different time intervals, the 
reported value is the arithmetic average (see table 2). It is found that each input 
parameter affects in different ways to the selected output variables results. In all cases a 
high value for PCC is also associated to a value significantly different than zero for 
SRC. The most influencing input variables found were: reactor temperature (T) and the 
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activation energies for the initiator decomposition (Ekd), inhibition (Ekfm) and polymer 
phase polymerization (Ekp) reactions. 
It can be seen from SRCs values that increments in reactor temperature for this system 
will impact increasing conversion while decreasing polymer molecular weight. The 
other parameters found to be influential are the activation energies for the polymer 
phase, while all other reactions are mostly non influential. The only input parameter 
influencing polydispersion was found to be the activation energy for the initiator 
decomposition reaction. 
 

Table 3. Calculated SRCs for different time intervals for the four most significant variables 

Variable X MW PD 
Time Interval [0-10] [45-55] [90-100] [0-10] [45-55] [90-100] [0-10] [45-55] [90-100] 
Ekp -0.456 -0.248 -0.214 -0.231 -0.206 -0.207 0.040 0.005 -0.003 
Ekf

m 0.143 0.152 0.144 0.110 0.117 0.115 0.052 0.058 0.056 
Ekd -0.666 -0.795 -0.808 0.640 0.625 0.621 0.309 0.298 0.279 
Reactor Temp. 0.210 0.222 0.220 -0.105 -0.115 -0.113 -0.055 -0.036 -0.031 
From table 3, it can be seen that some input variables that show an appreciable change 
over time in its influence over and output variable is Ekp and Ekd over X. At the reaction 
start their SRCs values are different than at reaction end. In the first case Ekp influence is 
higher at reaction start, while lower at the end, the opposite behaviour is found for Ekd. 
For the remaining variables their influences over output variables remain similar over 
the whole time interval, no changes in the SRCs values are found. A similar trend is 
found when analysing the PCCs results. 

4. Conclusions 
It has been shown that the usage of SRCs and PCCs eases the selection procedure for 
variables that influence the most on model outputs. It also enables the study of how the 
input parameter behaviour affects model output. The current procedure enables to focus 
attention only on four parameters for further studying, instead of the original set of 26. 
The most influencing parameters found were related to kinetic reaction constants. 
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