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Elliptical and circular fibre reinforced composite plates are important structural elements in modern
engineering structures. Vibration analysis of these elements are of interest to structural designers. The
present paper deals with the free transverse vibration analysis of symmetrically laminated solid and
annular elliptic and circular plates with several complicating effects.

The approach developed is based on the Rayleigh-Ritz method where the deflection of the plate is
approximated by a general shape function of polynomial type.

The analysis includes several complicating effects, such as the presence of an internal hole, an
internal ring support, several concentrated masses and the boundary elastically restrained against
rotation and translation.

Several examples are solved and some results which correspond to particular cases are compared
with existing values in the literature. New results are also presented for cross-ply and angle-ply

Composite laminates

elliptical and circular laminates with different boundary conditions.

The algorithm developed can be applied to a wide range of elastic restraint conditions, to any aspect
ratio and to higher modes. The effect of the restraint parameters along the boundary on the natural
frequencies for plates with these complicating effects is considered.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Anisotropic plates, especially laminated composite plates, have
been widely used in diverse industries, e.g. aerospace, automobile,
etc. The determination of the transverse vibrational character-
istics of these plates is of great importance. Laminated plates have
the advantage of controllability of their structural properties by
changing the fibre orientation and the number of plies. Also, it is
important to consider elastic restraints along the boundaries
since, for instance, ideal clamped edges are practically impossible
to achieve. Besides, the elastic restraints along the boundaries
have a significant influence in the dynamic behaviour of the
plates.

The study of vibration problems of elliptical and circular plates
has been investigated extensively. It is not possible to give a
detailed account because of the very large number of papers that
have been published; nevertheless some important references
will be cited. Early studies have been reviewed by Leissa. The
monograph [1] contains a detailed review of the investigations on
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the vibration of plates of various shapes, including circular and
elliptical planforms. In subsequent articles [2-4], Leissa provides
information on plate vibration including different complicating
effects. Although there are many papers on the vibration of
elliptical and circular plates, they refer mainly to isotropic and
polar orthotropic material. More recent works include different
types of thickness variations and non-uniform boundary condi-
tions. Rajalingham et al. [5], studied the vibration of clamped
isotropic elliptic plates using the exact vibration modes of circular
plates as shape functions. Young and Dickinson [6] studied plates
with curved edges and internal cut-outs. The Ritz method was
used to obtain an eigenvalue equation for the free vibration of a
class of plates, which involved curved boundaries defined by
polynomial expressions. Chakraverty and Petyt [7] analysed the
natural frequencies of non-homogeneous elliptic and circular
plates using two dimensional boundary characteristic orthogonal
polynomials in the Rayleigh Ritz method. Lim et al. [8] treated
the problem of free vibration for doubly connected composite
plates with super-elliptical boundaries. The frequency response
was analysed in a globally continuous plate domain by the
p-Ritz method. Nallim et al. [9] analysed the fundamental
frequency of transverse vibration of a circular plate of rectangular
orthotropy carrying a central mass using the Ritz method with
simple polynomial expressions. Chakraverty et al. [10] analysed
the vibrations of isotropic annular elliptic plates using two
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Nomenclature

ab semi-major and semi-minor elliptical plate axes

A domain occupied by the plate in %,y coordinates

A domain occupied by the plate in x,y coordinates

Cij unknown coefficients in the deflection function

cr($),cr(35) spring constant of the rotational and translational
restraint

D flexural rigidity (isotropic plate)

Dy bending, twisting and coupling rigidities (laminated
plate)

Do reference rigidity of laminated plates= E;h°[12(1—
v12v21)

E+E; Young’s moduli parallel and perpendicular to the
fibres

Gz shear modulus of elasticity

h plate thickness

Ng, Ny components of the outward unit normal vector i to

the boundary 0A

pii(x,y)  polynomials

RT nondimensional rotational and translational coeffi-
cients

5 arc length along the boundary of the plate

Tinax maximum Kinetic energy

Umax maximum strain energy due to plate bending

Urmax Maximum strain energy stored in rotational springs

Urmax ~mMaximum strain energy stored in translational
springs

w deflection function

X9,z Cartesian coordinates

XY,z non-dimensional coordinates

o mass density of the plate material

v,v12,v21 Poisson’s ratios

oA plate boundary

w circular natural frequency

Q non-dimensional frequency parameter

dimensional boundary characteristic orthogonal polynomials in
the Rayleigh—Ritz method. Bayer et al. [11] investigated the effect
of parabolic variation of thickness on the frequency parameters of
isotropic clamped elliptical plates. Two different approximated
methods, the moment method and the Rayleigh-Ritz method
were used to solve the problem. Kim [12] studied the free
vibration problem of elliptic and circular plates with rectilinear
orthotropic material. This problem was studied by using the
Rayleigh-Ritz method with products of simple polynomials as the
admissible functions. Hassan studied the free transverse vibra-
tions of isotropic elliptical and circular plates with half of the
boundary simply supported and the rest free [13], and with half of
the boundary clamped and the rest free [14]. In both papers the
computations have been carried out by using the Rayleigh-Ritz
method. In all the above papers only the classical boundary
conditions were considered.

Kukla and Szewczyk [15] presented the solution to the problem
of the free axisymmetric vibration of annular isotropic plates with
elastic concentric supports. The exact solution was obtained by
applying the Green’s function method.

Analysis of the literature shows that the study of vibration
problems of elliptical and circular plates with complicating effects
has attracted the attention of many researchers. As far as the
problem of free vibrations of elliptical or circular composite
material plates with concentrated masses, internal cutouts,
internal ring supports and generally restrained boundaries is
concerned, no information is available in the literature.

In the present paper the Ritz method is used to develop a
general algorithm for the dynamical analysis of symmetrically
laminated composite elliptical and circular plates with several
complicating effects. The deflection of the plate is approximated
by a general polynomial shape function. To demonstrate the
validity and efficiency of the algorithm, several numerical
examples are presented and some particular cases are compared
with results presented by other authors.

The algorithm developed can be applied to a wide range of
elastic restraint conditions, different symmetric laminates, elliptic
and circular geometries, an internal hole, an internal ring support
and concentrated masses. The effect of the fibre orientation on the
natural frequencies of plates with these complicating effects is
considered. Several sets of vibration mode shapes are included, to
provide a better understanding of the dynamical behaviour of
these plates.

New results are also presented for cross ply and angle ply
laminates with different boundary conditions. Cases of circular
plates not treated previously in the literature are also included.

2. Analysis
2.1. Solid plate

Consider a thin, symmetrically laminated elliptical composite
plate elastically supported along its boundary by translational and
rotational springs as shown in Fig. 1a. It is supposed that the
rotational restraint is characterized by the spring constant cg(5),
and the translational restraint by the spring constant cr(5), where
5 is the arc length along the boundary dA. The laminate is of
uniform thickness h and is made up of a number of layers of
unidirectional fibre reinforced composite material (Fig. 1b). The
fibre orientation is indicated by the angle 8, measured from the %
axis to the fibre direction.

The present study is based on the classical laminated plate
theory (CLPT) [16,17], where it is assumed that the Kirchhoff
hypothesis holds. Consequently the displacements in the X,y,Z
directions, respectively denoted by ii, v, w, are given by

4%, 5,2,t) = ’2W'
iwg.zt = —22VEID g 5 = Wik g, (1)

where W(%,y,t) denotes the mid-plane deflection.

2.2. Annular plate with an internal ring support

Consider the plate described in Section 2.1 with the addition of
the following characteristics:

(a) The plate has a central cut-out described by the equation
X2 /a% +3*/b5 — 1 =0, see also Fig. 1c.The inner boundary is
free.

(b) The plate is supported by an internal ring described by the
equation #2 /a2 + % /b; — 1 = 0, see also Fig. 1c.
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Fig. 1. Mechanical system under study: (a) solid elliptical plate; (b) geometry of an N-layered symmetric laminate; and (c) annular elliptical plate.

2.3. The plate and concentrated mass energies

In the case of normal modes of vibration it is assumed that the
transverse displacement of any point of the plate is a sinusoidal
function of time, such that W(X,y,t) = w(X,y)sin wt. The max-
imum strain energy of the mechanical system under study when
describing small amplitude simple harmonic motion is given by

2
az
D, < >
oy?
*w 2w\ [ *w
b (a > (6x@y> b <@y2> (aﬁ@f>
2w\’

+4D65 (W) :I dx dy,

where Dj are the laminate stiffness coefficients, which are
obtained by integrating the material properties of each layer of
the composite plate [16,17], and A denotes the plate domain in the
%,y system for both cases described in Sections 2.1 and 2.2.
For simplicity and generality it is convenient to introduce the
following change of variables:
X y
o VT

- 1/ 2w\’ Pwotw

i} :7// Dy (&Y 42p,TWW
max 2 i 11 <axz> 12 622 6}72
2w

(2)

3)

where a and b are the semi-major and semi-minor axes of the
ellipse, as is shown in Fig. 1a. This change of variables applied to
Eq. (2) leads to

2

i// { REl <ax2> +abD
2.0\ 2 2

a (o°w 4 o‘w

pla7) Talelae
4

+ bDG

4 ’w) [ *w
D26 | S5
b oy axay

*wow
X2 oy?

*w
oxoy
2
o*w
6 <6x6y> } dxdy,

Umax -

(4)

where A is a circular domain for the plate described in Section 2.1
and an annular circular domain for the plate described in
Section 2.2.

On the other hand, the maximum kinetic energy of the plate in
the X,y system is given by

Tonax = s~ hpos? // w2dg dg, (5)
2 ] &

where  is the circular natural frequency, p is the mass density per
unit volume, and h is the laminate thickness. Several internal
concentrated masses m; located at the points (Xm,, Vm,)» €aN be
handled straightforwardly by including their contribution to the
kinetic energy,

1 Jn o
=52 MW &I, (6)
i=1

where N, is the number of concentrated masses.
The change of variables (3) leads to the following expression
for the total maximum kinetic energy

‘l 1 Nm
Trnax = ih,owzab'///‘\wzdxdyJrj;:m,‘wz(xm,,,ymi). (7)
2.4. The potential energies due to the elastic restraints

The maximum potential energy due to the rotational restraint
on the boundary, in the X,y system, is given by

1 ow\? .
2 10 ()
1% (W +
2 A R ) ox x

UR,max =

ow

5 (8)

2
n;) d§,
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where 84 is the boundary of the plate domain A and ng and n; are
the components of the outward normal vector to this boundary

xb? ya?

, 9)
\/ bR + ay? \/ b*%* + a4y?

= (g, ny) =

For a function u: R*> > R defined in the image of a smooth
curve I represented parametrically by the application
r:[c,d] — R2, r(t) = (r1(t),r2(t)), it is well known that the line
integral of the function u along the curve I is given by

d
7( u(x,y)ds = / U@ O1de, (10)
r c

where t now denotes a parameter, r'(t) = dr(t)/dt and ||r'(?)]| is
given by

1P (O] = /(D) + (5 ().

In consequence, the application of Egs. (3), (10) and (11) in the
expression (8) leads to

1 & 1 /ow\? cos?t
U = —/ RO | = (—)
R,max 2 /o R( )|:a2 ox Cos2 t + (a/b)ZSiHZ t
L 2 owaw sin t cos t +l<aﬂ>2
ab ox 9y \(b/aycos?t + (a/b)sin’t)  b*> \ Oy

) e
B ((b/a)zczlsr; tt+ sin? t> aV1 - Keos edt (12)

where k = (1/a)Va? — b?.
The maximum potential energy due to the translational
restraint on the boundary is given by

UT,max = % ?gACT(S—)WZ (sjds' ( 1 3)

Taking into account Egs. (3), (10) and (11) the expression (13)
reduces to

In the case of the boundary 0A of the elliptical plate, the

parametric equations are given by

2n
Ut max = 1/ cr(syw?a\/1 — k*cos? tdt. (14)
X=acost, y=bsint, with tel0,2x] (11) ’ 2 Jo
Table 1
Frequency parameters wa?+/ph/D, of isotropic elliptical solid and annular plates v = 1/3 with different aspect ratios and boundary conditions
alb az/a = by/b NxM C-F SS-F
o] 2 Q3 2 [} Q3
1 0 6x6 10.216 21.260 21.260 4.9838 13.940 13.940
7x7 10.216 21.260 21.260 49838 13.940 13.940
8x8 10.216 21.260 21.260 49838 13.940 13.940
9x9 10.216 21.260 21.260 4.9838 13.940 13.940
10 x 10 10.216 21.260 21.260 4.9838 13.940 13.940
11 x11 10.216 21.260 21.260 49838 13.940 13.940
12x12 10.216 21.260 21.260 4.9838 13.940 13.940
Ref. [10] 10.22 21.26 21.26 4.984 13.94 13.94
04 6x6 13.618 21.567 21.567 51113 13.966 13.966
7x7 13.548 21.440 21.440 4.8969 13.896 13.896
8x8 13.548 20.676 20.676 4.8969 13.463 13.463
9x9 13.516 20.572 20.572 4.7937 13.375 13.375
10 x 10 13.516 19.971 19.971 4.7937 12.825 12.825
11 x 11 13.505 19.917 19.917 4.7579 12.752 12.752
12x12 13.505 19.604 19.604 4.7579 12.320 12.320
Ref. [10] 13.50 19.46 19.48 4.748 12.06 12.10
2.0 0 6x6 27.378 39.499 56.320 13.271 23.726 39.435
7x7 27.377 39.499 55.985 13.271 23.726 38.454
8x8 27.377 39.497 55.985 13.271 23.723 38.454
9x9 27.377 39.497 55.976 13.271 23.723 38.425
10 x 10 27.377 39.497 55.976 13.271 23.723 38.425
11 x11 27.377 39.497 55.976 13.271 23.723 38.425
12x12 27.377 39.497 55.976 13.271 23.723 38.425
Ref. [10] 27.38 39.50 55.98 13.27 23.72 38.43
04 6x6 36.893 42.437 64.778 13.435 24163 43.230
7x7 36.668 42.184 64.210 12.753 24.008 41.906
8x8 36.668 41.792 62.951 12.753 23.607 41.906
9x9 36.531 41.595 62.482 12.422 23.447 41.612
10 x 10 36.531 41.344 57.952 12.422 23.038 38.268
11 x 11 36.428 41.211 57.774 12.301 22.918 37.854
12x12 36.428 41.122 55.177 12.301 22.663 34.063
Ref. [10] 36.35 41.04 54.03 12.26 22.53 31.85
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3. The boundary and compatibility conditions

The boundary conditions which correspond to the elastic
restraints [18], are given by

S Malo1(9). 2(9). 0, (15)

cr(S)

o5 ! (16)

cr@Gw(ea (5), 02(8),t) = —Qp
where M, is the bending moment, M, is the twisting moment and
Q, is the transverse shear force.

The presence of a ring support introduces constraints on the
displacement, slope and curvature. In consequence, the corre-
sponding conditions in the %,y system are given by

W&, =0, (17)
WXy _ owRJYy)

o o~ o (18)
M1n|r, = Manl'lv (19)

where (OW(X,y)/0f)|, and (0W(X,y)/0f)|.~ denote the corre-
sponding lateral derivatives. !

The curve I'y is given by the equation %2/a? +y%/bj —1 =0
(see Fig. 1c) and My, M,;, are the corresponding bending
moments.

Table 2

4. The eigenvalue problem

It is well known that when using the Ritz method with a
complete set of trial functions it is possible to ignore the natural
boundary conditions. It is sufficient that they satisfy the
geometrical ones since, as the number of co-ordinate functions
approaches infinity, the natural boundary conditions will be
exactly satisfied [19]. This is a transcendental characteristic of the
Ritz method, especially when dealing with problems for which
such satisfaction is very difficult to achieve. In the present
problem this property is crucial since the natural boundary
conditions (15) and (16), which correspond to the elastically
restrained boundary, and the condition (19) which corresponds to
the internal ring support, are extremely difficult to satisfy. In
consequence, the assumed shape function is given by

M N
Wy =Y ) i, y),
i=1 j=1
pix.y) =Xy +y? — )b, (20)

where c; are unknown coefficients, the parameter b. depends on
the boundary conditions; b, =1 is adopted when the plate is
simply supported, b. = 2 when it is rigidly clamped and b. =0
when it is free or elastically restrained along the boundary. On the
other hand, the parameter r, = (a;/a) = (b1/b), 0<rp<1, with
b. = 1 allows the support along an elliptical ring to be considered.
Also a point support can be considered by setting r, =0 and
b.=1.

The Ritz procedure requires the minimisation of the energy
functional F = UpaxtUgmaxtUrmax—Tmax With respect to each of

Frequency parameters wa?+/ph/D, of isotropic elliptical solid and annular plates v = 0.3 with different aspect ratios and boundary conditions

alb ay)a = b/b NxM R—F, R = 100 T—F, T= 100
fo} Q, Qs Q4 fo} Q Qs Q4

1 0 6x6 10.020 20.867 20.867 34.265 47320 12.107 12.107 19.101
7x7 10.019 20.866 20.866 34.265 47287 12.102 12.102 19.101
8x8 10.019 20.858 20.858 34.226 47287 12.080 12.080 19.071
9x9 10.019 20.858 20.858 34226 47286 12.080 12.080 19.071
10 x 10 10.019 20.858 20.858 34226 47286 12.080 12.080 19.071
11 x 11 10.019 20.858 20.858 34.226 4.7286 12.080 12.080 19.071
12 x 12 10.019 20.858 20.858 34226 47286 12.080 12.080 19.071

Ref. [20] 10.019 = = = 4.729 = = =
0.4 6x6 13.429 21.879 21.879 33.668 51527 12.378 12.378 18.559
7x7 13336 21.775 21.775 33.668 4.9094 12.345 12.345 18.559
8x8 13.336 21177 21177 33.196 4.9094 12152 12152 18.411
9x9 13.272 21.059 21.059 33.196 4.7340 12.112 12.112 18.411
10 x 10 13.272 20.356 20.356 32.674 47340 11.856 11.856 18.333
11 x 11 13.244 20.262 20.262 32.674 4.6498 11.804 11.804 18.333
12 x 12 13.244 19.712 19.712 32.049 4.6498 11.468 11.468 18.240
2 0 6x6 26.433 38.338 59.030 67.527 10.561 16.658 24.004 25124
7x7 26.419 38338 54.690 67.438 10.549 16.658 23.654 23.996
8x8 26.419 38.264 54.690 67.421 10.549 16.622 23.654 23.996
9x9 26.419 38.264 54.411 67.419 10.549 16.622 23.606 23.995
10 x 10 26.419 38.263 54.411 67.419 10.549 16.622 23.606 23.995
11 x 11 26.419 38.263 54.403 67.418 10.549 16.622 23.605 23.995
12 x 12 26.419 38.263 54.403 67.418 10.549 16.622 23.605 23.995

Ref. [20] 25.606 = = = 11.004 = = =
0.4 6x6 35.617 41.684 66.606 69.860 11.617 17.101 24.361 25.697
7x7 35.259 41.023 62.619 65.999 11.144 17.078 24153 24333
8x8 35.051 40.792 62.123 65.484 11.144 16.939 24153 24220
9x9 35.051 40.446 60.692 62123 10.775 16.899 24.029 24189
10 x 10 35.051 40.446 60.692 62123 10.775 16.769 23.916 24.029
11 x 11 34.930 40270 60.257 61.725 10.592 16.726 23.860 23.981
12 x 12 34.930 40.049 55.997 61.725 10.592 16.586 23320 23.981
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Table 3

Frequency parameters wa?+/ph/D, of isotropic solid elliptical plates with different boundary conditions, v = 0.3
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R = cra/D a/b Mode T = cra®/D
1 10 100 1000 o0

0 1.2 Ref. [20] 1 1.447 3.850 5.739 6.052 6.089

Present 1 1.4522 3.8352 5.7101 6.0291 6.066

2 2.0408 6.1474 12.954 15.007 15.251

3 2.1386 6.5308 15.014 18.281 18.682

4 6.5332 9.6028 20.580 27.689 28.617

14 Ref. [20] 1 1.511 4.215 6.950 7.500 7.565
Present 1 1.5261 41801 6.8429 7.4087 7.4773

2 2.0957 6.3424 13.874 16.557 16.897

3 2.2813 7.0439 17.712 23.520 24.319

4 6.8331 9.9339 21.465 29.570 30.699

2.0 Ref. [20] 1 1.648 4.976 11.004 13.458 13.798

Present 1 1.7333 5.0186 10.549 12.875 13.213

2 2.2674 6.9231 16.622 22.602 23.641

3 2.6717 8.3648 23.606 35.852 38.326

4 7.1433 10.506 23.995 42.030 46.150

1 1.2 Ref. [20] 1 1.458 4.084 6.753 7.279 7.340
Present 1 1.4628 4.0792 6.7353 7.2710 7.3347

2 2.5620 6.1865 13.450 16.112 16.439

3 3.0811 6.6957 15.327 19.371 19.897

4 7.4636 10.080 20.626 28.635 29.761

14 Ref. [20] 1 1.517 4.384 7.955 8.813 8.916
Present 1 1.5352 4.3787 7.8854 8.7785 8.8897

2 2.5906 6.3807 14.360 17.768 18.218

3 3.7077 7.4073 17.858 24.678 25.692

4 7.8036 10.442 21.506 30.584 31.948

2.0 Ref. [20] 1 1.650 5.029 11.736 14.921 15.382

Present 1 1.7399 5.1375 11.441 14.594 15.082

2 2.6925 6.9577 17.013 24.088 25.401

3 5.9950 9.7097 23.637 37.052 39.972

4 8.1151 11.009 24.023 43.162 48.046

100 1.2 Ref. [20] 1 1.472 4.486 10.069 12.003 12.226

Present 1 1.4783 4.4937 10.048 12.040 12.283

2 3.5061 6.2827 15.364 22.244 23.202

3 4.7452 7.1253 16.543 26.118 27.718

4 10.055 11.611 20.824 35.461 38.383

1.4 Ref. [20] 1 1.528 4,703 11.425 14.491 14.866

Present 1 1.5488 4.7382 11.345 14.629 15.086

2 3.5287 6.4782 16.235 24.753 26.123

3 6.2616 8.4154 18.439 32.649 35.851

4 10.548 12.101 21.685 38.053 41.642

2.0 Ref. [20] 1 1.655 5.176 14.643 23.906 25.606

Present 1 1.7509 5.3993 14.499 24.155 26.419

2 3.6116 7.0564 18.583 33.786 38.264

3 11.030 12.773 23.780 46.269 54.411

4 12.144 13.762 24143 52.240 67.419

© 1.2 Ref. [20] 1 1.473 4.497 10.225 12.258 12.490
Present 1 1.4787 4.5051 10.202 12.299 12.554

2 3.5344 6.2862 15.461 22.677 23.682

3 4.7964 7.1413 16.605 26.644 28.338

4 10.159 11.678 20.836 36.068 39.150

1.4 Ref. [20] 1 1.529 4,712 11.592 14.829 15.223
Present 1 1.5491 4.7485 11.506 15.417 15.466

2 3.5577 6.4818 16.330 26.595 26.719

3 6.3444 8.4549 18.469 36.447 36.774

4 10.660 12.174 21.696 42.271 42.531

2.0 Ref. [20] 1 1.655 5.182 14.794 24.638 26.467

Present 1 1.7512 5.4079 14.640 24.896 27.377
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Table 3 (continued )
R = cra/D alb Mode T = cra3/D
1 10 100 1000 ©
2 3.6428 7.0604 18.665 34.613 39.497
3 11.155 12.855 23.789 47.143 55.976
4 12.377 13.939 24150 53.144 69.858
Table 4 1) (2) (3) (1)
o 4 R()R‘ ()R ()R T()T
Frequency parameters wa?\/ph/D, of isotropic solid elliptical plates with two + { b/ ikh b ijkh b ijkh + b/ " iikh
boundary conditions, v = 0.3
” ; Mij, = // PPy dxdy + Z T TP4j(Ximg» Ying PichXimg> Y, )»
m
0.0 01 02 03 0.7 _ cra _cd? _mg _ my
R=—, T=——, I'm=—= ,
Do Do q mp nab/)h
Simply supported 2 2
1 Ref. [20]  4.936 4231 2.752 3399 2.588 PO _ / Py Pin g, dy, PP — // o*py & Pin gy dy
Ref. [21] 4.89 421 3.75 3.42 2.63 {jkh A OX2 0x2 > ikh ay? dy? ’
Present 4.9351 42335 3.7548 3.4051 2.5974 2 2
3 0P *piy | 9°Pij 0 pin
P + dxd
ijkh = 2 o2 2 A2 Y,
0x2 oy oy’ ox
125  Ref. [20] 6.428 5.522 4.902 4.444 3.389
Ref. [21] 6.33 5.45 4.86 442 3.40 3%p;: o
Present 6.3935 5.4777 4.8536 43982 3.3496 Pf‘}f,, 49 Pin dxdy,
y A OxQy 0x0y
A2
15  Ref.[20]  8.420 7.263 6.459 5.866 4485 o _ // 0%p;j 0% pyy 4 0*pyj 0% piy dxdy
Ref. [21] 8.21 7.05 6.28 5.71 439 ijkh = 0x2 0xdy = Oxdy Ox2 ’
Present 8.2822 7.0739 6.2526 5.6558 42911 . 2
pe _ // 0 p; 0 pu . 0°Djj 0Py dxdy
ijkh = Ay >
2.0 Ref. [20]  13.798 12.002 10.730 9.776 7.519 v dy? oxdy = oxoy oy?
Ref. [21]  13.11 11.22 9.95 9.03 6.91 27 . 2
Present 13.213 11.174 9.8031 8.8206 6.6213 Rfk’h = / Pij 9Py cos“t
v 0 OXx OX | cgsrc052t+(a/b) sin®t
Clamped 052
1 Ref. [20]  10.220 8.116 6.874 6.055 4383 V tdt,
Ref. [21]  10.11 8.08 6.90 6.12 4.49 2 apij Pin cos t sin t
Present 10.216 8.1246 6.8970 6.0858 4.4190 Rijen = —
o Ox dy x;;;;g(b/a) cos2 t + (a/b)*sin’ t
125  Ref [20]  13.129 10.458 8.879 7.829 5.677 / 082 tdt.
Ref. [21]  13.04 10.41 8.89 7.87 5.77
)
Present 13.229 10.491 8.8892 7.8345 5.6772 RO _ / ap,-j OPun sin” t
Uk Jo 0y QY |scost (b/a)>cos? t + sin’ t
15 Ref. [20]  16.770 13.458 11.466 10.131 7.369 y
Ref.[21]  16.84 13.38 11.40 10.09 7.37 /1 os? tdt,
Present 17.129 13.492 11.381 10.004 7.2170
T — o /1 — K2cos2 tdt.
20  Ref[20] 26467 21538 18472 16388  11.998 ikh = [y p iPkh 5o ¢
Ref.[21]  26.82 21.07 17.84 15.74 11.44
Present 27.377 21131 17.613 15.377 10.973
the ¢ coefficients 5. Verification and numerical results
ij
—(F) i=1,...,M, j=1,...,N. (21) 5.1. Generalities

ac J
For a non-trivial solution, the determinant of the coefficient
matrix should be equal to zero:
D Y [Kijkn — @°Mijnlci = 0, (22)
i
where @ is the non-dimensional frequency coefficient Q=
/ph/Dowa? and Dy is the reference flexural rigidity which is
given by Dy = E1h3/(1 2(1 — v12v21)).
The other parameters in Eq. (22) are:

D1 1y |, D2 jaN% 2y | D12 ra\2 3
Do P+ o () Pin+ g (p) Vi

w4y () A+ 2 5y () 25 () 7

Kijun =

A computer code, based on the variational algorithm devel-
oped in this paper, was implemented for the analysis of elliptic
and circular plates having different material properties and
boundary conditions. In order to check the accuracy of the
algorithm, the frequency parameters were computed for a number
of plate problems for which comparison values were available in
the literature. Additionally, a great number of problems were
solved and since the number of cases was extremely large, results
were selected for the most significant cases. The analytical
expressions obtained allow the adoption of different values for
the following parameters:

e Number of layers, stacking sequences and angle of fibre
orientation.
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e Elastic properties of each material layer.

e Aspect ratio a/b.

e Rotational and translational restraint coefficients.
e Position of an internal ring or a point support.

Let us introduce the terminology to be used for describing the
boundary conditions at both the inner and outer edges. In the case
of annular plates, the designation C-F, identifies a plate with the
outer edge clamped and the inner edge free and SS-F corresponds
to a simply supported outer edge. When the external edge is
elastically restrained against rotation or translation, the designa-
tions R or T are used.

5.2. Convergence and results comparison for isotropic plates

Results of a convergence study of eigenvalues wa®./ph/D,
where D = Eh3/12(1 —v?), of isotropic elliptical solid and annular
plates with v=1/3 and different aspect ratios (a/b, a,/a, b,/b)
and boundary conditions are presented in Table 1. The rate of
convergence of the first three eigenvalues is shown for C-F and
SS—F cases. It is well known that the Ritz method, in the case of
eigenvalues, gives upper bounds. The convergence of the men-
tioned eigenvalues is studied by gradually increasing the number
of polynomials in the approximating function. It can be seen that
for solid plates M = 6, N = 6, is sufficient for converged results. In
the case of annular plates M = 12, N = 12, is sufficient to obtain
satisfactory convergence for the first eigenvalues. However, for
annular elliptical plates values of M, N greater than 12 could be
convenient to give converged result for the second and third

Table 5

natural frequencies. This is due to presence of the free inner
boundary. The comparison with results of Chakraverty et al. [10]
shows a very close agreement.

Table 2 depicts values of the first four frequency parameters
wa®+/ph/D, of isotropic elliptical solid and annular plates with
v = 0.3, different aspect ratios and R-F and T-F boundary
conditions. The comparison with results of Achong [20] shows a
very close agreement in the case of circular plates. For elliptical
plates Achong considered rotational springs acting on rotations of
w with respect to the variable r. For this reason the values
depicted in Table 3 for the frequency parameters wa®/ph/D of
isotropic elliptical solid plates present a discrepancy when R =
cra/D>1 and a/b>1.5. As it was expected, when the boundary is
only restrained against translation, the agreement is good.

In Table 4, for comparison with Refs. [20,21], values of the
fundamental frequency parameter wa?+/ph/D, for solid elliptical
and circular plates with a concentrated mass and two different
boundary conditions, are included.

5.3. Convergence and results comparison for composite plates

In this and the following section two kinds of composite
materials are used:

(i) Graphite/epoxy: E; =138 GPa, E; = 8.96 GPa, Gi3 = 7.1 GPa,
Vi2 = 03,

(ii) E-glass/epoxy: E; = 60.7 GPa, E; = 24.8 GPa, G» = 12.0GPa,
Vi2 = 0.23.

Frequency parameters wa?+/ph/Dy, for [(30°, —30 )2]sym Graphite/epoxy laminated solid and annular elliptical plates with different aspect ratios and boundary conditions

alb ax/a = by/b Nx M C-F SS-F
fo} Q, Qs Q4 Q Q Qs Q4
1 0 6 x 6 6.6455 10.256 15.605 16.553 3.1866 6.2345 10.929 11.085
7x7 6.6455 10.256 15.566 16.553 3.1865 6.2345 10.929 10.952
8x8 6.6455 10.256 15.566 16.552 3.1865 6.2341 10.927 10.951
9x9 6.6455 10.256 15.565 16.552 3.1865 6.2341 10.927 10.947
10 x 10 6.6455 10.256 15.565 16.552 3.1865 6.2341 10.927 10.947
11 x 11 6.6455 10.256 15.565 16.552 3.1865 6.2341 10.927 10.947
12 x 12 6.6455 10.256 15.565 16.552 3.1865 6.2341 10.927 10.947
0.4 6x6 8.9810 10.942 16.368 17.568 3.2857 6.3478 10.823 11.972
7x7 8.9491 10.907 16.136 17.484 3.1568 6.3237 10.708 11.808
8x8 8.9408 10.755 15.238 17.404 3.1536 6.2096 10.220 11.772
9x9 8.9264 10.732 15.043 17.331 3.0928 6.1843 10.061 11.727
10 x 10 8.9187 10.620 14.286 17.229 3.0909 6.0591 9.3590 11.682
11 x 11 8.9119 10.610 14.183 17.137 3.0718 6.0429 9.2146 11.634
12 x12 8.9055 10.555 13.792 17.053 3.0701 5.9577 8.5977 11.582
2 0 6 x6 13.159 20.782 31.420 32.527 6.3117 12.770 21.485 22.347
7x7 13.159 20.781 31.329 32.527 6.3116 12.770 21.485 22.063
8x8 13.159 20.781 31.328 32.527 6.3116 12.769 21.482 22.061
9x9 13.159 20.781 31.326 32.527 6.3116 12.769 21.482 22.054
10 x 10 13.159 20.781 31.326 32.527 6.3116 12.769 21.482 22.054
11 x 11 13.159 20.781 31.326 32.527 6.3116 12.769 21.482 22.054
12 x 12 13.159 20.781 31.326 32.527 6.3116 12.769 21.482 22.054
0.4 6 x 6 17.778 22121 32.194 35.369 6.5147 13.005 21.289 24.225
7x7 17.713 22.040 31.743 35.201 6.2617 12.952 21.064 23.906
8x8 17.699 21.722 30.025 35.036 6.2558 12.720 20.138 23.840
9x9 17.670 21.667 29.656 34.889 6.1370 12.663 19.829 23.758
10 x 10 17.657 21.435 28.206 34.678 6.1342 12.408 18.495 23.668
11 x 11 17.643 21.410 28.023 34.488 6.0967 12.371 18.221 23.574
12 x 12 17.632 21.298 27.267 34.316 6.0945 12.196 17.050 23.469
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Results of a convergence study of eigenvalues wa?+/ph/Dy of
elliptical solid and annular laminated plates are presented in
Tables 5 and 6. Four-ply graphite/epoxy laminates with stacking
sequence [(30°, —30°),]sym are considered.

The rate of convergence of eigenvalues is shown for C-F and
SS-F in Table 5 and for R—F and T-F in Table 6. It has been
demonstrated that N = 12, M = 12, is sufficient, from an engineer-

ing viewpoint, to obtain satisfactory convergence for the first few
eigenvalues.

In Table 7, for comparison purpose with Ref. [8], values
of the first eight frequency parameters wa?/ph/Dy of
E-glass/epoxy [(—f, B, —P, B),]sym annular circular plates and two
boundary conditions, are included. Good agreement can be
observed.

Table 6

Frequency parameters wa®+/ph/Do, for [(30°, —30°),]sym Graphite/epoxy laminated solid and annular elliptical plates with different aspect ratios and boundary conditions

alb ax/a = b,/b NxM R-F, R =100 T-F, T= 100
o [0 Q5 Qa o [0 Q5 Qu
1 0 6x6 6.5582 10.180 16.285 16.330 3.1035 6.0126 9.9476 12.109
7x7 6.5565 10.178 15.522 16.326 3.1003 6.0048 9.9369 10.394
8x8 6.5565 10.169 15.510 16.304 3.1003 5.9817 9.8830 10.360
9x9 6.5565 10.169 15.472 16.304 3.1003 5.9816 9.8829 10.260
10 x 10 6.5565 10.169 15.472 16.304 3.1003 5.9814 9.8820 10.259
11 x 11 6.5565 10.169 15.471 16.304 3.1003 5.9814 9.8820 10.257
12x12 6.5565 10.169 15.471 16.304 3.1003 5.9814 9.8820 10.257
0.4 6x6 8.8885 11.022 16.964 18.069 3.3637 6.2150 10.166 12.367
7x7 8.8398 10.987 16.774 17.460 3.2080 6.1924 10.109 11.047
8x8 8.8277 10.834 16.093 17.387 3.2005 6.0842 9.8365 10.963
9x9 8.7955 10.800 15.866 17.304 3.0772 6.0627 9.7520 10.835
10 x 10 8.7878 10.647 14.980 17.223 3.0740 5.9588 9.3897 10.807
11 x 11 8.7735 10.625 14.789 17.150 3.0155 5.9357 9.2680 10.771
12x12 8.7664 10.513 14.041 17.048 3.0137 5.8207 8.7154 10.737
2 0 6x6 13.023 20.605 32.222 32.749 5.9528 11.461 17.461 20.479
7x7 13.019 20.600 31.151 32.216 5.9490 11.454 17.453 18.340
8x8 13.019 20.580 31.126 32.181 5.9490 11.421 17.412 18.317
9x9 13.019 20.580 31.041 32.181 5.9489 11.421 17.411 18.216
10 x 10 13.019 20.580 31.040 32.180 5.9489 11.421 17.411 18.215
11 x 11 13.019 20.580 31.039 32.180 5.9489 11.421 17.411 18.214
12 x12 13.019 20.580 31.039 32.180 5.9489 11.421 17.411 18.214
0.4 6x6 17.633 22.263 33.477 36.385 6.4601 11.815 17.789 21.004
7x7 17.535 22.180 33.110 35.135 6.1775 11.778 17.731 19.219
8x8 17.514 21.866 31.812 35.002 6.1659 11.615 17.412 19.168
9x9 17.449 21.784 31.373 34.836 5.9392 11.575 17.307 19.022
10 x 10 17.436 21.471 29.672 34.678 5.9340 11.405 16.821 19.000
11 x 11 17.406 21.415 29.312 34.530 5.8259 11.361 16.660 18.950
12x12 17.395 21.188 27.873 34.328 5.8233 11.168 15.872 18.9214
Table 7
Frequency parameters wa?+/ph/Dy, for [(—8, f, —B, B)2)eym E-glass/epoxy laminated circular annular plates with two boundary conditions
az/a = by/b B NxM Q Q, Q3 Q4 Qs Q6 Q Qs
0.3 15° SS-F
Present 3.7825 9.5390 11.890 18.324 19.192 29.055 29.618 30.809
Ref. [8] 3.7520 9.2565 11.276 18.145 19.057 28.640 29.410 30.953
C-F
Present 9.3484 14.955 17.775 25.360 26.347 37.104 37.818 42.551
Ref. [8] 9.4193 14.539 17.096 24.993 26.070 36.688 37.638 42.573
30° SS-F
Present 3.7842 9.9929 11.567 18.866 19.497 30.015 30.484 30.583
Ref. [8] 3.7520 9.6648 11.017 18.653 19.354 29.725 30.398 30.773
C-F
Present 9.3484 15.490 17.379 26.013 26.639 38.317 38.880 42.344
Ref. [8] 9.4168 15.018 16.755 25.563 26.340 37.988 38.673 42.725
45° SS-F
Present 3.7844 10.316 11.302 19.218 19.581 30.271 30.684 31.048
Ref. [8] 3.7473 9.9575 10.785 18.959 19.452 30.508 30.645 30.845
C-F
Present 9.3476 15.879 17.055 26.469 26.675 39.110 39.424 42.168
Ref. [8] 9.4073 15.410 16.397 25.888 26.413 38.853 39.138 42.818
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Frequency parameters wa?+/ph/Dy, for [(8, —PB)2lsym E-glass/epoxy laminated solid elliptical plates with different aspect ratios and boundary conditions

R
alb=15 alb=2
o} Q, Qs Q4 Qs Qs Q Q, Qs Q4 Qs Qs
p=30°
T= o0
0 6.1079 14.255 19.980 25.780 31.984 40.847 9.4905 18.463 30.897 2.870 47.073 47.159
1 7.9143 15.921 21.835 27.382 33.713 42.430 11.875 20.634 32.906 35.402 48.995 49.505
10 11.349 20.183 27.080 32.388 39.449 48.183 17.154 26.631 39.513 43.665 56.307 58.103
100 12.684 22.299 29.898 35.401 43.190 52.311 19.521 29.878 43.768 48.900 61.941 64.402
e} 12.879 22.633 30.355 35.908 43.849 52.750 19.885 30410 44.509 49.807 62.354 65.562
T =100
0 5.7688 12.379 16.176 19.825 22.343 27.408 8.4113 14.682 21.770 21.901 27.288 29.330
1 7.2253 13.217 16.654 20.050 22.407 27.423 9.9360 15.476 21.974 21.984 27.334 29.356
10 9.5911 14.884 17.550 20.536 22.539 27.468 12.421 17.028 22.144 22.422 27.455 29.434
100 10.384 15.527 17.865 20.735 22.591 27.492 13.224 17.612 22.201 22.608 27.517 29.479
© 10.495 15.621 17.910 20.764 22.598 27.496 13.334 17.696 22.209 22.635 27.526 29.488
T=10
0 3.9705 6.2855 7.1389 9.3112 10.620 14.550 4.7606 6.7907 8.2851 9.8351 12.896 16.543
1 4.3402 6.2935 7.4056 9.7234 11.266 16.468 5.0040 6.7999 9.2771 10.249 14.249 17.557
10 4.6872 6.3075 7.7816 10.434 12.401 18.327 5.2637 6.8169 10.712 11.003 16.719 19.620
100 4.7638 6.3122 7.8911 10.677 12.801 19.026 5.3266 6.8230 11.130 11.279 17.603 20.458
© 4.7735 6.3129 7.9058 10.711 12.858 19.128 5.3346 6.8238 11.186 11.318 17.728 20.583
T=1
0 1.5449 2.1188 2.3454 5.8101 7.4244 12.225 1.7212 2.2630 2.6691 6.1241 9.6615 14.405
1 1.5637 2.5211 3.7620 6.8496 8.6377 14.691 1.7345 2.6198 5.5917 7.1589 11.688 15.719
10 1.5777 2.9841 5.1083 8.3531 10.527 17.017 1.7459 3.0714 8.3808 8.7314 15.044 18.308
100 1.5805 3.1020 5.4316 8.8120 11.142 17.893 1.7483 3.1952 9.0781 9.2425 16.171 19.329
© 1.5808 3.1172 5.4731 8.8743 11.227 18.019 1.7486 3.2116 9.1684 9.3133 16.329 19.480
B =45°
T= o0
0 6.5008 13.996 21.896 24.602 33.255 38.457 10.336 18.796 30.265 36.315 45.043 50.229
1 8.2190 15.675 23.602 26.240 34.922 40.088 12.551 20.898 32.267 38.621 47.003 52.420
10 11.837 19.991 29.112 31.230 40.835 45.820 18.166 27.074 38.964 47.235 54.411 61.265
100 13.422 22.202 32.596 34.188 45.073 49.770 21.131 30.810 43.557 53.799 60.270 68.791
© 13.665 22.560 33.203 34.689 45.856 50.096 21.620 31.463 44.396 55.045 60.623 70.293
T =100
0 6.0632 12.076 16.980 19.126 22.591 26.553 8.9096 14.527 21.078 22.557 27.579 28.313
1 7.4144 12.940 17.310 19.420 22.631 26.561 10.239 15.287 21.333 22.586 27.648 28.322
10 9.7788 14.645 17.997 20.034 22.720 26.582 12.625 16.813 21.883 22.651 27.831 28.349
100 10.624 15.298 18.263 20.279 22.757 26.593 13.458 17.401 22.110 22.680 27.925 28.366
© 10.744 15.392 18.302 20.314 22.763 26.593 13.575 17.487 22.143 22.684 27.939 28.370
T=10
0 3.9983 6.2228 7.1805 9.0138 10.647 14.647 4.7676 6.7271 8.3085 9.4774 12.984 15.259
1 4.3402 6.2260 7.5047 9.3878 11.342 15.626 4.9934 6.7316 9.4006 9.8461 14.416 16.307
10 4.6799 6.2316 8.0163 9.9866 12.579 17.351 5.2486 6.7402 10.472 11.186 17.161 18.232
100 4.7566 6.2335 8.1779 10.177 13.026 17.957 5.3118 6.7432 10.686 11.767 18.208 18.940
© 4.7663 6.2337 8.1999 10.203 13.090 18.042 5.3200 6.7437 10.716 11.847 18.360 19.042
T=1
0 1.5423 2.1164 2.3467 5.3709 7.4266 12.401 1.7167 2.2606 2.6699 5.5655 9.7498 12.932
1 1.5625 2.4902 3.8406 6.4329 8.7163 13.738 1.7325 2.5914 5.7084 6.6234 11.870 14.346
10 1.5771 2.8828 5.4217 7.8404 10.732 16.022 1.7450 2.9764 8.0943 8.9474 15.527 16.852
100 1.5800 2.9773 5.8337 8.2382 11.405 16.802 1.7476 3.0771 8.5345 9.8477 16.836 17.744
© 1.5803 2.9894 5.8878 8.2911 11.499 16.911 1.7479 3.0903 8.5943 9.9679 17.023 17.872
p = 60°
T=
0 6.9160 13.699 23.456 23.838 34.243 36.294 11.263 18.960 29.436 40.112 43.025 52.900
1 8.5323 15.371 25.129 25.408 35.821 37.982 13.290 20.975 31.423 42.195 45.019 54.929
10 12.311 19.740 30.101 31.117 41.866 43.677 19.195 27.326 38.226 51.027 52.551 63.945
100 14.199 22.108 33.054 35.337 46.690 47.484 22.903 31.669 43.258 58.604 59.306 72.894
© 14.506 22.506 33.563 36.128 47.631 47.725 23.567 32.481 44.227 58.972 60.966 74.793
T =100
0 6.3558 11.754 17.652 18.445 22.649 25.626 9.3932 14.316 20.423 23.077 27.466 27.608
1 7.5954 12.6473 17.8692 18.8186 22.6748 25.6455 10.530 15.062 20.742 23.084 27.479 27.696
10 9.9404 14.396 18.371 19.572 22.734 25.828 12.801 16.599 21411 23.104 27.512 27.933
100 10.845 15.065 18.588 19.859 22.759 25.844 13.676 17.207 21.680 23.114 27.529 28.056
© 10.978 15.162 18.621 19.901 22.763 25.845 13.803 17.296 21.719 23.116 27.533 28.075
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Table 8 (continued )
R
alb=15 alb=2
o2 Qs Q5 Q4 Qs Qs o Qs Q5 Qu Qs Qs
T=10
0 4.0091 6.1517 7.2103 8.8342 10.446 13.986 4.7615 6.6581 8.3242 9.2679 12.661 14.468
1 4.3333 6.1549 7.5806 9.1630 11.185 14.977 4.9782 6.6620 9.4906 9.5865 14.190 15.504
10 4.6690 6.1594 8.2205 9.6445 12.541 16.540 5.2328 6.6684 10.088 11.603 17.225 17.227
100 4.7467 6.1608 8.4382 9.7900 13.042 17.048 5.2976 6.6706 10.252 12.369 17.813 18.440
0 4.7565 6.1610 8.4686 9.8097 13.114 17.120 5.3060 6.6709 10.274 12.478 17.896 18.620
T=1
0 1.5379 21137 2.3476 5.1255 7.1146 11.670 1.7113 2.2578 2.6703 5.2600 9.2879 12.026
1 1.5609 2.4567 3.9014 6.1906 8.4914 13.064 1.7304 2.5610 5.7932 6.3130 11.572 13.482
10 1.5764 2.7890 5.6918 7.4532 10.689 15.194 1.7440 2.8874 7.6369 9.4371 15.597 15.796
100 1.5794 2.8668 6.1939 7.7891 11.435 15.868 1.7468 2.9713 8.0110 10.562 16.560 17.099
0 1.5797 2.8767 6.2611 7.8334 11.541 15.961 1.7471 2.9824 8.0615 10.718 16.668 17.318
Table 9

Frequency parameters wa?®+/ph/Dy, for two cross-ply (1) [(0°,90%);]¢ym. (2) [(90,0);]sym, E-glass/epoxy laminated solid elliptical plates with different aspect ratios and
boundary conditions

R
a/b=15 alb=2
(o} Q Q3 Q4 Qs Qg @ Q Q3 Q4 Qs Qg
(1)
T=
0 5.9816 14.414 19.277 27.328 30.374 40.456 9.3177 18.020 31.253 32.263 45.022 49.084
1 7.8252 16.055 21.214 28.789 32.231 42.438 11.732 20.274 33.266 34.811 47.479 50.914
10 11.212 20.357 26.364 33.790 38.003 49.208 16.941 26.311 39.940 42.984 56.091 58.183
100 12.454 22.469 28913 37.047 41.354 53.505 19.201 29.365 44.067 48.046 61.977 63.833
© 12.630 22.797 29.311 37.609 41.907 54.235 19.544 29.847 44759 48.914 63.020 64.299
T=100
0 5.6705 12.597 15.822 20.556 21.939 27.186 8.2812 14.720 21.683 22.358 26.857 30.401
1 7.1654 13.414 16.367 20.716 22.028 27.205 9.8517 15.568 21.778 22.534 26.886 30453
10 9.5463 15.075 17.355 21.085 22.205 27.246 12.396 17.194 21.958 22.921 26.953 30.618
100 10.325 15.721 17.693 21.245 22.271 27.262 13.215 17.796 22.022 23.080 26.981 30.720
© 10.432 15.815 17.740 21.269 22.281 27.264 13.327 17.883 22.031 23.103 26.986 30.738
T=10
0 3.9705 6.3252 7.1234 9.8930 10.079 14.260 4.7689 6.8334 8.2752 10.395 12.069 18.502
1 4.3455 6.3400 7.3648 10.267 10.807 16.165 5.0144 6.8481 9.2223 10.784 13.574 19.279
10 4.6964 6.3676 7.6657 11.035 11.968 19.045 5.2782 6.8761 10.498 11.601 16.020 21.237
100 4.7737 6.3775 7.7427 11.335 12.328 19.887 5.3420 6.8864 10.846 11.932 16.785 22175
© 47834 6.3788 7.7526 11.379 12.377 19.999 5.3502 6.8879 10.891 11.981 16.888 22.322
T=1
0 1.5474 2.1201 2.3450 6.5281 6.8219 11.851 1.7247 2.2647 2.6688 7.0966 8.4324 16.696
1 1.5646 2.5410 3.7333 7.6182 7.9895 14.499 1.7359 2.6390 5.5410 7.9231 10.832 17.649
10 1.5782 3.0633 4.9505 9.0675 10.014 18.135 1.7459 3.0714 8.3808 8.7314 15.044 18.308
100 1.5809 3.2053 5.0215 9.5836 10.590 19.145 1.7490 3.2856 8.7305 10.022 15.273 21.122
o) 1.5813 3.2240 5.2484 9.6566 10.667 19.278 1.7493 3.3048 8.8080 10.103 15.407 21.294
(2)
T= o
0 71727 13.505 23.085 24.979 34.399 36.000 11.871 18.900 28.866 42.144 42.643 54.036
1 8.7270 15.183 24.787 26.470 35.931 37.708 13.772 20.869 30.871 44.190 44.588 55.959
10 12.596 19.632 29.831 32.262 42.049 43.454 19.828 27.363 37.841 51.906 53.504 65.051
100 14.684 22.098 32.789 36.957 47.207 47.229 24.086 32.142 43179 58.272 62.793 75.030
© 15.035 22.518 33.298 37.880 47.881 48.274 24.893 33.072 44233 58.585 64.902 76.258
T=100
0 6.5243 11.631 17.961 18.395 22.528 25.873 9.6744 14.223 20.359 23.300 27.394 27.550
1 7.7015 12.548 18.127 18.785 22.547 25.886 10.702 14.982 20.699 23.303 27.481 27.562
10 10.044 14.354 18.538 19.571 22.592 25914 12.919 16.585 21.417 23.309 27.592 27.716
100 10.993 15.042 18.729 19.869 22.612 25.927 13.839 17.230 21.702 23.313 27.606 27.838
o) 11.135 15.141 18.759 19.912 22.615 25.928 13.975 17.325 21.743 23.314 27.609 27.858
T=10
0 4.0229 6.1492 7.2183 8.9478 10.055 14.388 4.7687 6.6609 8.3260 9.3674 12.015 14.857
1 4.3362 6.1505 7.6021 9.2747 10.843 15.327 49789 6.6619 9.5068 9.6884 13.643 15.866
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R

alb=15 alb=2

fol Q, Qs Q4 Qs Q6 Q Q, Qs Q4 Qs Qs
10 4.6715 6.1521 8.2962 9.7245 12.289 16.763 5.2357 6.6635 10.166 11.767 16.859 17.472
100 4.7499 6.1526 8.5441 9.8508 12.817 17.220 5.3019 6.6639 10.309 12.654 17.984 18.162
o0 4.7598 6.1526 8.5793 9.8674 12.893 17.283 5.3105 6.6401 10.328 12.784 18.054 18.358

=1
0 1.5385 21137 2.3479 5.3651 6.4773 12.231 1.7120 2.2581 2.6704 5.4731 8.3454 12.571
1 1.5609 2.4552 3.9183 6.3990 8.0024 13.515 1.7304 2.5608 5.8071 6.5010 10.872 13.949
10 1.5765 2.7732 5.7943 7.5747 10.393 15.454 1.7441 2.8732 7.7535 9.6297 15.193 16.084
100 1.5794 2.8440 6.3445 7.8733 11.187 16.063 1.7469 2.9491 8.0865 10.902 16.751 16.810
0 1.5798 2.8529 6.4192 7.9120 11.298 16.146 1.7472 2.9589 8.1302 11.084 16.843 17.048
21 25
=2

174 alb
15
134

- alb=1

3 . . . . .
0.1 1 10 100 1000 10000 oo

R

Fig. 2. Variation of the fundamental frequency coefficient Q; with the rotational
restraint parameter R (T= o), of circular and elliptical cross-ply [(0°,90°);]ym
E-glass/epoxy laminates.

10
1
NG
8 4
7 4
61 T
// —
o s alb=15
4 1 o
3 alb=1
2 4
1
0 . . . . .
0.1 1 10 100 1000 10000 o
T

Fig. 3. Variation of the fundamental frequency coefficient Q; with the transla-
tional restraint parameter T (R=0), of circular and elliptical cross-ply
[(0°,90%);]¢ym E-glass/epoxy laminates.

5.4. New results

In this section new results are presented. Table 8 shows values
of the frequency parameters wa?+/ph/Dg, for angle-ply
[(B,—P)2)sym E-glass/epoxy elliptical laminates with different

0 T T T :
0.01 0.1 1 10 100

S
(1) R=0,T=S —&—(1) R=S,T=c0

1000 10000 oo

—e— (1) R=5,T=§

(2)R=0,T=S ---@.--(2)R=S,T=c0 ---@.-- (2) R=S,T=S

Fig. 4. Variation of the fundamental frequency coefficient Q; with the transla-
tional and the rotational restraint parameters T and R for: (1) angle-ply
[(45°, —45°);]sym and (2) cross-ply [(0°,90°),)¢m E-glass/epoxy composite lami-
nates with a/b = 2.

aspect ratios and boundary conditions. Table 9 depicts values of
the frequency parameters wa?+/ph/Dg, for two cross-ply
[(0,90);]sym- [(90,0),]sym E-glass/epoxy laminated elliptical plates,
different aspect ratios and boundary conditions.

In Figs. 2-4 the fundamental frequency coefficient Q; =
w1a®+/ph/Dy of laminated elliptical plates is plotted against the
restraint parameters R and T. Fig. 2 shows the variation of Q; for
various values of the rotational restraint R, while Fig. 3 shows the
variation of ©Q; for various values of the translational restraint T. In
both figures the effect due to three different aspect ratio is
included. It can be observed that a major increase of frequency
occurs when the elastic restraint values are in the interval
(1-100). Fig. 4 shows the variation of the fundamental frequency
coefficient @ for various values of the rotational and the
translational restraint parameters: (@) R=0, T=S, (b) R=S5,
T = oo and (c) R =T = S. In this case, Q; is plotted against S for (1)
angle-ply [(45°, —=45°);]qym and (2) cross-ply [(0°,90°),]¢ym E-glass/
epoxy composite laminates with a/b = 2. The obtained curves
illustrate the intervals of variation of the restraint parameters for
which the frequency coefficient @, is sensitive to the values of R or
T. The frequencies which correspond to the angle-ply case are
higher in all cases, specially when the restraint parameters vary in
the interval (100, 0).
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Q Q) Q;

p ))D ol

[(OO/ 900)2]sym

4.6965 6.3676 7.6657 11.035 11.968 19.045 19.518
4 “ L 4 ' [, -
) ) ‘
e /
/h T | S
[(300/_300)2]sym
4.6872 6.3075 7.7816 10.4344 12.4011 18.3271 19.5569
Q Q, Qs Q, Qs Q¢ Q,;
i )\ Y/
4 J ’ : :
( (~ e — ’ ) ( ((
P 7Y
[(450/_450)2]sym I I
4.6799 6.2316 8.0163 12.578 17.351 19.857

@ .

6.1594

[(60°1~60°),]

sym

4.6690 8.2205

9.6445

12.541

16.540 19.443

Fig. 5. First seven natural free vibration frequencies and mode shapes for elliptical (a/b = 1.5) cross-ply and angle-ply E-glass epoxy laminates, with T = 10, R = 10.

Also, in this section, the first seven natural free vibration
frequencies, mode shapes and nodal patterns of different solid and
annular elliptical angle-ply and cross-ply E-glass/epoxy laminated
plates with different boundary conditions are shown. Fig. 5
corresponds to elliptical plates (a/b = 1.5) with elastically re-
strained edges for T= 10 and R = 10. Figs. 6 and 7 present the
results which correspond to SS-F and C-F annular elliptical
laminates with a,/a = b, /b =0.25 and a/b = 1.5. Finally, Fig. 8
shows the results corresponding to elliptical laminates (a/b = 1.5)
with a concentric ring support (a; /a = b; /b = 0.5).

6. Conclusions

A simple, computationally efficient and accurate approximate
approach has been developed for the determination of natural
frequencies and mode shapes of free vibration of symmetrically
laminated cross-ply and angle-ply elliptical solid and annular
plates. The approach is based on the Rayleigh-Ritz method with
polynomial expressions as approximate functions. The obtained
algorithm is very general and also attractive regarding its
versatility in handling any boundary conditions, including edges
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Q, Q, Q,

[(Oo/ 900)2]sym

27344 29.378

[(30°/=30°),]

sym

/> .
@ > (o) (&)
/ /

5.9657 14.198 19.757 26108 30.578 40.722 45.823
Fig. 6. First seven natural free vibration frequencies and mode shapes for SS-F annular elliptical cross-ply and angle-ply E-glass epoxy laminates with a,/a = b, /b = 0.25,
alb = 1.5.
Q Q, Q3 Q Qs Qg Q&
[(Oo/ 900)2]sym

55.859

[(30°/-30°),]

sym

= @© &

13.862 22.522 29.674

36630 41.878

52.601 58.648

Fig. 7. First seven natural free vibration frequencies and mode shapes for C-F annular elliptical cross-ply and angle-ply E-glass epoxy laminates with a,/a = b, /b = 0.25,

alb = 1.5.

elastically restrained against rotation and against translation.
Besides, it takes into account a great variety of anisotropic
characteristics, geometric planforms (including annular plates),
a concentric ring support and the presence of concentrated
masses. Circular isotropic plates and classical boundary conditions
can be easily generated as particular cases.

Close agreement with results presented by previous investigators
is demonstrated for several examples. New results are presented for
several symmetrically laminated composite circular and elliptical
plates with elastically restrained edges. These results may provide
useful information for structural designers and engineers and the
method may be easily modified to apply to static deflection problems.
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Q Q, Q;

Q, Qs Q Q,

[(0°190%),]

sym

)
éy/{\*\

< A
A

((30°/-30°),]

sym

8.0654 9.1266 12.900

13.582 14.880 20.287 20.993

Fig. 8. First seven natural free vibration frequencies and mode shapes for solid elliptical cross-ply and angle-ply E-glass epoxy laminates a/b = 1.5, with a concentric ring

support (a; /a = by /b =0.5).
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