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Abstract. The variety SH of semi-Heyting algebras was introduced by H. P. Sankap-

panavar (in: Proceedings of the 9th “Dr. Antonio A. R. Monteiro” Congress, Universidad

Nacional del Sur, Bah́ıa Blanca, 2008) [13] as an abstraction of the variety of Heyting

algebras. Semi-Heyting algebras are the algebraic models for a logic HsH, known as semi-

intuitionistic logic, which is equivalent to the one defined by a Hilbert style calculus in

Cornejo (Studia Logica 98(1–2):9–25, 2011) [6]. In this article we introduce a Gentzen style

sequent calculus GsH for the semi-intuitionistic logic whose associated logic GsH is the

same as HsH. The advantage of this presentation of the logic is that we can prove a cut-

elimination theorem for GsH that allows us to prove the decidability of the logic. As a

direct consequence, we also obtain the decidability of the equational theory of semi-Heyting

algebras.
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1. Introduction

The variety SH of semi-Heyting algebras was introduced by Sankappanavar
in [13] as an abstraction of the variety of Heyting algebras. A semi-Heyting
algebra is an algebra A = 〈A,∨,∧,→,�,⊥〉 that satisfies the following
conditions:

(SH1) 〈A,∨,∧,�,⊥〉 is a bounded lattice,
(SH2) x ∧ (x → y) ≈ x ∧ y,
(SH3) x ∧ (y → z) ≈ x ∧ [(x ∧ y) → (x ∧ z)],
(SH4) x → x ≈ �.

This variety contains the variety of Heyting algebras and its members
share some important properties with Heyting algebras. For example, SH
is an arithmetic variety, its algebras are pseudocomplemented distributive
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lattices with the pseudocomplement given by x∗ = x → ⊥, and congruences
are determined by lattice filters. On the contrary, semi-Heyting algebras
show some remarked differences, the most important of which being that
the implication on an algebra A is not determined by the lattice order of A.

The variety SH has been recently studied in depth from an algebraic
point of view. Its subvarieties and expansions have also been the subject of
several articles: see, for example, [1–4,14].

It is widely known that Heyting algebras are the equivalent algebraic
semantics for intuitionistic logic. In turn, semi-Heyting algebras have an
associated logic, SI, known as semi-intuitionistic logic, introduced in [6] by
a Hilbert style calculus over the language {∧,∨,→,¬}. In this article all
formulas are defined over the language L = {⊥,�,∧,∨,→}, thus we use
the logic HsH introduced in [7], which is equivalent (in the sense of [12])
to the former and complete with respect to the class of algebras SH. The
propositional calculus of the logic HsH is defined in a Hilbert style over the
language L with the following set of axioms, where α →H β stands for the
formula α → (α ∧ β).

(S1) α →H (α ∨ β)
(S2) β →H (α ∨ β)
(S3) (α →H γ) →H [(β →H γ) →H ((α ∨ β) →H γ)]]
(S4) (α ∧ β) →H α
(S5) (γ →H α) →H [(γ →H β) →H (γ →H (α ∧ β))]
(S6) �
(S7) ⊥ →H α
(S8) ((α ∧ β) →H γ) →H (α →H (β →H γ))
(S9) (α →H (β →H γ)) →H ((α ∧ β) →H γ)

(S10) (α →H β) →H ((β →H α) →H ((α → γ) →H (β → γ)))
(S11) (α →H β) →H ((β →H α) →H ((γ → β) →H (γ → α)))

The inference rule is semi-modus ponens (SMP): Σ 
HsH α and Σ 
HsH α →
(α∧β) yield Σ 
HsH β. Notice that this is modus ponens for the implication
→H . Some aspects of the systems SI and HsH have been studied in [7,8].

In Section 2 we introduce a Gentzen style sequent calculus for SI, based
on the corresponding calculus for intuitionistic logic (see, for example, [10]).
This calculus is denoted by GsH and is defined by setting some initial
sequents, some structural rules, the cut rule and rules that introduce the
connectives {∧,∨,→}. Then, in Section 3, we prove the main result of this
article, namely, the cut-elimination theorem for this calculus. We also derive
some important consequences of cut-elimination: the subformula property,
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the disjunction property and decidability. Finally, in Section 4, we prove
that the logic associated with GsH is complete with respect to the variety
SH. Moreover, SH is the equivalent variety semantics of the logic GsH.
This correspondence allows us to derive some properties of the variety SH
from the properties of the calculus GsH, namely, semi-Heyting algebras
have decidable equational theories and free semi-Heyting algebras are inde-
composable.

2. The Calculus GsH

Following [9], a logical language L will be a set of connectives, each with a
fixed arity n ≥ 0. For a countably infinite set V ar of propositional variables,
the formulas of the logical language L are inductively defined as usual. We
denote this set by Fm. In this work we use the language L = {⊥,�,∧,∨,→},
where ⊥ and � have arity 0 and the rest of the connectives are binary.

In this article, a sequent is an expression of the form Γ ⇒ α, where
α ∈ Fm and Γ is a (possibly empty) finite multiset of elements of Fm. We
use Greek capital letters, such as Γ, Δ, to denote (possibly empty) finite mul-
tisets of formulas. When writing a multiset in full, we separate its elements
with commas. Thus, if α1, α2, . . . , αn ∈ Fm (not necessarily all different),
Γ = α1, α2, . . . , αn is a multiset. In the sequent Γ ⇒ α its antecedent is Γ
and its succedent is α. We denote by Γ, Δ the multiset union of Γ and Δ.
We also abbreviate Γ, {α} as Γ, α.

In the following we introduce a Gentzen-style sequent calculus that we
denote by GsH. The system GsH consists of some initial sequents and
three types of inference rules: two structural rules, the cut rule and 9 rules
that introduce connectives. Note that every initial sequent and inference
rule given here is a scheme that stands for any of its substitution instances.

Initial sequents:

Γ, α ⇒ α Γ,⊥ ⇒ α Γ ⇒ �
Structural rules:

Γ ⇒ α
(w)

Γ, β ⇒ α
Γ, β, β ⇒ α

(c)
Γ, β ⇒ α

Cut rule:
Γ ⇒ α Δ, α ⇒ β

(cut)
Γ, Δ ⇒ β

Rules for introduction of connectives:
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Γ ⇒ α Γ ⇒ β
(⇒∧)

Γ ⇒ α ∧ β

Γ, α ⇒ γ
(∧⇒1)

Γ, α ∧ β ⇒ γ

Γ, α ⇒ γ
(∧⇒2)

Γ, β ∧ α ⇒ γ

Γ, α ⇒ γ Γ, β ⇒ γ
(∨⇒)

Γ, α ∨ β ⇒ γ

Γ ⇒ α
(⇒∨1)

Γ ⇒ α ∨ β

Γ ⇒ α
(⇒∨2)

Γ ⇒ β ∨ α

Γ ⇒ α Γ, β ⇒ γ
(→⇒)

Γ, α → β ⇒ γ

Γ, α ⇒ β Γ, β ⇒ α
(⇒→)

Γ ⇒ α → β

Γ, α1 ⇒ β1 Γ, β1 ⇒ α1 Γ, α2 ⇒ β2 Γ, β2 ⇒ α2
(→⇒→)

Γ, α1 → α2 ⇒ β1 → β2

We define proofs in the system GsH and end sequents of proofs in the
following way:

(a) Every initial sequent is a proof in itself whose end sequent is the initial
sequent.

(b) Suppose that P and Q are proofs whose end sequents are s1 and s2

respectively and suppose that there exists an instance of a rule of GsH
with upper sequents s1 and s2 such that the lower sequent is s. Then,
the following figure is a proof whose end sequent is s.

P Q
s

For rules with a single or four upper sequents, we define proofs in an
analogous way.

A proof with end sequent s is called a proof of s. If there is a proof of s, we
write 
seq

GsH s.
We define deducibility (proof with assumptions) in this sequent calculus

as usual. If S ∪{s} is a set of sequents, we say that s is deducible or provable
from assumptions S, in symbols S 
seq

GsH s, if there is a proof of s in GsH
from S. This is defined in the same way as proofs in GsH adding the
following:

(c) Every sequent in S is a proof whose end sequent is itself.

Associated with the sequent calculus GsH we can define a logic, that is, a
consequence relation between sets of formulas and formulas. More precisely,
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given Σ∪{α} ⊆ Fm, we say that α is a consequence of Σ in the logic GsH,
and write Σ 
GsH α, if and only if {⇒ σ : σ ∈ Σ} 
seq

GsH ⇒ α. When
∅ 
GsH α we say that α is provable in GsH or that α is a theorem of GsH.
Note that α is provable in GsH if and only if ⇒ α is a provable sequent in
the calculus GsH.

In a future section we will show that the logic GsH and the Hilbert style
logic HsH are the same, since both are equal to the 1-assertional logic of
semi-Heyting algebras. We now state and prove some straightforward results
in the calculus GsH that will be useful in future proofs.

Lemma 2.1. In the sequent calculus GsH the following derivations are valid:

(a) 
seq
GsH ⇒ α → α

(b) 
seq
GsH α ∧ (α → β) ⇒ α ∧ β

(c) 
seq
GsH α ∧ β ⇒ α ∧ (α → β)

(d) 
seq
GsH α ∧ ((α ∧ β) → (α ∧ γ)) ⇒ α ∧ (β → γ)

(e) 
seq
GsH α ∧ (β → γ) ⇒ α ∧ ((α ∧ β) → (α ∧ γ))

Proof.

(a) α ⇒ α α ⇒ α
(⇒→)⇒ α → α

(b)
α ⇒ α

(∧ ⇒ 1)
α ∧ (α → β) ⇒ α

α ⇒ α α, β ⇒ β
(→⇒)

α, α → β ⇒ β
(∧ ⇒ 1)

α ∧ (α → β), α → β ⇒ β
(∧ ⇒ 2)

α ∧ (α → β), α ∧ (α → β) ⇒ β
(c)

α ∧ (α → β) ⇒ β
(⇒∧)

α ∧ (α → β) ⇒ α ∧ β

(c) α ⇒ α
(∧ ⇒ 1)

α ∧ β ⇒ α

β, α ⇒ β
(∧ ⇒ 2)

α ∧ β, α ⇒ β

α, β ⇒ α
(∧ ⇒ 1)

α ∧ β, β ⇒ α
(⇒→)

α ∧ β ⇒ α → β
(⇒∧)

α ∧ β ⇒ α ∧ (α → β)

(d)
α, β ⇒ β

(∧ ⇒ 1)
α, α ∧ β ⇒ β

(1)

α, β ⇒ α α, β ⇒ β
(⇒∧)

α, β ⇒ α ∧ β
(2)

α, γ ⇒ γ
(∧ ⇒ 1)

α, α ∧ γ ⇒ γ
(3)

α, γ ⇒ α α, γ ⇒ γ
(⇒∧)

α, γ ⇒ α ∧ γ
(4)
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(1) (2) (3) (4)
(→⇒→)

α, (α ∧ β) → (α ∧ γ) ⇒ β → γ
(∧ ⇒ 1)

α ∧ ((α ∧ β) → (α ∧ γ)), (α ∧ β) → (α ∧ γ) ⇒ β → γ
(∧ ⇒ 2)

α ∧ ((α ∧ β) → (α ∧ γ)), α ∧ ((α ∧ β) → (α ∧ γ)) ⇒ β → γ
(c)

α ∧ ((α ∧ β) → (α ∧ γ)) ⇒ β → γ

(5)

and
α ⇒ α

(∧ ⇒ 1)
α ∧ ((α ∧ β) → (α ∧ γ)) ⇒ α (5)

(⇒∧)
α ∧ ((α ∧ β) → (α ∧ γ)) ⇒ α ∧ (β → γ)

(e) Using (1)–(4) from the previous item, we get:

α ⇒ α
(∧ ⇒ 1)

α ∧ (β → γ) ⇒ α

(2) (1) (4) (3)
(→⇒→)

α, β → γ ⇒ (α ∧ β) → (α ∧ γ)
(∧ ⇒ 1)

α ∧ (β → γ), β → γ ⇒ (α ∧ β) → (α ∧ γ)
(∧ ⇒ 2)

α ∧ (β → γ), α ∧ (β → γ) ⇒ (α ∧ β) → (α ∧ γ)
(c)

α ∧ (β → γ) ⇒ (α ∧ β) → (α ∧ γ)
(⇒∧)

α ∧ (β → γ) ⇒ α ∧ ((α ∧ β) → (α ∧ γ))

�

3. Properties of GsH

We would like to show a cut elimination theorem for the calculus GsH
introduced in the previous section. In order to do that, we will need an
auxiliary calculus GsH∗ which is obtained from GsH by replacing the cut
rule with the following gmix rule:

Γ ⇒ α Δ ⇒ β
(gmix)

Γ, Δα ⇒ β

where α ∈ Δ and Δα is the multiset obtained upon eliminating at least one
of the occurrences of α from Δ. We call each occurrence of α in Δ a gmix
formula.

Lemma 3.1. The calculi GsH and GsH∗ are equivalent in the sense that
for any set of sequents S ∪ {s}, S 
seq

GsH s iff S 
seq
GsH∗ s. In particular, a

sequent s is provable in GsH if and only if it is provable in GsH∗.

Proof. It is enough to show that the cut rule is derivable in GsH∗ (the
cut rule is just a special case of the gmix rule) and the gmix rule is derivable
in GsH (use the cut rule and contraction if necessary). �
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Lemma 3.2. If a sequent s is provable in GsH∗, then it is provable without
using the weakening rule.

Proof. Given the form of the initial sequents of the calculus, this result
may be straightforwardly verified using a standard argument by induction
on the length of proofs. �

The following is the crucial lemma in order to obtain the cut elimination
theorem.

Lemma 3.3. If a sequent s is provable in GsH∗, then it is provable without
using the gmix rule.

Proof. By the previous lemma, we can restrict ourselves to proofs that
do not make use of the weakening rule. A standard argument by induction
on the length of proofs reduces the statement of the present lemma to the
following: any sequent s that has a proof in GsH∗ that only uses the gmix
rule in the last step has a proof in GsH∗ that does not use the gmix rule
at all.

If a proof uses the gmix rule only in the last step, this step will look like
this:

Γ ⇒ α Δ ⇒ β
(gmix)

Γ, Δα ⇒ β
(∗)

where Γ ⇒ α and Δ ⇒ β are sequents whose proofs do not involve the gmix
rule, α appears at least once in Δ and at least one less time in Δα. Here α
is the gmix formula. For this kind of proofs we define the following notions:

• the size of the proof s(P ): the total number of sequents that appear in
the proof.

• the grade of the proof g(P ): the length of the gmix formula α used in
the last step.

The proof will proceed by double induction on the size and grade of the
proof. Since it is similar to the corresponding cut-elimination proof for the
intuitionistic sequent calculus and it involves the consideration of lots of
different cases, we will describe an outline of all the cases that must be
considered, prove in detail the ones that involve the rules that are specific
to the calculus GsH∗ and leave the rest of the details to the reader.

Assume that a proof P uses the gmix rule only in its last step, which
must be of the form (∗). Let s(P ) and g(P ) denote the size and grade of this
proof, respectively. The following is an outline of all the cases that should
be dealt with:
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(A) s(P ) = 3 (its least possible value).

In this case, both upper sequents Γ ⇒ α and Δ ⇒ β must be initial
sequents and it is easy to show that the lower sequent is also an initial
sequent.

(B) s(P ) > 3 and g(P ) = 1.

In this case, α is either �, ⊥ or a propositional variable. We distinguish
the following cases:

(1) Γ ⇒ α results from an application of a left-introduction rule or
contraction.

(2) Δ ⇒ β results from an application of a right-introduction rule or
contraction.

(3) Δ ⇒ β results from an application of a left-introduction rule in
which α is not the main formula.

None of these cases directly involve the formula α. Thus we can “push
up” the use of the gmix rule and use the induction hypothesis on the
size of the proof to eliminate it.

(C) s(P ) > 3 and g(P ) > 1.

We subdivide this case into three subcases.

(1) Γ ⇒ α is an initial sequent.
In this case Δ ⇒ β cannot be an initial sequent, so we have two
possibilities:
(i) α is not the main formula in Δ ⇒ β.

As in case (B), the application of the gmix rule can be “pushed
up” and eliminated by the induction hypothesis on the size
s(P ).

(ii) α is the main formula in Δ ⇒ β.
Since Γ ⇒ α is an initial sequent, there are three possibilities:

• α appears in Γ: depending on which rule introduces α each
case may be easily dealt with separately.

• ⊥ appears in Γ: in this case, Γ, Δα ⇒ β is also an initial
sequent.

• α = �: this case is not possible, since α is the main for-
mula in Δ ⇒ β.

(2) Γ ⇒ α is not an initial sequent and α is not the main formula in
Γ ⇒ α.
As in case (B), the application of the gmix rule can be “pushed up”
and eliminated by the induction hypothesis on the size s(P ).
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(3) Γ ⇒ α is not an initial sequent and α is the main formula in Γ ⇒ α.
We distinguish the possibilities for Δ ⇒ β:
(i) Δ ⇒ β is an initial sequent.

If β = α, then Γ, Δα ⇒ β follows from Γ ⇒ α by the weakening
rule. In the other cases, Γ, Δα ⇒ β is an initial sequent.

(ii) Δ ⇒ β is not an initial sequent, but α is not the main formula
in Δ ⇒ β.

(iii) Δ ⇒ β is not an initial sequent and α is the main formula in
Δ ⇒ β.

We now give the details of some selected cases:
Example of case (C-3-ii): Suppose Δ ⇒ β is of the form Δ, δ1 → δ2 ⇒

β1 → β2 and is obtained by an application of the rule (→⇒→). Note that
α ∈ Δ, α �= δ1 → δ2. Thus the following sequents have gmix-free proofs:

Δ, δ1 ⇒ β1 Δ, β1 ⇒ δ1 Δ, δ2 ⇒ β2 Δ, β2 ⇒ δ2

so that proof P ends like this:

Γ ⇒ α

Δ, δ1 ⇒ β1 Δ, β1 ⇒ δ1 Δ, δ2 ⇒ β2 Δ, β2 ⇒ δ2
(→⇒→)

Δ, δ1 → δ2 ⇒ β1 → β2
(gmix)

Γ, Δα, δ1 → δ2 ⇒ β1 → β2

Using the proofs of Γ ⇒ α and Δ, δ1 ⇒ β1, we build a proof:

Γ ⇒ α Δ, δ1 ⇒ β1
(gmix)

Γ, Δα, δ1 ⇒ β1

whose size is strictly less that s(P ). By the induction hypothesis, the sequent
Γ, Δα, δ1 ⇒ β1 has a gmix-free proof. Analogously, the following sequents
have gmix-free proofs as well:

Γ, Δα, β1 ⇒ δ1 Γ, Δα, δ2 ⇒ β2 Γ, Δα, β2 ⇒ δ2.

Combining these proofs, we get a gmix-free proof:
Γ, Δα, δ1 ⇒ β1 Γ, Δα, β1 ⇒ δ1 Γ, Δα, δ2 ⇒ β2 Γ, Δα, β2 ⇒ δ2

(→⇒→)
Γ, Δα, δ1 → δ2 ⇒ β1 → β2

Example of case (C-3-iii): Assume α is the main formula both in Γ ⇒ α
and Δ ⇒ β. Moreover, assume that Γ ⇒ α derives from an application of
rule (⇒→) and Δ ⇒ β from an application of rule (→⇒→). Thus α =
α1 → α2 and β = β1 → β2. We write Δk to indicate that the formula α
occurs k times in the multiset Δ. Then the structure of the proof P is:

Γ ⇒ α1 → α2 Δk ⇒ β1 → β2
(gmix)

Γ, Δk−r ⇒ β1 → β2
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where k ≥ r ≥ 1 and the upper sequents have proofs of the form:
Γ, α1 ⇒ α2 Γ, α2 ⇒ α1

(⇒→)
Γ ⇒ α1 → α2

Δk−1, α1 ⇒ β1 Δk−1, β1 ⇒ α1 Δk−1, α2 ⇒ β2 Δk−1, β2 ⇒ α2
(→⇒→)

Δk ⇒ β1 → β2

In these proofs, the upper sequents all have gmix-free proofs.

We further distinguish two cases:

(a) k �= r or k = r = 1.

Consider the following proof of Γ, Δk−r, β1 ⇒ β2:

Δk−1, β1 ⇒ α1 Γ, α1 ⇒ α2
(gmix)

Δk−1, β1, Γ ⇒ α2 Δk−1, α2 ⇒ β2
(gmix)

Δk−1, β1, Γ, Δk−1 ⇒ β2
(c)

Γ, Δk−r, β1 ⇒ β2

In the proof of Δk−1, β1, Γ ⇒ α2, the gmix formula is α1, so its grade is
less that g(P ). Thus this proof may be replaced with a gmix-free proof.
Then Δk−1, β1, Γ, Δk−1 ⇒ β2 has a proof which uses the gmix rule only
in its last step. In this proof α2 is the gmix formula, so its grade is
strictly less than g(P ). Then the sequent Δk−1, β1, Γ, Δk−1 ⇒ β2 has a
gmix-free proof, and so does Γ, Δk−r, β1 ⇒ β2.

In a similar way, Γ, Δk−r, β2 ⇒ β1 also has a gmix-free proof. We can
provide an adequate proof for Γ, Δk−r ⇒ β1 → β2 as in the previous
case.

(b) k = r > 1.
We build the following proof of Γ, Δk−r, β1 ⇒ β2:

Γ ⇒ α1 → α2 Δk−1, β1 ⇒ α1
(gmix)

Γ, Δk−r, β1 ⇒ α1

Γ, α1 ⇒ α2

Γ ⇒ α1 → α2 Δk−1, α2 ⇒ β2
(gmix)

Γ, Δk−r, α2 ⇒ β2
(gmix)

Γ, α1, Γ, Δk−r ⇒ β2
(gmix)

Γ, Δk−r, β1, Γ, Γ, Δk−r ⇒ β2
(c)

Γ, Δk−r, β1 ⇒ β2

.

Since the sizes of the proofs for Γ, Δk−r, β1 ⇒ α1 and Γ, Δk−r, α2 ⇒ β2

are strictly less than s(P ), the induction hypothesis allows us to replace
them with gmix-free proofs. Now the proof for Γ, α1, Γ, Δk−r ⇒ β2 has
grade less than g(P ) because its gmix formula is α2. Then, regardless
of the size of this proof, we may apply the induction hypothesis and
provide a gmix-free proof of this same sequent. We get now to the proof
of Γ, Δk−r, β1, Γ, Γ, Δk−r ⇒ β2, which, again, has grade strictly less than
g(P ). By the induction hypothesis, we conclude that there is a gmix-free
proof of Γ, Δk−r, β1 ⇒ β2.
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In a similar way the sequent Γ, Δk−r, β2 ⇒ β1 also may be shown to
have a gmix-free proof. We finally put both gmix-free proofs together to
get:

Γ, Δk−r, β1 ⇒ β2 Γ, Δk−r, β2 ⇒ β1
(⇒→)

Γ, Δk−r ⇒ β1 → β2

Another example of case (C-3-iii): Suppose Γ ⇒ α derives from an ap-
plication of rule (→⇒→) and Δ ⇒ β from an application of rule (→⇒), in
both cases α being the main formula. Thus α = α1 → α2 and the structure
of the proof P is:

Γ, γ1 → γ2 ⇒ α1 → α2 Δk ⇒ β
(gmix)

Γ, γ1 → γ2, Δk−r ⇒ β

with k ≥ r ≥ 1 and the following derivations for the upper sequents:
Γ, γ1 ⇒ α1 Γ, α1 ⇒ γ1 Γ, γ2 ⇒ α2 Γ, α2 ⇒ γ2

(→⇒→)
Γ, γ1 → γ2 ⇒ α1 → α2

Δk−1 ⇒ α1 Δk−1, α2 ⇒ β
(→⇒)

Δk ⇒ β

In these last two derivations each upper subsequent has a gmix-free proof.
We must distinguish two possible cases for r.

(a) k ≥ r > 1.

Consider the following proof:

(6) (7)
(→⇒)

Γ, γ1 → γ2, Δk−r, Γ, γ1 → γ2,⇒ β
(c)

Γ, γ1 → γ2, Δk−r ⇒ β

where
Γ, γ1 → γ2 ⇒ α1 → α2 Δk−1 ⇒ α1

(gmix)
Γ, γ1 → γ2, Δk−r ⇒ α1 Γ, α1 ⇒ γ1

(gmix)
Γ, γ1 → γ2, Δk−r, Γ ⇒ γ1

(6)

Γ, γ2 ⇒ α2

Γ, γ1 → γ2 ⇒ α1 → α2 Δk−1, α2 ⇒ β
(gmix)

Γ, γ1 → γ2, Δk−r, α2 ⇒ β
(gmix)

Γ, γ2, Γ, γ1 → γ2, Δk−r ⇒ β

(7)

The two topmost applications of (gmix) have size strictly less than s(P ).
Hence, Γ, γ1 → γ2, Δk−r ⇒ α1 and Γ, γ1 → γ2, Δk−r, α2 ⇒ β have gmix-
free proofs. Moreover, the (gmix) applications at the bottom of (6) and
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(7) have grade less that g(P ). Consequently, Γ, γ1 → γ2, Δk−r ⇒ β has
a gmix-free proof.

(b) k ≥ r = 1.

We build the following proof:

Δk−1 ⇒ α1 Γ, α1 ⇒ γ1
(gmix)

Γ, Δk−1 ⇒ γ1

Γ, γ2 ⇒ α2 Δk−1, α2 ⇒ β
(gmix)

Γ, γ2, Δk−1 ⇒ β
(→⇒)

Γ, γ1 → γ2, Δk−1 ⇒ β

Here both applications of (gmix) have grade less than g(P ). Conse-
quently, Γ, γ1 → γ2, Δk−r ⇒ β has a gmix-free proof.

Yet another example of case (C-3-iii): Now consider the case in which
both Γ ⇒ α and Δ ⇒ β come from an application of the rule (→⇒→).
Then α = α1 → α2, β = β1 → β2, and we have a proof like this:

(8) (9)
(gmix)

Γ, γ1 → γ2, Δk−r ⇒ β1 → β2

where k ≥ r ≥ 1 and
Γ, γ1 ⇒ α1 Γ, α1 ⇒ γ1 Γ, γ2 ⇒ α2 Γ, α2 ⇒ γ2

(→⇒→)
Γ, γ1 → γ2 ⇒ α1 → α2

(8)

Δk−1, α1 ⇒ β1 Δk−1, β1 ⇒ α1 Δk−1, α2 ⇒ β2 Δk−1, β2 ⇒ α2
(→⇒→)

Δk ⇒ β1 → β2
(9)

all of whose upper sequents have gmix-free proofs.

In this case we must also distinguish two cases for r.

(a) r > 1.

Since the size of the following proof

Γ, γ1 → γ2 ⇒ α1 → α2 Δk−1, α1 ⇒ β1
(gmix)

Γ, γ1 → γ2, Δk−r, α1 ⇒ β1

.

is less than s(P ), there is a gmix-free proof of the lower sequent. Then
we can build a proof

Γ, γ1 ⇒ α1 Γ, γ1 → γ2, Δk−r, α1 ⇒ β1
(gmix)

Γ, γ1, Γ, γ1 → γ2, Δk−r ⇒ β1

.

whose grade is less than g(P ). Consequently, there is a gmix-free proof
for

Γ, γ1, Γ, γ1 → γ2, Δk−r ⇒ β1 (10)
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In a similar way, there are gmix-free proofs for

Γ, β1, Γ, γ1 → γ2, Δk−r ⇒ γ1 (11)

Γ, γ2, Γ, γ1 → γ2, Δk−r ⇒ β2 (12)

Γ, β2, Γ, γ1 → γ2, Δk−r ⇒ γ2 (13)

We now use these sequents to build a gmix-free proof of Γ, γ1 → γ2, Δk−r

⇒ β1 → β2:

(10) (11) (12) (13)
(→⇒→)

Γ, Γ, γ1 → γ2, γ1 → γ2, Δk−r ⇒ β1 → β2
(c)

Γ, γ1 → γ2, Δk−r ⇒ β1 → β2

(b) r = 1.

The grade of the following proof:

Γ, γ1 ⇒ α1 Δk−1, α1 ⇒ β1
(gmix)

Γ, γ1, Δk−1 ⇒ β1

.

is less than g(P ), so the sequent Γ, γ1, Δk−1 ⇒ β1 has a gmix-free proof.
The same can be said of

Γ, β1, Δk−1 ⇒ γ1, Γ, γ2, Δk−1 ⇒ β2, and Γ, β2, Δk−1 ⇒ γ2.

Then we can produce a gmix-free proof for Γ, γ1 → γ2, Δk−1 ⇒ β1 → β2:
Γ, γ1, Δk−1 ⇒ β1 Γ, β1, Δk−1 ⇒ γ1 Γ, γ2, Δk−1 ⇒ β2 Γ, β2, Δk−1 ⇒ γ2

(→⇒→)
Γ, γ1 → γ2, Δk−1 ⇒ β1 → β2

�

Theorem 3.4. (Cut elimination theorem) If a sequent s is provable in
GsH, then it is provable without using the cut rule.

Proof. If Q is a proof of a sequent s in GsH, we may consider each
instance of the cut rule in Q as an instance of the gmix rule, thus turning
Q into a proof of s in GsH∗. By the previous lemma, there is a proof Q′ of
s in GsH∗ without any instances of the gmix rule. This proof Q′ is clearly
a proof of s in GsH without the cut rule. �

A direct consequence of the cut elimination theorem is the following im-
portant property of GsH.

Corollary 3.5. GsH has the subformula property, i.e., any provable se-
quent s in GsH has a proof in which every formula appearing in it is a
subformula of some formula in s.
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Proof. Looking at the inference rules of GsH, it is clear that any cut-free
proof of s has the subformula property. �

Following [10, p. 245], we say that a logic L has the disjunction property
when for any formulas α and β, if α ∨ β is provable in L then either α or β
is provable in it.

Corollary 3.6. The logic GsH has the disjunction property.

Proof. Let α ∨ β be a provable formula in GsH and let Q be a cut-free
proof of the sequent ⇒ α ∨ β. Looking at the inference rules of GsH it
is evident that the last inference rule in Q must be an instance of (⇒∨).
Hence, either ⇒ α or ⇒ β is provable. �

A logic L is decidable if there exists an algorithm that determines whether
a formula α is provable or not. The decidability of intuitionistic logic may
be derived from the corresponding cut-elimination theorem (see [10,11]). To
prove the decidability of GsH we will follow a similar procedure as the one
used for the intuitionistic logic.

We say that a proof Q of a sequent s has redundancies, if the same
sequent appears twice in a branch of Q. A sequent Γ ⇒ α is 2-reduced if
every formula in Γ occurs at most twice, and is 1-reduced if every formula
of its antecedent occurs only once.

If we apply the contraction rule repeatedly to a sequent Γ ⇒ α we can
obtain a 1-reduced sequent which we denote by Γ∗ ⇒ α. We say that Γ∗ ⇒ α
is the contraction of Γ ⇒ α.

We will need the following lemma whose proof is similar to that of [10,
Lemma 4.10, p. 220].

Lemma 3.7. Let Γ ⇒ α be a provable sequent in GsH. There exists a
cut-free proof of Γ∗ ⇒ α in which every sequent is 2-reduced.

Proof. We use induction on the length of the cut-free proof of Γ ⇒ α.
If Γ ⇒ α is an initial sequent, so is Γ∗ ⇒ α. Now assume the cut-free
proof of Γ ⇒ α ends with an instance of some rule (r) which introduces a
new connective or with the weakening rule. There are three possible tree-
situations:

Δ1 ⇒ β1
(r)

Γ ⇒ α

Δ1 ⇒ β1 Δ2 ⇒ β2
(r)

Γ ⇒ α
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Δ1 ⇒ β1 Δ2 ⇒ β2 Δ3 ⇒ β3 Δ4 ⇒ β4
(r)

Γ ⇒ α

By the induction hypothesis, there is a cut-free proof of each Δ∗
i ⇒ βi that

contains only 2-reduced sequents. Applying the same rule (r) to the sequents
Δ∗

i ⇒ βi we get Γ′ ⇒ α, where Γ′ is a multiset of formulas with the same
root set as Γ. Since each Δ∗

i ⇒ βi is 1-reduced, Γ′ ⇒ α is 2-reduced (the
main formula of rule (r) may occur in Δ∗

i ). From Γ′ ⇒ α, by an application
of the contraction rule, we get a cut-free proof of Γ∗ ⇒ α which contains
only 2-reduced sequents.

If the last rule in the cut-free proof of Γ ⇒ α is the contraction rule, let
Γ0 ⇒ α be the upper sequent of this instance of the rule. By the induction
hypothesis, there is a cut-free proof of Γ∗

0 ⇒ α that contains just 2-reduced
sequents. But Γ∗

0 ⇒ α clearly coincides with Γ∗ ⇒ α. �

Theorem 3.8. The logic GsH is decidable.

Proof. Consider a sequent Γ ⇒ α. Using the contraction and weakening
rules it is clear that the sequent Γ ⇒ α is provable if and only if Γ∗ ⇒ α is
provable. Thus, we may assume that Γ ⇒ α is 1-reduced.

If Γ ⇒ α is provable, by Lemma 3.7, we may assume that it has a cut-free
proof Q in which every sequent is 2-reduced. Furthermore, we may assume
that Q has no redundancies. Hence, we seek a cut-free proof Q of Γ ⇒ α all
of whose sequents are 2-reduced and which has no redundancies. Since Q is
cut-free, it has the subformula property. Thus every formula that appears in
Q is a subformula of a formula in its end sequent Γ ⇒ α. This implies that
the number of formulas that may appear in Q is finite. Moreover, since every
sequent in Q is 2-reduced, the number of sequents that may appear in Q
is finite. Finally, since Q has no redundancies, the number of possible trees
that may be built with these sequents is finite. Thus, there is an effective
procedure for seeking a possible proof of Γ ⇒ α: build all possible trees with
2-reduced sequents that use subformulas of Γ ⇒ α. �

4. Completeness

Let Fm be the algebra of formulas over the language of semi-Heyting alge-
bras on some countable set of variables V ar. We denote by Hom(Fm,A)
the set of homomorphisms of Fm to a semi-Heyting algebra A. If K is a
class of semi-Heyting algebras, we consider the 1-assertional logic of K given
by



D. Castaño, J. M. Cornejo

Σ |=K α if and only if for each A ∈ K and each f ∈ Hom(Fm,A),

f(α) = 1 holds whenever f(σ) = 1 holds for all σ ∈ Σ,

where Σ ∪ {α} is a set of formulas.
We will prove that the logic GsH is sound and complete with respect to

the class of semi-Heyting algebras, that is, the consequence relations 
GsH

and |=SH coincide.
We need some elementary properties of semi-Heyting algebras that will

allow us to prove the main result of this section.

Lemma 4.1. Let A = 〈A; ∧,∨,→,⊥,�〉 ∈ SH and a, b, c, d, e ∈ A.

(a) If c ≤ a and c ∧ b ≤ d, then c ∧ (a → b) ≤ d.

(b) If c ∧ a ≤ b and c ∧ b ≤ a, then c ≤ a → b.

(c) If a∧ b ≤ c, a∧ c ≤ b, a∧d ≤ e and a∧ e ≤ d, then a∧ (b → d) ≤ c → e.

Proof.

(a) Indeed c∧(a → b) = c∧((c∧a) → (c∧b)) = c∧(c → (c∧b)) = c∧b ≤ d.

(b) Note that c = c ∧ � = c ∧ ((c ∧ a ∧ b) → (c ∧ b ∧ a)) = c ∧ ((c ∧ a) →
(c ∧ b)) = c ∧ (a → b) ≤ a → b.

(c) This may be proved as follows: a ∧ (b → d) ∧ (c → e) = a ∧ ((a ∧ b) →
(a∧d))∧((a∧c) → (a∧e)) = a∧((a∧b∧c) → (a∧d∧e))∧((a∧c∧b) → (a∧
e∧d)) = a∧((a∧b∧c) → (a∧d∧e)) = a∧((a∧b) → (a∧d)) = a∧(b → d).

�

Consider a sequent Γ ⇒ α and let A ∈ SH and f ∈ Hom(Fm,A).
We say that the sequent Γ ⇒ α is valid in A under the interpretation f ,
symbolically

A, f |= Γ ⇒ α,

if f(Γ∧) ≤ f(α) where Γ∧ =

{∧
γ∈Γ γ si Γ �= ∅,

� si Γ = ∅.

Theorem 4.2. (Soundness) Let Σ∪{α} be a set of formulas. If Σ 
GsH α,
then Σ |=SH α.

Proof. Let A ∈ SH, f ∈ Hom(Fm,A) and assume that f(σ) = � for
every σ ∈ Σ. Since Σ 
GsH α, there is a proof Q of the sequent ⇒ α whose
leaves are either initial sequents or sequents of the form ⇒ σ for some σ ∈ Σ.
We claim that A, f |= s for every sequent s in the proof Q. Indeed, this is
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clear for the initial sequents and for those of the form ⇒ σ, σ ∈ Σ, since
f(σ) = � for very σ ∈ Σ. Moreover, every rule of the sequent calculus GsH
preserves the validity of sequents in A under the interpretation f . This is
a straightforward verification for most of the rules. For rules (→⇒), (⇒→)
and (→⇒→), the necessary algebraic properties of semi-Heyting algebras
are the ones proven in Lemma 4.1. We have thus proved that A, f |=⇒ α,
so f(α) = �. �

We would like to show now that the converse of Theorem 4.2 also holds.
Fix Σ ⊆ Fm and define the following relation on Fm:

α ≡Σ β if and only if Σ 
GsH α → β and Σ 
GsH β → α.

The properties proved in the following lemma will allow us to prove that
≡Σ is an equivalence relation on Fm.

Lemma 4.3. For Σ ∪ {α, β} ⊆ Fm, we have that

(a) α ≡Σ � if and only if {⇒ σ : σ ∈ Σ} 
seq
GsH ⇒ α.

(b) α ≡Σ β if and only if {⇒ σ : σ ∈ Σ} 
seq
GsH α ⇒ β and {⇒ σ : σ ∈

Σ} 
seq
GsH β ⇒ α.

Proof. To prove (a), suppose α ≡Σ �. In particular, Σ 
GsH � → α and
there is a proof of ⇒ � → α from {⇒ σ : σ ∈ Σ}. Hence the following is a
proof of ⇒ α from {⇒ σ : σ ∈ Σ}:

⇒ σ : σ ∈ Σ
...

⇒ � → α
⇒ � α ⇒ α

(→⇒)� → α ⇒ α
(cut)⇒ α

.

Now assume that {⇒ σ : σ ∈ Σ} 
seq
GsH ⇒ α. Then we have the following

proofs

α ⇒ �

⇒ σ : σ ∈ Σ
...⇒ α

(w)� ⇒ α
(⇒→)⇒ α → �

⇒ σ : σ ∈ Σ
...⇒ α

(w)� ⇒ α α ⇒ �
(⇒→)⇒ � → α

We now turn to (b). Suppose α ≡Σ β. Then Σ 
GsH α → β and Σ 
GsH

β → α. We can build the following proof of α ⇒ β:
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⇒ σ : σ ∈ Σ
...

⇒ α → β

α ⇒ α β ⇒ β
(→⇒)

α, α → β ⇒ β
(cut)

α ⇒ β

.

Analogously there is a proof of β ⇒ α from {⇒ σ : σ ∈ Σ}. Conversely,
assume that {⇒ σ : σ ∈ Σ} 
seq

GsH α ⇒ β and {⇒ σ : σ ∈ Σ} 
seq
GsH

β ⇒ α. Applying the rule (⇒→) we can show that Σ 
GsH α → β and
Σ 
GsH β → α. �

Lemma 4.4. For every Σ ⊆ Fm, the relation ≡Σ is an congruence relation
on Fm.

Proof. Let α, β, γ ∈ Fm. Since {⇒ σ : σ ∈ Σ} 
seq
GsH α ⇒ α, by Lemma

4.3, we get that α ≡Σ α. By definition, ≡Σ is symmetric. Now assume that
α ≡Σ β and β ≡Σ γ. By Lemma 4.3 we deduce that {⇒ σ : σ ∈ Σ} 
seq

GsH

α ⇒ β, {⇒ σ : σ ∈ Σ} 
seq
GsH β ⇒ α, {⇒ σ : σ ∈ Σ} 
seq

GsH β ⇒ γ
and {⇒ σ : σ ∈ Σ} 
seq

GsH γ ⇒ β. Using the cut rule, we get {⇒ σ : σ ∈
Σ} 
seq

GsH α ⇒ γ and {⇒ σ : σ ∈ Σ} 
seq
GsH γ ⇒ α. Again, by Lemma 4.3,

we finally get α ≡Σ γ.
Since the rules for ∨ and ∧ are the same as in the sequent calculus for

intuitionistic logic, it is clear that ≡Σ is preserved by both these operations.
Now let α1, β1, α2, β2 ∈ Fm such that α1 ≡Σ β1 and α2 ≡Σ β2. By Lemma
4.3, it follows that {⇒ σ : σ ∈ Σ} 
seq

GsH α1 ⇒ β1, {⇒ σ : σ ∈ Σ} 
seq
GsH

β1 ⇒ α1, {⇒ σ : σ ∈ Σ} 
seq
GsH α2 ⇒ β2 and {⇒ σ : σ ∈ Σ} 
seq

GsH β2 ⇒
α2. Using rule (→⇒→) we deduce that {⇒ σ : σ ∈ Σ} 
seq

GsH α1 → α2 ⇒
β1 → β2 and {⇒ σ : σ ∈ Σ} 
seq

GsH β1 → β2 ⇒ α1 → α2. By an new
application of Lemma 4.3 we get that α1 → α2 ≡Σ β1 → β2. �

Lemma 4.5. Given Σ ⊆ Fm, Fm/≡Σ is a semi-Heyting algebra.

Proof. Since the rules for ∨, ∧, � and ⊥ are the same as in the sequent
calculus for intuitionistic logic, it is clear that Fm/≡Σ is a bounded distrib-
utive lattice. Moreover, Lemma 2.1 guarantees that the defining equations
for semi-Heyting algebras are also satisfied. �

In the following theorem, we denote by [[α]]Σ the equivalence class of α
in Fm/≡Σ.

Theorem 4.6. (Completeness) Let Σ ∪ {α} ⊆ Fm. Then Σ 
GsH α if and
only if Σ |=SH α.
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Proof. Half of this result was proved in Theorem 4.2. Now assume that
Σ |=SH α. We consider the semi-Heyting algebra 〈Fm/≡Σ,∨Σ,∧Σ,→Σ,
�Σ,⊥Σ〉 given in Lemma 4.5. Now observe that for every σ ∈ Σ:

⇒ σ
(w)� ⇒ σ σ ⇒ �

(⇒→)⇒ � → σ
σ ⇒ �

⇒ σ
(w)� ⇒ σ
(⇒→)⇒ σ → �

Thus Σ 
GsH � → σ and Σ 
GsH σ → �. Then [[σ]]Σ = [[�]]Σ for
every σ ∈ Σ. Therefore, by the hypothesis, [[α]]Σ = [[�]]Σ and, consequently,
Σ 
GsH � → α. Hence we may build the following proof for ⇒ α from
{⇒ σ : σ ∈ Σ}:

⇒ σ : σ ∈ Σ
...

⇒ � → α
⇒ � α ⇒ �

(→⇒)� → α ⇒ α
(cut)⇒ α

.

�

Joining this result with [7, Theorem 4.2] we get the following summary
theorem.

Theorem 4.7. Given Σ∪{α} ⊆ Fm, the following conditions are equivalent:

(i) Σ 
HsH α

(ii) Σ 
GsH α

(iii) Σ |=SH α.

The Completeness Theorem may be reformulated as stating an alge-
braization relation in the sense of W. J. Blok and D. Pigozzi [5]. Indeed
the theorem implies that

Σ 
GsH α if and only if {σ ≈ � : σ ∈ Σ} |=SH α ≈ �
(here the equational consequence relation of SH is defined in the usual way).
Moreover, since

α ≈ β |=|=SH (α → β) ∧ (β → α) ≈ �,

we conclude that the variety of semi-Heyting algebras is the equivalent va-
riety semantics of the logic GsH (and HsH).

By the general theory of algebraizability (see [5, Corollary 2.9]), we also
get that given {εi, δi : i ∈ I} ∪ {α, β} ⊆ Fm, the following two conditions
hold:
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(a) {εi ≈ δi : i ∈ I} |=SH α ≈ β iff {(εi → δi) ∧ (δi → εi) : i ∈ I} 
GsH

(α → β) ∧ (β → α).

(b) α �
GsH (α → �) ∧ (� → α).

As a direct consequence of the algebraization relation and the decidability
of the logic GsH, we obtain that the variety of semi-Heyting algebras has
a decidable equational theory, that is, there is an algorithm that decides
whether an equation holds in SH or not.

Corollary 4.8. The equational theory of the variety SH is decidable.

Another immediate consequence from the algebraization relation is the
fact that the Lindenbaum–Tarski algebras of GsH coincide with the free
semi-Heyting algebras. Moreover, an easy consequence of the disjunction
property of GsH yields the indecomposability of free algebras in SH.
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