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a b s t r a c t

In this paper the core of a genetic algorithm designed to define a sensor network for instrumentation
design (ID) is presented. The tool has been incorporated into a decision support system (DSS) that assists
the engineer during the ID process. The algorithm satisfactorily deals with non-linear mathematical mod-
els, and considers four design objectives, namely observability, cost, reliability and redundancy, exhibit-
ing properties that were either never addressed by existing techniques or partially dealt with in the
literature. Its performance was tested by carrying out the ID of an ammonia synthesis industrial plant.
Results were statistically analysed. A face validity study on the fitness function’s soundness was also
assessed by a chemical engineer with insight and expertise in this problem. The technique performed sat-
isfactorily from the point of view of the expert in ID, and therefore it constitutes a significant upgrading
for the DSS.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Instrumentation design (ID) is a complex task that concerns
with finding the optimal spatial arrangement of sensors in an
industrial plant, with the purpose of obtaining a good knowledge
of its operation conditions. This constitutes a crucial activity in
the field of process engineering since a properly defined sensor
network leads to improvements in the monitoring and safety of
the critical industrial processes. In particular, our research group
is working on the development of a decision support system
(DSS) that aims at helping the engineer in this difficult task
(Vazquez et al., 2003). The DSS is comprehended by two main
stages, namely observability and redundancy analysis. These
phases repeatedly assess the quality of a sensor network according
to different criteria, starting from an initial sensor network that is
refined and tuned during the whole process.

The specific problem of determining the initial sensor network
that starts off the ID process is a crucial task, which has strong im-
pact in the global performance of the DSS (Carballido, 2005). Tradi-
tionally, the selection of the initial set of instruments has been
entirely carried out by an expert process engineer. The main draw-
back of this approach is that the results strongly depend on his
knowledge. Furthermore, humans are naturally unprepared to deal
with either huge amounts of information or many objectives con-

currently, thus complicating the task of finding a configuration that
represents a good balance between various factors in realistic
problems.

In consequence, arose the need of counting with an automated
tool that helps the process engineer with the definition of this
starting sensor network. As this task falls into the category of com-
binatorial multi-objective optimization problems, where several as-
pects must be considered simultaneously, evolutionary
computation constitutes a promising candidate to be used for its
resolution. In particular, regarding the industrial engineering field,
several problems have been effectively tackled with genetic
algorithms (GAs) (Altiparmak, Mitsuo, Lin, & Turan, 2006; Dietz,
Azzaro-Pantel, Pibouleau, & Domenech, 2007).

In this work the details of the implementation of a strategy
called SID-GA (Genetic Algorithm for Structural Instrumentation
Design) designed to find a good quality initial sensor network is
presented. SID-GA constitutes the first evolutionary approach that
follows criteria related to improve the two major analysis stages of
the instrumentation design problem, observability and redun-
dancy, so as to accomplish a good balance between network safety
and costs. Moreover, to our knowledge, this contribution is original
since it is also the first algorithm that finds a sensor network from
the analysis of a non-linear mathematical model that represents
the plant behavior.

The rest of the article is organized as follows. Section 2 contains
a detailed introduction to the application. Next, in Section 3, a brief
review about genetic algorithms applied to instrumentation design
is presented. The fundamentals of our proposal are explained later.
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In Section 5 the experimentation and the main results are pre-
sented and analyzed. Finally, the main conclusions are summarized
in Section 6.

2. The decision support system

The instrumentation design of an industrial plant basically con-
sists in selecting the best sensor location, amount and type so as to
attain plenty of information about the plant’s functioning. One way
of dealing with this problem is based on the analysis of a steady-
state mathematical model that represents the behavior of the plant
under stationary operating conditions. This is the approach that we
have followed during the implementation of the DSS. Thus, the first
module included in the DSS is the model generator, called ModGen
(Vazquez, Ponzoni, Sanchez, & Brignole, 2001). In general terms,
the process engineer specifies to the ModGen the types of items
of equipment and streams that comprise the industrial plant under
study. With this information, the ModGen generates a system of
equations that represent the chemical properties and relationships
between those items. Once the mathematical model has been gen-
erated, the variables represent the possible sites where sensors
might be located. In Fig. 1, an example of the use of the ModGen

is shown. As it can be seen, when a piece of equipment is intro-
duced by the process engineer, the respective equations are gener-
ated by the ModGen. As more items are added and connected with
the existing ones, new equations for those relationships and prop-
erties are included in the mathematical system. A more detailed
explanation about this software can be found in Vazquez et al.
(2001).

2.1. Classification of variables

ID techniques are oriented to discern about the information that
will become available starting from a given sensor configuration by
means of an analysis of the relationships between the model’s vari-
ables contained in the non-linear equation system that represents
the behavior of the plant. Therefore, once the mathematical model
has been generated, the following task consists in defining an ini-
tial group of instruments, which splits the whole set of variables
into two classes: measured variables, whose values can be ob-
tained through a direct measurement; and unmeasured variables,
containing the rest of the variables in the model. After the initial
sensor network has been defined, two analysis stages interact in
order to refine it.

Nomenclature

B bigraph corresponding to M
C set of B columns
DL dependency list
DM direct method
DSS decision support system
E set of B edges
FSNO-GA SN obtained after a whole ID is started with a SNO-GA

FSNSID-GA SN obtained after a whole ID is started with a SNSID-GA

FT forward triangularization algorithm
GA genetic algorithm

GS-FLCN global strategy first least-connected node algorithm
ID instrumentation design
M mathematical equation model
MM maximum matching of B
OA observability analysis
O-GA genetic algorithm for observability analysis
R set of B rows
RA redundancy analysis
SID-GA genetic algorithm for structural instrumentation design
SN sensor network
SNO-GA SN yielded by the O-GA
SNSID-GA SN yielded by the SID-GA

Fig. 1. Capture of a ModGen window, after the generation of the mathematical model that corresponds to a valve.
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The first one, called observability analysis (OA) consists in sort-
ing unmeasured variables into observable and unobservable,
where an observable variable is one whose value can be calculated
from the model’s equations considering the measured variables as
constant values. In other words, the OA looks forward to determin-
ing the amount of information about the process that can be
achieved from a particular sensor configuration.

On the other side, the redundancy analysis (RA) stage deals with
finding out which measurements are redundant, i.e., those vari-
ables that appear as measured but that can also be deduced from
the rest of the measurements. In short, the RA aims at detecting
those sensors which can be removed without reducing the degree
of knowledge available about the behavior of the industrial
process.

Various approaches are presented in the literature to carry out
both stages (Crowe, 1989; Joris & Kalitventzeff, 1987; Kretsovalis
& Mah, 1988a; Kretsovalis & Mah, 1988b; Meyer, Koehret, &
Enjalbert, 1993). For our research work, a structural methodology
was used since it is more robust and applicable than the other
existing algorithms (Ponzoni, Sánchez, & Brignole, 1999). In this
context, a methodology is structural when it is focused in the
structure of the binary matrix underlying the mathematical model.
In particular, two alternative methods were developed to accom-
plish the OA for the DSS, to be precise GS-FLCN (Ponzoni et al.,
1999) and Direct Method (Ponzoni, Sánchez, & Brignole, 2004).
The first one uses combinatorial searches to classify unmeasured
variables, while the second one employs graph-decomposition
algorithms to identify the set of observable variables. Concerning
the RA, it can be carried out by applying the method presented
by Ferraro, Ponzoni, Sánchez, and Brignole (2002), which proposes
a practical procedure of symbolic derivation with chain rules to
determine redundant measurements.

2.2. Impact of the initial sensor network quality on the analysis stages

As it was mentioned in the former section, the analysis stages
start from an initial sensor network whose quality strongly im-
pacts on the efficiency and quality of the resulting sensor network.
In particular, for the OA, the algorithms classify the unmeasured
variables through a procedure of incremental refinement. The engi-

neer performs a detailed analysis of an intermediate solution
yielded by the OA algorithm. Grounded on this study, he decides
whether some of the measurements need to be added or removed.
When this is the case, a new execution of the OA algorithm is car-
ried out starting from the new configuration. Thus, the analysis is
repeated, iterating this process until a satisfactory sensor network
is achieved. A sensor network is satisfactory when it fulfills the
process engineer’s purposes. Therefore, the final instrument con-
figuration yielded by the OA phase is a consequence of several exe-
cutions of the OA algorithm together with the corresponding
expert analysis. Each iteration is expensive in terms of time and ef-
fort demanded to the expert, as it can be estimated that in average
it requires an hour of working time for a medium-size industrial
plant (500 variables approximately). In this context, an appropriate
initialization grants a strong reduction on the total amount of iter-
ations required for the OA phase, since a properly chosen configu-
ration redounds to less refinement work to reach a satisfactory
classification.

On the other side, the RA detects redundant measurements by
symbolically deriving the equations that are associated to mea-
sured variables, where observable variables are replaced by math-
ematical expressions as functions of the measurements. This
process is accomplished by solving those equations symbolically
and then substituting the observable variables into the redundant
equations, canceling terms whenever possible (Ferraro et al.,
2002). Nevertheless, this strategy losses effectiveness when the
model contains numerous non-linear equations that cannot be
symbolically solved. Moreover, as the problem size increases, the
amount and complexity of the nesting, caused by the successive
substitutions, becomes prohibitively expensive in terms of both
memory storage and run times, thus making it practically impossi-
ble to obtain many final symbolic expressions. In view of these lim-
itations arose the need of relying on an initial sensor network that
tended to reduce the total amount of non-linear terms for the
equations analyzed by the RA phase.

In Fig. 2, we show a parallel between the modules of the DSS
and the manner in which they affect the variables of the mathe-
matical model yielded by the ModGen. As it can be seen, the first
variable classification occurs when the initialization module de-
fines a sensor network, since a sensor network determines which

Fig. 2. Parallel between main stages of the DSS, and the categorization of the model’s variables.
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variables will be named as measured. For example, if the sensor
network establishes that an instrument should be located so as
to measure the pressure of a given stream, then the variable that
represents the pressure of that stream in the mathematical model
is said to be measured since it can be assumed that its value will be
known, i.e., it can be thought as a constant value. Later, with the
execution of the OA stage, the variables that were not cataloged
as measured are split into observable and unobservable. This
means that the module decides which unmeasured variables can
be calculated from the equation system, regarding the measured
variables as constant values. As it was aforementioned, this is an
iterative procedure since the process engineer decides whether
he needs to change the sensor network after each run of the OA
algorithm. Therefore, it may happen that he adds or removes an
instrument of the sensor network, thus producing a new variable
categorization into measured and unmeasured.

As soon as the OA yields a satisfactory result, the RA phase takes
place. The execution of this module yields to the organization of
measured variables as redundant or non-redundant, since it deci-
des which instruments could be removed without changing the
amount and quality of information obtained from the sensor net-
work. Since a certain degree of redundancy is expected for safety
reasons, the process engineer must decide whether the redun-
dancy degree revealed by the sensor network is satisfactory. For
a second time, this procedure may cause that the engineer does
not feel the sensor network is good enough and then he may decide
to add or remove some instruments, consequently changing the
sensor network and restarting the whole analysis, hence resulting
in a different variable classification.

As it can be perceived, the ID is not a trivial task as it comprises
several hours of execution of the structural algorithms together
with hours of human analysis. For this reason, it is very important
that the initial sensor network, generated by the initialization
module, is defined considering objectives that tend to minimize
the amount of iterations of each analysis module and as a conse-
quence of that, the human effort will also be highly reduced.

3. Evolutionary approaches for the definition of sensor
networks

The selection of sensors has traditionally been carried out by the
engineer in charge of the plant, who based his decisions on his own
criteria, expertise and skill. However, as the process complexity
grows, a human criterion becomes less reliable since a very careful
analysis of huge amounts of information has to be accomplished.
Moreover, several objectives and constraints need to be simulta-
neously taken into account. Hence, the necessity for the automation
is clear giving us the idea of designing a tool to assist the engineer.

The multi-objective combinatorial nature of this problem,
jointly with the complexity and size of the mathematical models
that usually represent accurately industrial processes, gave us
strong reasons to tackle the problem of defining an initial sensor
network with evolutionary computation. In particular, it is well
known that GAs are particularly suitable to solve multi-objective
problems because they simultaneously deal with several possible
solutions. In this sense, the first step consisted in making a review
on the existing GAs for applications that were similar to our prob-
lem. In respect to the ID case, we found only two research groups
tackling it with evolutionary computation.

Sen, Narasimhan, and Deb (1998) developed an evolutionary
algorithm on the basis of graph theory for ID. It works on data for a
linear model of the process and is implemented with a single-objec-
tive approach. However, it is used alternatively to fulfill cost, reliabil-
ity and precision goals. Reliability is calculated as the sensor’s
malfunctioning probability, and precision corresponds to potential

errors on the measurement procedure. They do not explain how they
compute the sensor network’s cost. Individuals are represented by
graphs, defining crossover and mutation operators according to
graph theory. Initial population is randomly generated, tournament
is used to select the parent pool, and evolution always stops when 10
generations are reached. The problem tackled in the article contains
28 variables. As the objectives are dealt with independently, the re-
sults are reported for each one of them separately.

On the other hand, Carnero, Hernández, Sánchez, and Bandoni
(2001) studied the problem of designing non-redundant sensor
networks for non-linear systems by means of genetic algorithms,
considering simultaneously two objectives related to the reliability
and cost of the network. They represent process operation on stea-
dy state with a set of linear equations. Individuals are fixed-size
binary strings, and the recombination operators are redefined in
accordance with linear algebra. Roulette wheel is used as the selec-
tion method, and the number of generations is fixed in 300. The ap-
proach followed to deal with two objectives is the one presented
by Srinivas and Deb (1995) named NSGA (non-dominated sorting
genetic algorithm). The study case is the same as the one studied
by Sen et al. (1998), i.e., a 28-variable linear model.

As to our requirements, these algorithms regrettably exhibit
statements that limit their application to our problem instance.
Firstly, both techniques base their studies on linearized models of
the process. In our context, this would imply a dramatic simplifica-
tion from the original model, which would unnecessarily reduce
our methodology’s scope, since the methods we use for OA and
RA are applicable to non-linear models.

In addition, both articles present extremely basic versions of ge-
netic algorithms. They use a fixed number of generations even
though it has been proved this is not an efficacious convergence
policy (Safe, Carballido, Ponzoni, & Brignole, 2004). They do not ex-
plain clearly the fundamentals, i.e., neither the foundations on the
parameters they use, nor the reason why they do not implement
adaptive parameters. This constitutes an important drawback as
it has been stated in Eiben, Hinterding, and Michalewicz (1999).
Moreover, the problem they chose to assess their techniques’ per-
formance is too small, the models consisting in 28 variables. There-
fore, it would be overbold to try to employ these methodologies
straightaway to big engineering problems, like our case whose
model is huge thus aspiring to be realistic. Besides, small size prob-
lems may be tackled with any other optimization technique, and
the use of a heuristic method is not well justified.

For this reason, in Carballido, Ponzoni, and Brignole (2005) a ba-
sic prototype for a GA is presented, which aims at finding a sensor
network with cost, reliability and observability factors as simulta-
neous objectives considered by means of an aggregating approach.
Individuals are binary strings, crossover and mutation are per-
formed in the traditional way, roulette wheel selection is used
and a genotypic convergence criterion stops the algorithm.

Nonetheless, the main drawback of this implementation con-
sists in that it completely ignores the RA, which constitutes the
second main stage of the ID process. Yet, it was a version that suc-
ceeded at improving the OA phase. As it was necessary to count
with an algorithm that integrally deals with objectives related to
both structural procedures, a new GA was developed. The SID-GA
proposed in this article represents a successor of the former meth-
od (Carballido et al., 2005). The most striking amendment was the
inclusion of a new objective in its fitness function so as to over-
come the limitations above explained, i.e., to consider the RA
phase. Moreover, the method was also improved by redefining
the implementation of the term that directly impacts the OA. Then,
SID-GA represents the first integrative approach that considers all
main aspects of the instrumentation design task, more precisely, it
takes into account the two main existing structural procedures for
ID, the observability and the redundancy analysis.

1422 J.A. Carballido et al. / Computers & Industrial Engineering 56 (2009) 1419–1428
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4. SID-GA: A genetic algorithm for the initialization of
instrumentation design

4.1. Chromosomal codification

The decision about the installation of sensors in a process plant
to monitor its behavior can be translated into stating which vari-
ables in the mathematical model will to become constant values
through measurements. Therefore, the most natural representation
for the individuals is the binary codification (see Fig. 3). According
to this representation, each chromosome defines a possible sensor
network by assuming that every gene position represents a vari-
able in the mathematical system. A 1-gene indicates that the vari-
able is to be measured – i.e., an instrument should be placed in the
plant’s location associated to that variable thus becoming constant –,
while a 0-gene denotes an unmeasured variable. Therefore, the chro-
mosomal length is equal to the number of variables in the mathe-
matical model.

4.2. Fitness function

The main purpose for the algorithm presented here was to de-
sign a tool oriented to enhance redundancy and observability anal-
ysis. Moreover, cost and reliability issues were also considered.
According to the classification proposed by Coello Coello, Lamont,

and Van Veldhuizen (2007), there are three main approaches that
can be used to tackle problems with several objectives (see
Fig. 4). In particular, our methodology is framed into the aggrega-
tion or scalarization approach. More specifically, we implemented
the fitness function as a linear combination of the four objectives.
At this point it is important to mention that, whereas nowadays
the trend is to use Pareto dominancy techniques, there are certain
problems, particularly multi-objective combinatorial optimization
problems, in which aggregating functions can provide very good
approximations of the Pareto optimal set, even outperforming Par-
eto-based approaches (Coello Coello et al., 2007, p. 70). Moreover,
as stated in Deb (2001, p. 50), faced with more than two objectives
as in our case, the aggregation method is the most convenient. Fi-
nally, it is important to mention that all the objectives were
equally weighted. This design decision was taken since every pro-
cess engineer had different ideas on how to weight each objective.

Then, following the scalarization approach, as soon as the four
objectives are calculated in the manner that will be explained later,
their values are normalized and combined into a single function, as
shown in Eq. (1),

FðiÞ ¼ NRðiÞ þ NObsðiÞ þ 2� NCðiÞ � NRedðiÞ ð1Þ

where NR(i), NObs(i), NC(i) and NRed(i) are the normalized values
corresponding to the reliability, observability, cost and redundancy
terms, respectively. Conceptually, the reliability term gives an idea
of the sensor network failure probability; the observability term
gives an approximation of the amount of variables that can be ob-
tained form the mathematical model considering the measured
variables as constant values; the cost term represents the purchase
and installation prices; and the redundancy term gives an estima-
tion of the amount of linear terms in the mathematical model that
will be used in the RA. Reliability and observability are maximized,
and the other two objectives are minimized. The whole function is
maximized. The shape of this fitness function gives us the possibil-
ity to have a range of fitness values varying from 0 to 4 to measure
the goodness of a solution, having F(i) = 4 as the best situation.
Moreover, it can be straightforwardly extended to Eq. (2), for the
case when more objectives are pursued,

FðiÞ ¼
Xn

p¼1

NOMp þm�
Xm

q¼1

NOmq ð2Þ

where n and m are the amounts of objectives to be maximized and
minimized, respectively, NOMp e [0. . .1] is the pth normalized
objective to be maximized, NOMq is the qth objective to be mini-
mized, and F(i) ranks in the interval [0. . .n + m]. The optimumFig. 3. Chromosomal codification used by SID-GA.

Fig. 4. Multi-objective evolutionary algorithms’ taxonomy based on Fig. 1.18 presented by Coello Coello et al. (2007, p. 55).
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situation arises when F(i) becomes equal to n + m, i.e., all the terms
for the objectives to be maximized return a 1-value, and the ones to
be minimized return a 0-value.

Below we shall give a detailed explanation of the mode in which
each of these objectives is calculated. It is important to take into
consideration that for the observability and redundancy objectives,
it is not possible to present an explicit mathematical formulation.
For this reason, the accomplishment of these objectives will be de-
scribed in a pseudo-algorithmic manner.

4.2.1. The observability analysis term
The OA algorithms are rigorous and computationally expensive.

Thus, it is not reasonable to use them for computing the term of a
fitness function. Therefore, an approximation on the amount of ob-
servable variables should be obtained through some high-speed
procedure. Moreover, as the GA constitutes an initialization tool
for the classification of variables, a good estimation of the observ-
ability degree suffices.

As it was introduced in Section 2.1, two structural algorithms
were developed by this research group to perform the OA. The first
one, GS-FLCN, is a combinatorial routine that classifies unmea-
sured variables by means of matrix rearrangements (Ponzoni
et al., 1999). The second approach, called Direct Method (DM), is
founded on graph theory (Ponzoni et al., 2004) and is not at all
combinatorial. In Carballido et al. (2005), the observability term
was calculated using the procedure called forward triangulariza-
tion (FT) that constitutes the first step in the GS-FLCN. The FT oper-
ation estimates the number of variables that can be directly
calculated from a sensor configuration, returning a lower bound
on the potential quantity of observable variables.

In this article, the term designed to look for a configuration that
maximizes the observability degree was built obeying the same
philosophy of the procedures that comprise the OA module imple-
mented with the DM. The gist of this policy is that the GA analyzes
a given configuration’s observability degree based on a simplifica-
tion of the DM, capturing its preliminary fast stages. More specifi-
cally, the observability term is focused on the two first steps of the
DM: Bigraph Construction and Maximum Matching Finding. In
Fig. 5, the computation of the OA term is schematized. The first
step consists in mapping the mathematical equation model M into
a bigraph B(R, C, E). B is conformed by two sets of nodes R and C,
which represent the matrix rows and columns, respectively. The
edges included in the set E link nodes of R with nodes of C. There
is an edge between ri y cj if and only if the ith row of M contains a
non-zero value in the jth column of M. The second step explores B
in order to find a maximum matching MM, which is a set of edges of
B of maximum cardinality, such as no one pair of MM has nodes in
common. The cardinality of MM constitutes an upper bound esti-

mation of the maximum amount of variables that can become ob-
servable from a given sensor configuration (Ponzoni, 2001). This
upper bound estimation used in SID-GA is more accurate than
the lower bound estimation in its ancestor Carballido et al. (2005).

More details about the implementation of the routines for Bi-
graph Construction and Maximum Matching Finding used in the
DM can be found in Ponzoni et al. (2004).

4.2.2. The redundancy analysis term
The OA algorithm employed in the DSS classifies the unmea-

sured variables by means of a decomposition procedure of the
mathematical model into smaller subsystems. This system’s
decomposition is not unique, and different decompositions usually
yield to subsystems with different degrees of non-linearity
(Ponzoni, 2001).

In other hand, the RA algorithm classifies measured variables
into redundant and non-redundant by means of a hard-computing
procedure. The complexity of this task is strongly associated to the
non-linearity level of the equations’ subsystem that corresponds to
the measured and observable variables (Ferraro et al., 2002).
Therefore, the objective computed by the RA term aims at reducing
the non-linearity degree of the mathematical system by preferring
those individuals that represent a configuration that yields the
least amount of non-linear terms.

To calculate the RA term, it is necessary to count with informa-
tion about the variables’ dependencies. This information is ob-
tained when the SID-GA begins by a procedure that defines, for
every variable v in the model, all the variables that should be mea-
sured to make linear the terms where v appears. The output of this
process is a dependency list (DL), which is later used as extra input
every time the fitness function is calculated for a given individual.

For example, suppose we have the following mathematical
system:

Fða; bÞ þ c þ Fða;dÞ ¼ 0
eþ Gða; dÞ ¼ 0
Fða;dÞ þ h ¼ 0

Assuming that F and G are non-linear functions that become lin-
ear if one of the parameters becomes a constant value, the DL
would say that: (a ? b, d; b ? a; c ? -; d ? a; e ? -; h ? -). This
means that variable a appears in a non-linear term with variable b,
and with another non-linear term with variable d. Then, the best
situation in this scenario would be to place a sensor so as to con-
vert variable a into a constant value since, if we do so, this simple
academic example becomes linear.

Then, pursuing this idea, every potential sensor network is ana-
lyzed according to the following simplified pseudo-algorithm:

Fig. 5. OA term estimation computed for the fitness function of SIG-DA. The row nodes R and column nodes C are denoted with circles and squares, respectively. The edges E
are drawn with dashed lines. The resulting maximum matching MM, depicted with solid lines, has cardinality 5, and it is conformed by the following edges: (1, 4), (2, 2), (3, 1),
(5, 3) and (6, 5).
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For every unmeasured variable vi in the individual
For every variable vj (j – i) that depends on vi according to the

DL
If vj is measured

then Add 0 (the optimal situation)
else Add CONSTANT (the worst situation)

4.2.3. The cost and reliability terms
The terms oriented to find a sensor network with minimum cost

and maximum reliability (minimum error) are calculated directly
from two vectors that, respectively, store information about pur-
chase prices and sensor errors, the latter ranging between 0 and
1. They are calculated as a linear function that simply adds every
value of the corresponding vector stored in a position where there
is a non-zero in the individual, as shown in Eqs. (3) and (4):

CðiÞ ¼
XN

j¼1

cv½j��i½j�: ð3Þ

RðiÞ ¼
Xn

k¼1

ðrv½k��i½k�Þ: ð4Þ

where cv and rv are the cost and reliability vectors, respectively.
It is important to mention that in order to obtain realistic val-

ues, several manuals and magazines were consulted, and finally
the information published on the magazine Cole-Parmer Int. was
picked.

4.3. Standard algorithmic features

Crossover is performed in the traditional manner with one cut-
point. This is particularly suitable for our problem instance since
the performance of the algorithm depends on the order that vari-
ables have been arranged in the representation. It is more likely
to keep together genes that are near each other (in the neighbor-
hood) and it can never keep together genes from opposite ends
of the string. This is advantageous because variables that are near-
by in the codification have in general a stronger relationship in the
equation system than those at opposite positions. Thus, with one-
point crossover we are trying to keep together those variables that
are more likely to form an assignment subset. As regards popula-
tion, a fixed-size population was used. Finally, an elitist policy
was adopted.

4.4. Novel algorithmic features

Convergence is controlled by an ad hoc-implemented genotypic
approach, which follows the recommendations on stopping criteria
suggested in Safe et al. (2004). This approach considers that no
more generations are needed when it determines that the geno-
typic information in the population will not yield to improvements
in further evolution. Mutation is implemented as a deterministic
and adaptive operator (Bäck, Hammel, & Schwefel, 1997), based
on the bit-flip approach. Its initial probability value is defined as
1/l, where l is the length of the chromosome (i.e., the total # of
variables), and it is reduced as the evolution proceeds according
to a numerical value defined at the beginning of the algorithm. Be-
sides, its adaptive aspect arises when it is applied: the fitter the
individual to be mutated, the lower the probability of mutation
becomes.

4.5. Unfeasible individuals’ treatment

A constraint for this problem is that some positions in the chro-
mosome represent variables that stand for locations in the plant

that cannot be physically measured. For this reason, the only allele
allowed for those positions is a zero. This chromosomal feature is
achieved by generating the individuals in the initial population
with a 0-value in those positions, and by restricting the mutation
operator from changing them.

It is essential to mention that we used this policy, instead of
applying penalties, since the first test runs where the generation
of infeasible individuals was allowed resulted in populations with
too few valid individuals, at most 30%. Furthermore, these vari-
ables should not be erased from the chromosome since they sim-
plify the calculation of both observability and redundancy terms.

4.6. The selection method

The implementation presented in Carballido et al. (2005) of the
GA used roulette wheel selection. For the SID-GA version 2-tourna-
ment selection was implemented, being this method the most effi-
cient and efficacious obtained after a comparative study of the
algorithmic performance among roulette wheel, tournament and
ranking selection.

5. Experimentation

The algorithmic performance was assessed for the ID of an
industrial ammonia synthesis plant, and its behavior was analyzed
by a fair comparison with the application its ancestor’s to the same
study case. From now on, for the sake of simplicity, the previous GA
will be named O-GA as it only takes into account the Observability
phase, while the new implementation (the SID-GA) also considers
the redundancy stage, i.e., the SID-GA contemplates the whole
structural analysis for instrumentation design. The main parame-
ters we used were: population size = 100; crossover probability =
0.7 and initial mutation probability = 0.0018 (1/546, 546 being
the amount of variables in the mathematical model).

5.1. Industrial example: An ammonia synthesis plant

The industrial plant chosen as a realistic example to assess the
performance of this software component was designed by Bike
(1985) to produce 1500 ton/day of ammonia at 240 K and 450
KPa. A minimum purity of 99.5% can be obtained with this process
by means of the Haber–Bosch process, which consists in producing
ammonia through synthesis at medium pressure, prior to its recov-
ery by absorption with water. The hydrogen and nitrogen feed
stocks are provided by a coal gasification facility, and also contain
inerts, like argon and methane. The kinetics of the ammonia
synthesis reaction over a double-promoted iron catalyst can be
described on the basis of the following rate equation:
N2 þ 3H2 () 2NH3. The catalytic reactor’s product is fed to a flash
whose gas output stream is the feed of the absorber, while its
liquid output stream feeds a distillation column that yields ammo-
nia at specification conditions as its top product. There is also a
recovery section, composed of membranes, whose output is recy-
cled. A complete scheme of the plant is shown in Fig. 6. The math-
ematical model that represents the plant, obtained by ModGen,
consists of 546 equations and 557 variables.

5.2. Performance evaluation

Experimental research was conducted in two stages. A hundred
runs were executed for each algorithm: O-GA and SID-GA. The best
four fitness configurations obtained by each implementation were
selected. Later, an expert in ID was consulted to pick the sensor
network from each group that constituted the best initialization,
according to his skill and experience. In this way, by a combination
of the automated tool and the expert’s knowledge, two sensor
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networks (SN) were selected. One yielded by the O-GA, and the
other one was suggested by the SID-GA. We will name them SNO-

GA and SNSID-GA, respectively. In a 2nd phase, the engineer instru-
mented the process using SNO-GA completing the whole analysis,
and later repeated the same procedure starting with SNSID-GA.

In Table 1 the average results attained for 100 runs by both
implementations in the first stage are summarized. The three top
rows point out the values obtained for the terms corresponding
to observability, cost and error, respectively. The value obtained
for the RA term is not reported in this table since this feature
was only considered by the SID-GA approach.

From the analysis of the reported values arises that O-GA per-
forms better than SID-GA for the three objectives. This was an ex-
pected behavior since the incorporation of a new objective in SID-
GA inevitably worsens the rest of the factors. However, it must be
noticed that both levels of observability and error stay close to
those in O-GA, being the cost the only term that exhibits a more
significant relative variation. On the other hand, rows 4, 5 and 6
have to be evaluated together. In row 4 the average generation

where the algorithm converged is reported, while in the last row
the time in seconds required by the algorithm to reach that gener-
ation is stated. As it can be observed in row 6, there is a huge
reduction in the time required by SID-GA for each generation,
which derives from the change in the method applied to calculate
the OA term. The reduction in execution time achieved by SID-GA,
compared with O-GA, amounts to approximately 1/3 (row 6). How-
ever, SID-GA needs a higher number of generations to converge
due to the inclusion of the new objective.

For the second stage of the experimentation, the process engi-
neer selected the best SN obtained by O-GA and SID-GA. Then, fol-
lowing the methodology previously described in Fig. 2, two
complete ID were carried out using both SNs as initial sensor net-
works, assuming alternatively that the O-GA and SID-GA were the
initialization modules. After these analyses were completed, two
final sensor networks were obtained (FSNO-GA and FSNSID-GA). The
values corresponding to our four objectives were calculated for
those resulting sensor networks (Table 2). In column 2, #Non-linear
shows the amount of non-linear terms that appear in the equation
system assuming as constant values those variables that are mea-
sured in the FSNs. This value exhibits that SNSID-GA achieves a mean-
ingful reduction in the total number of non-linear terms. Moreover,
analyzing the sub-columns #Total and Perc., it can be appraised
that the decrease represents a 12% of the proportional number of
non-linear terms. This rebounded in an important benefit for the
RA since a mathematical model with a smaller degree of non-line-
arity strongly reduced its computational effort. This confirms the
gain with the incorporation of the fourth objective.

If the configurations are analyzed according to the observability
degree, it can be perceived that the amounts of variables to be
measured (Meas. in Table 2) are very similar, while the set of obser-

Fig. 6. Ammonia synthesis plant’s flowsheet.

Table 1
First stage: O-GA and SID-GA avg. results

O-GA SID-GA

1 Observability degree 80% 76%
2 Cost (USD) 88,32 117,17
3 Error 0.095 0.104
4 Convergence Gen. 50 170
5 Total Exec. Time (s) 20.301 21.702
6 Time by Gen. (s) 0.406 0.128

Table 2
Second stage: results after a complete ID was initialized with two SNs

1 2 3 4 5
Final SNs Terms Observability Cost Error

# Non-linear # Total Perc. Meas. Obs. %Obs.

FSNOGA 239 673 35% 105 359 85% $ 23,800 0.0965
FSNSID-GA 184 779 23% 102 311 76% $ 27,200 0.0969
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vable variables attained by means of the FSNOGA is superior in a 9%.
Finally, the difference in cost favors the configuration yielded by
the O-GA, while the sensor error’s level is approximately the same
in both cases.

A global analysis of the results illustrated in Table 2, reveals that
the incorporation of the RA objective diminishes the degree of non-
linearity of the equation system. Thus, the main objective of this
work has been fulfilled. However, as it was to be expected, this gain
went to the detriment of the remaining objectives.

5.3. Face validity

Additionally to the results presented in the former section, a
face validity process was effectuated where two experts were
asked to rank between seven SNs, randomly chosen from the 100
suggested by the SID-GA in phase 1. The experts counted with
the specification of the industrial process, without knowing any-
thing about the fitness values associated to none of the SNs. The
objective was to assess the fitness function’s fairness with respect
to the expert’s criterion.

In Table 3 the sensor networks are ordered according to their
fitness values. The numbers in the rows a and b illustrate the posi-
tion in which the experts located each SN in their rankings. As it
can be perceived, the arrangements established by the experts
are very close to the one determined by the fitness function, exist-
ing variations only between those positions that correspond to
vastly adjacent fitness values. This gives a subjective but significant
idea that the fitness function designed for the SID-GA properly
qualifies the relative goodness between the individuals, thus sub-
stantiating the use of the aggregating approach.

When the engineers were asked about how they applied their
criteria to decide the rankings, it became evident as well that the
different objectives were dissimilarly weighted as their decisions
were made. Hence, as future work, it is planned to incorporate var-
iable weights to the different terms so as to allow the engineer to
define priorities between the goals as a priori defined parameters.

6. Conclusions

In this article a multi-objective GA called SID-GA, designed to
enhance the quality and availability of process knowledge, is pre-
sented. The SID-GA constitutes the only existing implementation,
at least from those reported in the literature, which initializes
the structural instrumentation design procedures simultaneously
considering several objectives. As well, it exhibits novel features
related to parameters and termination criteria. In particular, the
most important contribution of this original method is the incorpo-
ration of specific objectives to improve the two main ID stages:
observability and redundancy analysis. Moreover, the SID-GA con-
stitutes the first technique that attains a sensor network from non-
linear mathematical models.

The performance of the algorithm was assessed by means of the
instrumentation of an ammonia synthesis plant. The results were
compared against those obtained with an ancestor technique,
which was designed for the same purpose. This previous method
succeeded in overcoming human’s limitations, but that did not
consider one of the most important stages of the ID procedure,
the RA, as an objective.

The results achieved by the new algorithm revealed that the
proposed method accomplished an important reduction in the
non-linearity degree of the mathematical system related with the
RA phase, thus committing with the main objective for which it
had been designed. Likewise, satisfactory results were obtained
with respect to the other objectives contemplated by the fitness
function. Furthermore, it proved to be better than its ancestor in
terms of run times.

Besides, the effectiveness of the fitness function in evaluating
the quality of a solution was tested through a face validity process
carried out with two experts. This experiment confirmed that the
aggregating approach in the fitness function turns out to be
suitable to integrate the different objectives for our problem
instance.

As an interesting topic for future research, weights for the terms
in the fitness function will to be included as fixed start-up param-
eters to allow the engineer to establish his own priorities. The set-
ting of these weights will be defined by each engineer before an ID
begins. Finally, an analysis with experts to define new factors to be
considered will be performed as a detailed tailor-made extension
of our method’s scope.
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