ELSEVIER Contents lists available at ScienceDirect # International Journal of Mechanical Sciences journal homepage: www.elsevier.com/locate/ijmecsci # Natural frequencies of symmetrically laminated elliptical and circular plates Liz G. Nallim a,b,*, Ricardo O. Grossi a,b - a CONICET, Av. Rivadavia 1917, C1033AAI, Buenos Aires, Argentina - ^b Instituto de Ingeniería Civil y Medio Ambiente de Salta, Universidad Nacional de Salta, Avda. Bolivia 5150, 4400 Salta, Argentina #### ARTICLE INFO Article history: Received 22 March 2007 Received in revised form 1 April 2008 Accepted 25 April 2008 Available online 4 May 2008 Keywords: Vibration analysis Elastically restrained edges Mode shapes Elliptical plates Composite laminates #### ABSTRACT Elliptical and circular fibre reinforced composite plates are important structural elements in modern engineering structures. Vibration analysis of these elements are of interest to structural designers. The present paper deals with the free transverse vibration analysis of symmetrically laminated solid and annular elliptic and circular plates with several complicating effects. The approach developed is based on the Rayleigh–Ritz method where the deflection of the plate is approximated by a general shape function of polynomial type. The analysis includes several complicating effects, such as the presence of an internal hole, an internal ring support, several concentrated masses and the boundary elastically restrained against rotation and translation. Several examples are solved and some results which correspond to particular cases are compared with existing values in the literature. New results are also presented for cross-ply and angle-ply elliptical and circular laminates with different boundary conditions. The algorithm developed can be applied to a wide range of elastic restraint conditions, to any aspect ratio and to higher modes. The effect of the restraint parameters along the boundary on the natural frequencies for plates with these complicating effects is considered. © 2008 Elsevier Ltd. All rights reserved. ## 1. Introduction Anisotropic plates, especially laminated composite plates, have been widely used in diverse industries, e.g. aerospace, automobile, etc. The determination of the transverse vibrational characteristics of these plates is of great importance. Laminated plates have the advantage of controllability of their structural properties by changing the fibre orientation and the number of plies. Also, it is important to consider elastic restraints along the boundaries since, for instance, ideal clamped edges are practically impossible to achieve. Besides, the elastic restraints along the boundaries have a significant influence in the dynamic behaviour of the plates. The study of vibration problems of elliptical and circular plates has been investigated extensively. It is not possible to give a detailed account because of the very large number of papers that have been published; nevertheless some important references will be cited. Early studies have been reviewed by Leissa. The monograph [1] contains a detailed review of the investigations on the vibration of plates of various shapes, including circular and elliptical planforms. In subsequent articles [2-4], Leissa provides information on plate vibration including different complicating effects. Although there are many papers on the vibration of elliptical and circular plates, they refer mainly to isotropic and polar orthotropic material. More recent works include different types of thickness variations and non-uniform boundary conditions. Rajalingham et al. [5], studied the vibration of clamped isotropic elliptic plates using the exact vibration modes of circular plates as shape functions. Young and Dickinson [6] studied plates with curved edges and internal cut-outs. The Ritz method was used to obtain an eigenvalue equation for the free vibration of a class of plates, which involved curved boundaries defined by polynomial expressions. Chakraverty and Petyt [7] analysed the natural frequencies of non-homogeneous elliptic and circular plates using two dimensional boundary characteristic orthogonal polynomials in the Rayleigh Ritz method. Lim et al. [8] treated the problem of free vibration for doubly connected composite plates with super-elliptical boundaries. The frequency response was analysed in a globally continuous plate domain by the p-Ritz method. Nallim et al. [9] analysed the fundamental frequency of transverse vibration of a circular plate of rectangular orthotropy carrying a central mass using the Ritz method with simple polynomial expressions. Chakraverty et al. [10] analysed the vibrations of isotropic annular elliptic plates using two ^{*} Corresponding author at: Instituto de Ingeniería Civil y Medio Ambiente de Salta, Universidad Nacional de Salta, Avda. Bolivia 5150, 4400 Salta, Argentina. Tel./fax: +54 387 4255351. E-mail addresses: lnallim@unsa.edu.ar, lgnallim@yahoo.com.ar (L.G. Nallim), grossiro@unsa.edu.ar (R.O. Grossi). | Nomen | clature | $p_{ij}(x,y)$
R,T | polynomials
nondimensional rotational and translational coeffi- | |--|--|--|--| | a,b \bar{A} A c_{ij} $c_R(\bar{s}), c_T$ | semi-major and semi-minor elliptical plate axes domain occupied by the plate in \bar{x}, \bar{y} coordinates domain occupied by the plate in x,y coordinates unknown coefficients in the deflection function (\bar{s}) spring constant of the rotational and translational | s̄
T _{max}
U _{max}
U _{R,max} | cients arc length along the boundary of the plate maximum kinetic energy maximum strain energy due to plate bending maximum strain energy stored in rotational springs | | D
D _{ij} | restraint flexural rigidity (isotropic plate) bending, twisting and coupling rigidities (laminated plate) | $U_{T,\max}$ W $ar{x},ar{y},ar{z}$ | maximum strain energy stored in translational springs deflection function Cartesian coordinates non-dimensional coordinates | | D_0 E_1,E_2 | reference rigidity of laminated plates= E_1h^3 [12(1– $v_{12}v_{21}$)
Young's moduli parallel and perpendicular to the fibres | x,y,z ρ v,v_{12},v_{21} $\partial \bar{A}$ | mass density of the plate material
Poisson's ratios
plate boundary | | G_{12} h $n_{\bar{x}}, n_{\bar{y}}$ | shear modulus of elasticity plate thickness components of the outward unit normal vector \bar{n} to the boundary $\partial \bar{A}$ | Ω | circular natural frequency
non-dimensional frequency parameter | dimensional boundary characteristic orthogonal polynomials in the Rayleigh-Ritz method. Bayer et al. [11] investigated the effect of parabolic variation of thickness on the frequency parameters of isotropic clamped elliptical plates. Two different approximated methods, the moment method and the Rayleigh-Ritz method were used to solve the problem. Kim [12] studied the free vibration problem of elliptic and circular plates with rectilinear orthotropic material. This problem was studied by using the Rayleigh-Ritz method with products of simple polynomials as the admissible functions. Hassan studied the free transverse vibrations of isotropic elliptical and circular plates with half of the boundary simply supported and the rest free [13], and with half of the boundary clamped and the rest free [14]. In both papers the computations have been carried out by using the Rayleigh-Ritz method. In all the above papers only the classical boundary conditions were considered. Kukla and Szewczyk [15] presented the solution to the problem of the free axisymmetric vibration of annular isotropic plates with elastic concentric supports. The exact solution was obtained by applying the Green's function method. Analysis of the literature shows that the study of vibration problems of elliptical and circular plates with complicating effects has attracted the attention of many researchers. As far as the problem of free vibrations of elliptical or circular composite material plates with concentrated masses, internal cutouts, internal ring supports and generally restrained boundaries is concerned, no information is available in the literature. In the present paper the Ritz method is used to develop a general algorithm for the dynamical analysis of symmetrically laminated composite elliptical and circular plates with several complicating effects. The deflection of the plate is approximated by a general polynomial shape function. To demonstrate the validity and efficiency of the algorithm, several numerical examples are presented and some particular cases are compared with results presented by other authors. The algorithm developed can be applied to a wide range of elastic restraint conditions, different symmetric laminates, elliptic and circular geometries, an internal hole, an internal ring support and concentrated masses. The effect of the fibre orientation on the natural frequencies of plates with these complicating effects is considered. Several sets of vibration mode shapes are included, to provide a better understanding of the dynamical behaviour of these plates. New results are also presented for cross ply and angle ply laminates with different boundary conditions. Cases of circular plates not treated previously in the literature are also included. ## 2. Analysis ## 2.1. Solid plate Consider a thin, symmetrically laminated elliptical composite plate elastically supported along its
boundary by translational and rotational springs as shown in Fig. 1a. It is supposed that the rotational restraint is characterized by the spring constant $c_R(\bar{s})$, and the translational restraint by the spring constant $c_T(\bar{s})$, where \bar{s} is the arc length along the boundary $\partial \bar{A}$. The laminate is of uniform thickness h and is made up of a number of layers of unidirectional fibre reinforced composite material (Fig. 1b). The fibre orientation is indicated by the angle β , measured from the \bar{x} axis to the fibre direction. The present study is based on the classical laminated plate theory (CLPT) [16,17], where it is assumed that the Kirchhoff hypothesis holds. Consequently the displacements in the $\bar{x}, \bar{y}, \bar{z}$ directions, respectively denoted by $\bar{u}, \bar{v}, \bar{w}$, are given by $$\bar{u}(\bar{x}, \bar{y}, \bar{z}, t) = -\bar{z} \frac{\partial W(\bar{x}, \bar{y}, t)}{\partial \bar{x}}, \bar{v}(\bar{x}, \bar{y}, \bar{z}, t) = -\bar{z} \frac{\partial W(\bar{x}, \bar{y}, t)}{\partial \bar{y}}, \quad \bar{w}(\bar{x}, \bar{y}, \bar{z}, t) = W(\bar{x}, \bar{y}, t),$$ (1) where $W(\bar{x}, \bar{y}, t)$ denotes the mid-plane deflection. #### 2.2. Annular plate with an internal ring support Consider the plate described in Section 2.1 with the addition of the following characteristics: - (a) The plate has a central cut-out described by the equation $\bar{x}^2/a_2^2+\bar{y}^2/b_2^2-1=0,$ see also Fig. 1c.The inner boundary is free. - (b) The plate is supported by an internal ring described by the equation $\bar{x}^2/a_1^2 + \bar{y}^2/b_1^2 1 = 0$, see also Fig. 1c. Fig. 1. Mechanical system under study: (a) solid elliptical plate; (b) geometry of an N-layered symmetric laminate; and (c) annular elliptical plate. #### 2.3. The plate and concentrated mass energies In the case of normal modes of vibration it is assumed that the transverse displacement of any point of the plate is a sinusoidal function of time, such that $W(\bar{x},\bar{y},t)=w(\bar{x},\bar{y})\sin \omega t$. The maximum strain energy of the mechanical system under study when describing small amplitude simple harmonic motion is given by $$\begin{split} \bar{U}_{\text{max}} &= \frac{1}{2} \iint_{\bar{A}} \left[D_{11} \left(\frac{\partial^2 w}{\partial \bar{x}^2} \right)^2 + 2D_{12} \frac{\partial^2 w}{\partial \bar{x}^2} \frac{\partial^2 w}{\partial \bar{y}^2} + D_{22} \left(\frac{\partial^2 w}{\partial \bar{y}^2} \right)^2 \right. \\ &\quad + 4D_{16} \left(\frac{\partial^2 w}{\partial \bar{x}^2} \right) \left(\frac{\partial^2 w}{\partial \bar{x} \partial \bar{y}} \right) + 4D_{26} \left(\frac{\partial^2 w}{\partial \bar{y}^2} \right) \left(\frac{\partial^2 w}{\partial \bar{x} \partial \bar{y}} \right) \\ &\quad + 4D_{66} \left(\frac{\partial^2 w}{\partial \bar{x} \partial \bar{y}} \right)^2 \right] d\bar{x} d\bar{y}, \end{split}$$ where D_{ij} are the laminate stiffness coefficients, which are obtained by integrating the material properties of each layer of the composite plate [16,17], and \bar{A} denotes the plate domain in the \bar{x}, \bar{y} system for both cases described in Sections 2.1 and 2.2. For simplicity and generality it is convenient to introduce the following change of variables: $$x = \frac{\bar{x}}{a}, \quad y = \frac{\bar{y}}{b},\tag{3}$$ where a and b are the semi-major and semi-minor axes of the ellipse, as is shown in Fig. 1a. This change of variables applied to Eq. (2) leads to $$U_{\text{max}} = \frac{1}{2} \iint_{A} \left[D_{11} \frac{b}{a^{3}} \left(\frac{\partial^{2} w}{\partial x^{2}} \right)^{2} + \frac{2}{ab} D_{12} \frac{\partial^{2} w}{\partial x^{2}} \frac{\partial^{2} w}{\partial y^{2}} + D_{12} \frac{a}{b^{3}} \left(\frac{\partial^{2} w}{\partial y^{2}} \right)^{2} + \frac{4}{a^{2}} D_{16} \left(\frac{\partial^{2} w}{\partial x^{2}} \right) \left(\frac{\partial^{2} w}{\partial x \partial y} \right) + \frac{4}{ab} D_{66} \left(\frac{\partial^{2} w}{\partial x \partial y} \right)^{2} dx dy,$$ $$(4)$$ where *A* is a circular domain for the plate described in Section 2.1 and an annular circular domain for the plate described in Section 2.2. On the other hand, the maximum kinetic energy of the plate in the \bar{x}, \bar{y} system is given by $$\bar{T}_{\text{max}} = \frac{1}{2} h \rho \omega^2 \iint_{\bar{a}} w^2 d\bar{x} d\bar{y}, \tag{5}$$ where ω is the circular natural frequency, ρ is the mass density per unit volume, and h is the laminate thickness. Several internal concentrated masses m_i located at the points $(\bar{x}_{m_i}, \bar{y}_{m_i})$, can be handled straightforwardly by including their contribution to the kinetic energy, $$T_{m_c} = \frac{1}{2} \sum_{i=1}^{N_m} m_i w^2(\bar{x}_{m_i}, \bar{y}_{m_i}), \tag{6}$$ where N_m is the number of concentrated masses. The change of variables (3) leads to the following expression for the total maximum kinetic energy $$T_{\text{max}} = \frac{1}{2} h \rho \omega^2 a b \iint_A w^2 dx dy + \frac{1}{2} \sum_{i=1}^{N_m} m_i w^2 (x_{m_i}, y_{m_i}).$$ (7) ### 2.4. The potential energies due to the elastic restraints The maximum potential energy due to the rotational restraint on the boundary, in the \bar{x}, \bar{y} system, is given by $$\bar{U}_{R,\text{max}} = \frac{1}{2} \oint_{\partial \bar{A}} c_R(\bar{s}) \left(\frac{\partial w}{\partial \bar{n}} \right)^2 d\bar{s} = \frac{1}{2} \oint_{\partial \bar{A}} c_R(\bar{s}) \left(\frac{\partial w}{\partial \bar{x}} n_{\bar{x}} + \frac{\partial w}{\partial \bar{y}} n_{\bar{y}} \right)^2 d\bar{s},$$ (8) where $\partial \bar{A}$ is the boundary of the plate domain \bar{A} and $n_{\bar{y}}$ are the components of the outward normal vector to this boundary $$\bar{n} = (n_{\bar{x}}, n_{\bar{y}}) = \left(\frac{\bar{x}b^2}{\sqrt{b^4\bar{x}^2 + a^4\bar{y}^2}}, \frac{\bar{y}a^2}{\sqrt{b^4\bar{x}^2 + a^4\bar{y}^2}}\right). \tag{9}$$ For a function $u: \mathbb{R}^2 \to \mathbb{R}$ defined in the image of a smooth curve Γ represented parametrically by the application $r: [c,d] \to \mathbb{R}^2$, $r(t) = (r_1(t), r_2(t))$, it is well known that the line integral of the function u along the curve Γ is given by $$\oint_{\Gamma} u(x,y) ds = \int_{c}^{d} u[r(t)]||r'(t)||dt, \tag{10}$$ where t now denotes a parameter, $r'(t) = \mathrm{d}r(t)/\mathrm{d}t$ and ||r'(t)|| is given by $$||r'(t)|| = \sqrt{(r'_1(t))^2 + (r'_2(t))^2}.$$ In the case of the boundary $\partial \bar{A}$ of the elliptical plate, the parametric equations are given by $$\bar{x} = a \cos t, \ \bar{y} = b \sin t, \quad \text{with} \quad t \in [0, 2\pi].$$ (11) In consequence, the application of Eqs. (3), (10) and (11) in the expression (8) leads to $$U_{R,\text{max}} = \frac{1}{2} \int_{0}^{2\pi} c_{R}(t) \left[\frac{1}{a^{2}} \left(\frac{\partial w}{\partial x} \right)^{2} \left(\frac{\cos^{2} t}{\cos^{2} t + (a/b)^{2} \sin^{2} t} \right) \right.$$ $$\left. + \frac{2}{ab} \frac{\partial w}{\partial x} \frac{\partial w}{\partial y} \left(\frac{\sin t \cos t}{(b/a)\cos^{2} t + (a/b)\sin^{2} t} \right) + \frac{1}{b^{2}} \left(\frac{\partial w}{\partial y} \right)^{2} \right.$$ $$\left. \times \left(\frac{\sin^{2} t}{(b/a)^{2} \cos^{2} t + \sin^{2} t} \right) \right] a \sqrt{1 - k^{2} \cos^{2} t} \, dt, \tag{12}$$ where $k = (1/a)\sqrt{a^2 - b^2}$. The maximum potential energy due to the translational restraint on the boundary is given by $$\bar{U}_{T,\text{max}} = \frac{1}{2} \oint_{\hat{c}\bar{A}} c_T(\bar{s}) w^2(\bar{s}) d\bar{s}. \tag{13}$$ Taking into account Eqs. (3), (10) and (11) the expression (13) reduces to $$U_{T,\text{max}} = \frac{1}{2} \int_0^{2\pi} c_T(s) w^2 a \sqrt{1 - k^2 \cos^2 t} \, dt.$$ (14) **Table 1** Frequency parameters $\omega a^2 \sqrt{\rho h/D}$, of isotropic elliptical solid and annular plates v = 1/3 with different aspect ratios and boundary conditions | a/b | $a_2/a = b_2/b$ | $N \times M$ | C-F | | | SS-F | | | |-----|-----------------|--------------|------------|------------|------------|------------|------------|------------| | | | | Ω_1 | Ω_2 | Ω_3 | Ω_1 | Ω_2 | Ω_3 | | 1 | 0 | 6 × 6 | 10.216 | 21.260 | 21.260 | 4.9838 | 13.940 | 13.940 | | | | 7×7 | 10.216 | 21.260 | 21.260 | 4.9838 | 13.940 | 13.940 | | | | 8 × 8 | 10.216 | 21.260 | 21.260 | 4.9838 | 13.940 | 13.940 | | | | 9×9 | 10.216 | 21.260 | 21.260 | 4.9838 | 13.940 | 13.940 | | | | 10 × 10 | 10.216 | 21.260 | 21.260 | 4.9838 | 13.940 | 13.940 | | | | 11 × 11 | 10.216 | 21.260 | 21.260 | 4.9838 | 13.940 | 13.940 | | | | 12 × 12 | 10.216 | 21.260 | 21.260 | 4.9838 | 13.940 | 13.940 | | | | Ref. [10] | 10.22 | 21.26 | 21.26 | 4.984 | 13.94 | 13.94 | | | 0.4 | 6×6 | 13.618 | 21.567 | 21.567 | 5.1113 | 13.966 | 13.966 | | | | 7×7 | 13.548 | 21.440 | 21.440 | 4.8969 | 13.896 | 13.896 | | | | 8 × 8 | 13.548 | 20.676 | 20.676 | 4.8969 | 13.463 | 13.463 | | | | 9×9 | 13.516 | 20.572 | 20.572 | 4.7937 | 13.375 | 13.375 | | | | 10 × 10 | 13.516 | 19.971 | 19.971 | 4.7937 | 12.825 | 12.825 | | | | 11 × 11 | 13.505 | 19.917 | 19.917 | 4.7579 | 12.752 | 12.752 | | | | 12 × 12 | 13.505 | 19.604 | 19.604 | 4.7579 | 12.320 | 12.320 | | | | Ref. [10] | 13.50 | 19.46 | 19.48 | 4.748 | 12.06 | 12.10 | | 2.0 | 0 | 6×6 | 27.378 | 39.499 | 56.320 | 13.271 | 23.726 | 39.435 | | | | 7×7 | 27.377 | 39.499 | 55.985 | 13.271 | 23.726 | 38.454 | | | | 8 × 8 | 27.377 | 39.497 | 55.985 | 13.271 | 23.723 | 38.454 | | | | 9×9 | 27.377 | 39.497 | 55.976 | 13.271 | 23.723 | 38.425 | | | | 10 × 10 | 27.377 | 39.497 | 55.976 | 13.271 | 23.723 | 38.425 | | | | 11 × 11 | 27.377 | 39.497 | 55.976 | 13.271 | 23.723 | 38.425 | | | | 12 × 12 | 27.377 | 39.497 | 55.976 | 13.271 | 23.723 | 38.425 | | | | Ref. [10] | 27.38 | 39.50 | 55.98 | 13.27 | 23.72 | 38.43 | | | 0.4 | 6×6 | 36.893 | 42.437 | 64.778 | 13.435 | 24.163 | 43.230 | | | | 7×7 | 36.668 | 42.184 | 64.210 | 12.753 | 24.008 | 41.906 | | | | 8 × 8
| 36.668 | 41.792 | 62.951 | 12.753 | 23.607 | 41.906 | | | | 9×9 | 36.531 | 41.595 | 62.482 | 12.422 | 23.447 | 41.612 | | | | 10 × 10 | 36.531 | 41.344 | 57.952 | 12.422 | 23.038 | 38.268 | | | | 11 × 11 | 36.428 | 41.211 | 57.774 | 12.301 | 22.918 | 37.854 | | | | 12 × 12 | 36.428 | 41.122 | 55.177 | 12.301 | 22.663 | 34.063 | | | | Ref. [10] | 36.35 | 41.04 | 54.03 | 12.26 | 22.53 | 31.85 | #### 3. The boundary and compatibility conditions The boundary conditions which correspond to the elastic restraints [18], are given by $$c_{R}(\bar{s})\frac{\partial w(\alpha_{1}(\bar{s}),\alpha_{2}(\bar{s}),t)}{\partial \bar{n}} = M_{n}(\alpha_{1}(\bar{s}),\alpha_{2}(\bar{s}),t), \tag{15}$$ $$c_{T}(\bar{s})w(\alpha_{1}(\bar{s}),\alpha_{2}(\bar{s}),t) = -Q_{n} - \frac{\partial M_{ns}(\alpha_{1}(\bar{s}),\alpha_{2}(\bar{s}),t)}{\partial \bar{s}},$$ (16) where M_n is the bending moment, M_{ns} is the twisting moment and Q_n is the transverse shear force. The presence of a ring support introduces constraints on the displacement, slope and curvature. In consequence, the corresponding conditions in the \bar{x}, \bar{y} system are given by $$w(\bar{x}, \bar{y})|_{\Gamma_1} = 0, \tag{17}$$ $$\left. \frac{\partial w(\bar{x}, \bar{y})}{\partial \bar{n}} \right|_{\Gamma_1^{(-)}} = \left. \frac{\partial w(\bar{x}, \bar{y})}{\partial \bar{n}} \right|_{\Gamma_1^{(+)}},\tag{18}$$ $$M_{1n}|_{\Gamma_1} = M_{2n}|_{\Gamma_1},\tag{19}$$ where $(\partial w(\bar{x},\bar{y})/\partial \bar{n})|_{\Gamma_1^{(-)}}$ and $(\partial w(\bar{x},\bar{y})/\partial \bar{n})|_{\Gamma_1^{(+)}}$ denote the corresponding lateral derivatives. The curve Γ_1 is given by the equation $\bar{x}^2/a_1^2 + \bar{y}^2/b_1^2 - 1 = 0$ (see Fig. 1c) and M_{1n} , M_{2n} are the corresponding bending moments. #### 4. The eigenvalue problem It is well known that when using the Ritz method with a complete set of trial functions it is possible to ignore the natural boundary conditions. It is sufficient that they satisfy the geometrical ones since, as the number of co-ordinate functions approaches infinity, the natural boundary conditions will be exactly satisfied [19]. This is a transcendental characteristic of the Ritz method, especially when dealing with problems for which such satisfaction is very difficult to achieve. In the present problem this property is crucial since the natural boundary conditions (15) and (16), which correspond to the elastically restrained boundary, and the condition (19) which corresponds to the internal ring support, are extremely difficult to satisfy. In consequence, the assumed shape function is given by $$w(x,y) = \sum_{i=1}^{M} \sum_{j=1}^{N} c_{ij} p_{ij}(x,y),$$ $$p_{ij}(x,y) = x^{i-1} y^{j-1} (x^2 + y^2 - r_p^2)^{b_c},$$ (20) where c_{ij} are unknown coefficients, the parameter b_c depends on the boundary conditions; $b_c=1$ is adopted when the plate is simply supported, $b_c=2$ when it is rigidly clamped and $b_c=0$ when it is free or elastically restrained along the boundary. On the other hand, the parameter $r_p=(a_1/a)=(b_1/b),\ 0\leqslant r_p<1$, with $b_c=1$ allows the support along an elliptical ring to be considered. Also a point support can be considered by setting $r_p=0$ and $b_c=1$. The Ritz procedure requires the minimisation of the energy functional $F = U_{\text{max}} + U_{R,\text{max}} + U_{T,\text{max}} - T_{\text{max}}$, with respect to each of **Table 2** Frequency parameters $\omega a^2 \sqrt{\rho h/D}$, of isotropic elliptical solid and annular plates v = 0.3 with different aspect ratios and boundary conditions | a/b | $a_2/a = b_2/b$ | $N \times M$ | R–F, R = 10 | 00 | | | T–F, T = 100 |) | | | |-----|-----------------|--------------------|---------------|------------|------------|------------|----------------|------------|------------|------------| | | | | Ω_1 | Ω_2 | Ω_3 | Ω_4 | Ω_1 | Ω_2 | Ω_3 | Ω_4 | | 1 | 0 | 6 × 6 | 10.020 | 20.867 | 20.867 | 34.265 | 4.7320 | 12.107 | 12.107 | 19.101 | | | | 7×7 | 10.019 | 20.866 | 20.866 | 34.265 | 4.7287 | 12.102 | 12.102 | 19.101 | | | | 8 × 8 | 10.019 | 20.858 | 20.858 | 34.226 | 4.7287 | 12.080 | 12.080 | 19.071 | | | | 9×9 | 10.019 | 20.858 | 20.858 | 34.226 | 4.7286 | 12.080 | 12.080 | 19.071 | | | | 10 × 10 | 10.019 | 20.858 | 20.858 | 34.226 | 4.7286 | 12.080 | 12.080 | 19.071 | | | | 11 × 11 | 10.019 | 20.858 | 20.858 | 34.226 | 4.7286 | 12.080 | 12.080 | 19.071 | | | | 12 × 12 | 10.019 | 20.858 | 20.858 | 34.226 | 4.7286 | 12.080 | 12.080 | 19.071 | | | | Ref. [20] | 10.019 | - | - | - | 4.729 | - | - | - | | | 0.4 | 6 × 6 | 13.429 | 21.879 | 21.879 | 33.668 | 5.1527 | 12.378 | 12.378 | 18.559 | | | | 7×7 | 13.336 | 21.775 | 21.775 | 33.668 | 4.9094 | 12.345 | 12.345 | 18.559 | | | | 8 × 8 | 13.336 | 21.177 | 21.177 | 33.196 | 4.9094 | 12.152 | 12.152 | 18.411 | | | | 9×9 | 13.272 | 21.059 | 21.059 | 33.196 | 4.7340 | 12.112 | 12.112 | 18.411 | | | | 10 × 10 | 13.272 | 20.356 | 20.356 | 32.674 | 4.7340 | 11.856 | 11.856 | 18.333 | | | | 11 × 11 | 13.244 | 20.262 | 20.262 | 32.674 | 4.6498 | 11.804 | 11.804 | 18.333 | | | | 12 × 12 | 13.244 | 19.712 | 19.712 | 32.049 | 4.6498 | 11.468 | 11.468 | 18.240 | | 2 | 0 | 6 × 6 | 26.433 | 38.338 | 59.030 | 67.527 | 10.561 | 16.658 | 24.004 | 25.124 | | | | 7×7 | 26.419 | 38.338 | 54.690 | 67.438 | 10.549 | 16.658 | 23.654 | 23.996 | | | | 8 × 8 | 26.419 | 38.264 | 54.690 | 67.421 | 10.549 | 16.622 | 23.654 | 23.996 | | | | 9×9 | 26.419 | 38.264 | 54.411 | 67.419 | 10.549 | 16.622 | 23.606 | 23.995 | | | | 10 × 10 | 26.419 | 38.263 | 54.411 | 67.419 | 10.549 | 16.622 | 23.606 | 23.995 | | | | 11 × 11 | 26.419 | 38.263 | 54.403 | 67.418 | 10.549 | 16.622 | 23.605 | 23.995 | | | | 12 × 12 | 26.419 | 38.263 | 54.403 | 67.418 | 10.549 | 16.622 | 23.605 | 23.995 | | | | Ref. [20] | 25.606 | - | - | - | 11.004 | - | = | - | | | 0.4 | 6 × 6 | 35.617 | 41.684 | 66.606 | 69.860 | 11.617 | 17.101 | 24.361 | 25.697 | | | 0.1 | 7 × 7 | 35.259 | 41.023 | 62.619 | 65.999 | 11.144 | 17.078 | 24.153 | 24.333 | | | | 8 × 8 | 35.051 | 40.792 | 62.123 | 65.484 | 11.144 | 16.939 | 24.153 | 24.220 | | | | 9×9 | 35.051 | 40.446 | 60.692 | 62.123 | 10.775 | 16.899 | 24.029 | 24.189 | | | | 10 × 10 | 35.051 | 40.446 | 60.692 | 62.123 | 10.775 | 16.769 | 23.916 | 24.029 | | | | 10 × 10
11 × 11 | 34.930 | 40.270 | 60.257 | 61.725 | 10.592 | 16.726 | 23.860 | 23.981 | | | | 12 × 12 | 34.930 | 40.049 | 55.997 | 61.725 | 10.592 | 16.586 | 23.320 | 23.981 | **Table 3** Frequency parameters $\omega a^2 \sqrt{\rho h/D}$, of isotropic solid elliptical plates with different boundary conditions, v=0.3 | $R = c_R a/D$ | a/b | | Mode | $T = c_T a^3/D$ | | | | | |---------------|-----|----------------------|-----------------------|---|---|--|--|--| | | | | | 1 | 10 | 100 | 1000 | ∞ | | 0 | 1.2 | Ref. [20]
Present | 1
1
2
3
4 | 1.447
1.4522
2.0408
2.1386
6.5332 | 3.850
3.8352
6.1474
6.5308
9.6028 | 5.739
5.7101
12.954
15.014
20.580 | 6.052
6.0291
15.007
18.281
27.689 | 6.089
6.066
15.251
18.682
28.617 | | | 1.4 | Ref. [20]
Present | 1
1
2
3
4 | 1.511
1.5261
2.0957
2.2813
6.8331 | 4.215
4.1801
6.3424
7.0439
9.9339 | 6.950
6.8429
13.874
17.712
21.465 | 7.500
7.4087
16.557
23.520
29.570 | 7.565
7.4773
16.897
24.319
30.699 | | | 2.0 | Ref. [20]
Present | 1
1
2
3
4 | 1.648
1.7333
2.2674
2.6717
7.1433 | 4.976
5.0186
6.9231
8.3648
10.506 | 11.004
10.549
16.622
23.606
23.995 | 13.458
12.875
22.602
35.852
42.030 | 13.798
13.213
23.641
38.326
46.150 | | 1 | 1.2 | Ref. [20]
Present | 1
1
2
3
4 | 1.458
1.4628
2.5620
3.0811
7.4636 | 4.084
4.0792
6.1865
6.6957
10.080 | 6.753
6.7353
13.450
15.327
20.626 | 7.279
7.2710
16.112
19.371
28.635 | 7.340
7.3347
16.439
19.897
29.761 | | | 1.4 | Ref. [20]
Present | 1
1
2
3
4 | 1.517
1.5352
2.5906
3.7077
7.8036 | 4.384
4.3787
6.3807
7.4073
10.442 | 7.955
7.8854
14.360
17.858
21.506 | 8.813
8.7785
17.768
24.678
30.584 | 8.916
8.8897
18.218
25.692
31.948 | | | 2.0 | Ref. [20]
Present | 1
1
2
3
4 | 1.650
1.7399
2.6925
5.9950
8.1151 | 5.029
5.1375
6.9577
9.7097
11.009 | 11.736
11.441
17.013
23.637
24.023 | 14.921
14.594
24.088
37.052
43.162 | 15.382
15.082
25.401
39.972
48.046 | | 100 | 1.2 | Ref. [20]
Present | 1
1
2
3
4 | 1.472
1.4783
3.5061
4.7452
10.055 | 4.486
4.4937
6.2827
7.1253
11.611 | 10.069
10.048
15.364
16.543
20.824 | 12.003
12.040
22.244
26.118
35.461 | 12.226
12.283
23.202
27.718
38.383 | | | 1.4 | Ref. [20]
Present | 1
1
2
3
4 | 1.528
1.5488
3.5287
6.2616
10.548 | 4.703
4.7382
6.4782
8.4154
12.101 | 11.425
11.345
16.235
18.439
21.685 | 14.491
14.629
24.753
32.649
38.053 | 14.866
15.086
26.123
35.851
41.642 | | | 2.0 | Ref. [20]
Present | 1
1
2
3
4 | 1.655
1.7509
3.6116
11.030
12.144 | 5.176
5.3993
7.0564
12.773
13.762 | 14.643
14.499
18.583
23.780
24.143 | 23.906
24.155
33.786
46.269
52.240 | 25.606
26.419
38.264
54.411
67.419 | | σ | 1.2 | Ref. [20]
Present | 1
1
2
3
4 | 1.473
1.4787
3.5344
4.7964
10.159 | 4.497
4.5051
6.2862
7.1413
11.678 |
10.225
10.202
15.461
16.605
20.836 | 12.258
12.299
22.677
26.644
36.068 | 12.490
12.554
23.682
28.338
39.150 | | | 1.4 | Ref. [20]
Present | 1
1
2
3
4 | 1.529
1.5491
3.5577
6.3444
10.660 | 4.712
4.7485
6.4818
8.4549
12.174 | 11.592
11.506
16.330
18.469
21.696 | 14.829
15.417
26.595
36.447
42.271 | 15.223
15.466
26.719
36.774
42.531 | | | 2.0 | Ref. [20]
Present | 1
1 | 1.655
1.7512 | 5.182
5.4079 | 14.794
14.640 | 24.638
24.896 | 26.467
27.377 | | | | | | | | | | | | Table 3 (continue | ed) | | | | | | | |-------------------|-----|-------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------| | $R = c_R a/D$ | a/b | Mode | $T=c_Ta^3/D$ | | | | | | | | | 1 | 10 | 100 | 1000 | ∞ | | | | 2
3
4 | 3.6428
11.155
12.377 | 7.0604
12.855
13.939 | 18.665
23.789
24.150 | 34.613
47.143
53.144 | 39.497
55.976
69.858 | **Table 4** Frequency parameters $\omega a^2 \sqrt{\rho h/D}$, of isotropic solid elliptical plates with two boundary conditions, v=0.3 | a/b | | r_m | | | | | |--------------|-----------------------------------|---------------------------|-------------------------|-------------------------|-------------------------|-------------------------| | | | 0.0 | 0.1 | 0.2 | 0.3 | 0.7 | | Simply s | Ref. [20] | 4.936 | 4.231 | 2.752 | 3.399 | 2.588 | | | Ref. [21] | 4.89 | 4.21 | 3.75 | 3.42 | 2.63 | | | Present | 4.9351 | 4.2335 | 3.7548 | 3.4051 | 2.5974 | | 1.25 | Ref. [20] | 6.428 | 5.522 | 4.902 | 4.444 | 3.389 | | | Ref. [21] | 6.33 | 5.45 | 4.86 | 4.42 | 3.40 | | | Present | 6.3935 | 5.4777 | 4.8536 | 4.3982 | 3.3496 | | 1.5 | Ref. [20] | 8.420 | 7.263 | 6.459 | 5.866 | 4.485 | | | Ref. [21] | 8.21 | 7.05 | 6.28 | 5.71 | 4.39 | | | Present | 8.2822 | 7.0739 | 6.2526 | 5.6558 | 4.2911 | | 2.0 | Ref. [20] | 13.798 | 12.002 | 10.730 | 9.776 | 7.519 | | | Ref. [21] | 13.11 | 11.22 | 9.95 | 9.03 | 6.91 | | | Present | 13.213 | 11.174 | 9.8031 | 8.8206 | 6.6213 | | Clamped
1 | Ref. [20]
Ref. [21]
Present | 10.220
10.11
10.216 | 8.116
8.08
8.1246 | 6.874
6.90
6.8970 | 6.055
6.12
6.0858 | 4.383
4.49
4.4190 | | 1.25 | Ref. [20] | 13.129 | 10.458 | 8.879 | 7.829 | 5.677 | | | Ref. [21] | 13.04 | 10.41 | 8.89 | 7.87 | 5.77 | | | Present | 13.229 | 10.491 | 8.8892 | 7.8345 | 5.6772 | | 1.5 | Ref. [20] | 16.770 | 13.458 | 11.466 | 10.131 | 7.369 | | | Ref. [21] | 16.84 | 13.38 | 11.40 | 10.09 | 7.37 | | | Present | 17.129 | 13.492 | 11.381 | 10.004 | 7.2170 | | 2.0 | Ref. [20] | 26.467 | 21.538 | 18.472 | 16.388 | 11.998 | | | Ref. [21] | 26.82 | 21.07 | 17.84 | 15.74 | 11.44 | | | Present | 27.377 | 21.131 | 17.613 | 15.377 | 10.973 | the c_{ii} coefficients $$\frac{\partial}{\partial c_{ii}}(F) = 0, \quad i = 1, \dots, M, \quad j = 1, \dots, N.$$ (21) For a non-trivial solution, the determinant of the coefficient matrix should be equal to zero: $$\sum_{i} \sum_{j} [K_{ijkh} - \Omega^2 M_{ijkh}] c_{ij} = 0, \qquad (22)$$ where Ω is the non-dimensional frequency coefficient $\Omega = \sqrt{\rho h/D_0} \omega a^2$ and D_0 is the reference flexural rigidity which is given by $D_0 = E_1 h^3/(12(1-v_{12}v_{21}))$. The other parameters in Eq. (22) are: $$\begin{split} K_{ijkh} &= \frac{D_{11}}{D_0} P_{ijkh}^{(1)} + \frac{D_{22}}{D_0} \left(\frac{a}{b}\right)^4 P_{ijkh}^{(2)} + \frac{D_{12}}{D_0} \left(\frac{a}{b}\right)^2 P_{ijkh}^{(3)} \\ &+ 4 \frac{D_{66}}{D_0} \left(\frac{a}{b}\right)^2 P_{ijkh}^{(4)} + 2 \frac{D_{16}}{D_0} \left(\frac{a}{b}\right) P_{ijkh}^{(5)} + 2 \frac{D_{26}}{D_0} \left(\frac{a}{b}\right)^3 P_{ijkh}^{(6)} \end{split}$$ $$\begin{split} +R\left[\left(\frac{a}{b}\right)R_{ijkh}^{(1)}+\left(\frac{a}{b}\right)^{2}R_{ijkh}^{(2)}+\left(\frac{a}{b}\right)^{3}R_{ijkh}^{(3)}\right]+T\left(\frac{a}{b}\right)T_{ijkh}^{(1)}\\ M_{ijkh} &= \iint_{A}p_{ij}p_{kh}\,\mathrm{d}x\,\mathrm{d}y+\sum_{q=1}^{N_{m}}r_{m_{q}}\pi p_{ij}(x_{m_{q}},y_{m_{q}})p_{kh}(x_{m_{q}},y_{m_{q}}),\\ R &= \frac{c_{R}a}{D_{0}},\quad T &= \frac{c_{T}a^{3}}{D_{0}},\quad r_{m_{q}} &= \frac{m_{q}}{m_{p}} &= \frac{m_{q}}{\pi ab\rho h},\\ P_{ijkh}^{(1)} &= \iint_{A}\frac{\partial^{2}p_{ij}}{\partial x^{2}}\frac{\partial^{2}p_{kh}}{\partial x^{2}}\,\mathrm{d}x\,\mathrm{d}y,\quad P_{ijkh}^{(2)} &= \iint_{A}\frac{\partial^{2}p_{ij}}{\partial y^{2}}\frac{\partial^{2}p_{kh}}{\partial y^{2}}\,\mathrm{d}x\,\mathrm{d}y,\\ P_{ijkh}^{(3)} &= \iint_{A}\left(\frac{\partial^{2}p_{ij}}{\partial x^{2}}\frac{\partial^{2}p_{kh}}{\partial x\partial y}\right)\,\mathrm{d}x\,\mathrm{d}y,\\ P_{ijkh}^{(4)} &= \iint_{A}\frac{\partial^{2}p_{ij}}{\partial x^{2}}\frac{\partial^{2}p_{kh}}{\partial x\partial y}\,\mathrm{d}x\,\mathrm{d}y,\\ P_{ijkh}^{(5)} &= \iint_{A}\left(\frac{\partial^{2}p_{ij}}{\partial x^{2}}\frac{\partial^{2}p_{kh}}{\partial x\partial y} + \frac{\partial^{2}p_{ij}}{\partial x\partial y}\frac{\partial^{2}p_{kh}}{\partial x^{2}}\right)\,\mathrm{d}x\,\mathrm{d}y,\\ P_{ijkh}^{(6)} &= \iint_{A}\left(\frac{\partial^{2}p_{ij}}{\partial x^{2}}\frac{\partial^{2}p_{kh}}{\partial x\partial y} + \frac{\partial^{2}p_{ij}}{\partial x\partial y}\frac{\partial^{2}p_{kh}}{\partial y^{2}}\right)\,\mathrm{d}x\,\mathrm{d}y,\\ R_{ijkh}^{(1)} &= \int_{0}^{2\pi}\frac{\partial p_{ij}}{\partial x}\frac{\partial p_{kh}}{\partial x}\bigg|_{\substack{x=\cos t\\ y=\sin t\\ y=\sin t}}\frac{\cos t}{t}\frac{\cos t \sin t}{(b/a)^{2}\cos^{2}t + (a/b)^{2}\sin^{2}t}\\ \sqrt{1-k^{2}\cos^{2}t}\,\mathrm{d}t,\\ R_{ijkh}^{(3)} &= \int_{0}^{2\pi}\frac{\partial p_{ij}}{\partial y}\frac{\partial p_{kh}}{\partial y}\bigg|_{\substack{x=\cos t\\ y=\sin t}}\frac{\sin^{2}t}{t}}\frac{\sin^{2}t}{(b/a)^{2}\cos^{2}t + \sin^{2}t}\\ \sqrt{1-k^{2}\cos^{2}t}\,\mathrm{d}t,\\ T_{ijkh}^{(1)} &= \int_{0}^{2\pi}\frac{\partial p_{ij}}{\partial y}\frac{\partial p_{kh}}{\partial y}\bigg|_{\substack{x=\cos t\\ y=\sin t}}\frac{\sin^{2}t}{t}}\sqrt{1-k^{2}\cos^{2}t}\,\mathrm{d}t. \end{split}$$ ## 5. Verification and numerical results ## 5.1. Generalities A computer code, based on the variational algorithm developed in this paper, was implemented for the analysis of elliptic and circular plates having different material properties and boundary conditions. In order to check the accuracy of the algorithm, the frequency parameters were computed for a number of plate problems for which comparison values were available in the literature. Additionally, a great number of problems were solved and since the number of cases was extremely large, results were selected for the most significant cases. The analytical expressions obtained allow the adoption of different values for the following parameters: Number of layers, stacking sequences and angle of fibre orientation. - Elastic properties of each material layer. - Aspect ratio *a/b*. - Rotational and translational restraint coefficients. - Position of an internal ring or a point support. Let us introduce the terminology to be used for describing the boundary conditions at both the inner and outer edges. In the case of annular plates, the designation C–F, identifies a plate with the outer edge clamped and the inner edge free and SS–F corresponds to a simply supported outer edge. When the external edge is elastically restrained against rotation or translation, the designations R or T are used. ## 5.2. Convergence and results comparison for isotropic plates Results of a convergence study of eigenvalues $\omega a^2 \sqrt{\rho h/D}$, where $D=Eh^3/12(1-v^2)$, of isotropic elliptical solid and annular plates with v=1/3 and different aspect ratios $(a/b, a_2/a, b_2/b)$ and boundary conditions are presented in Table 1. The rate of convergence of the first three eigenvalues is shown for C–F and SS–F cases. It is well known that the Ritz method, in the case of eigenvalues, gives upper bounds. The convergence of the mentioned eigenvalues is studied by gradually increasing the number of polynomials in the approximating function. It can be seen that for solid plates M=6, N=6, is sufficient for converged results. In the case of annular plates M=12, N=12, is sufficient to obtain satisfactory convergence for the first eigenvalues. However, for annular elliptical plates values of M, N greater than 12 could be convenient to give converged result for the second and third natural frequencies. This is due to presence of the free inner boundary. The comparison with results of Chakraverty et al. [10] shows a very close agreement. Table 2 depicts values of the first four frequency parameters $\omega a^2 \sqrt{\rho h/D}$, of isotropic elliptical solid and annular plates with v=0.3, different aspect ratios and R–F and T–F boundary conditions. The comparison with results of Achong [20] shows a very close agreement in the case of circular plates. For elliptical plates Achong considered rotational springs acting on rotations of w with respect to the variable r. For this reason the values depicted in Table 3 for the frequency parameters $\omega a^2 \sqrt{\rho h/D}$ of isotropic elliptical solid plates present a discrepancy when $R=c_Ra/D\gg 1$ and a/b>1.5. As it was expected, when the boundary is only restrained against translation, the agreement is good. In Table 4, for comparison with Refs. [20,21], values of the fundamental frequency parameter $\omega a^2 \sqrt{\rho h/D}$, for solid elliptical and circular plates with a concentrated mass and two different boundary conditions, are included. ### 5.3. Convergence and results comparison for composite plates In this and the following section two kinds of composite materials are used: - (i) Graphite/epoxy: $E_1 = 138$ GPa, $E_2 = 8.96$ GPa, $G_{12} = 7.1$ GPa, $v_{12} = 0.3$, - (ii) E-glass/epoxy: $E_1 = 60.7$ GPa, $E_2 = 24.8$ GPa, $G_{12} = 12.0$ GPa, $v_{12} = 0.23$. **Table 5** Frequency parameters $\omega a^2 \sqrt{\rho h/D_0}$, for
$[(30^\circ, -30^\circ)_2]_{\text{sym}}$ Graphite/epoxy laminated solid and annular elliptical plates with different aspect ratios and boundary conditions | a/b | $a_2/a = b_2/b$ | $N \times M$ | C-F | | | | SS-F | | | | |-----|-----------------|--|--|--|--|--|--|--|--|--| | | | | Ω_1 | Ω_2 | Ω_3 | Ω_4 | Ω_1 | Ω_2 | Ω_3 | Ω_4 | | 1 | 0 | 6×6 7×7 8×8 9×9 10×10 11×11 12×12 | 6.6455
6.6455
6.6455
6.6455
6.6455
6.6455 | 10.256
10.256
10.256
10.256
10.256
10.256
10.256 | 15.605
15.566
15.566
15.565
15.565
15.565
15.565 | 16.553
16.553
16.552
16.552
16.552
16.552
16.552 | 3.1866
3.1865
3.1865
3.1865
3.1865
3.1865
3.1865 | 6.2345
6.2345
6.2341
6.2341
6.2341
6.2341 | 10.929
10.929
10.927
10.927
10.927
10.927
10.927 | 11.085
10.952
10.951
10.947
10.947
10.947 | | | 0.4 | 6×6
7×7
8×8
9×9
10×10
11×11
12×12 | 8.9810
8.9491
8.9408
8.9264
8.9187
8.9119
8.9055 | 10.942
10.907
10.755
10.732
10.620
10.610
10.555 | 16.368
16.136
15.238
15.043
14.286
14.183
13.792 | 17.568
17.484
17.404
17.331
17.229
17.137
17.053 | 3.2857
3.1568
3.1536
3.0928
3.0909
3.0718
3.0701 | 6.3478
6.3237
6.2096
6.1843
6.0591
6.0429
5.9577 | 10.823
10.708
10.220
10.061
9.3590
9.2146
8.5977 | 11.972
11.808
11.772
11.727
11.682
11.634
11.582 | | 2 | 0 | 6×6
7×7
8×8
9×9
10×10
11×11
12×12 | 13.159
13.159
13.159
13.159
13.159
13.159
13.159 | 20.782
20.781
20.781
20.781
20.781
20.781
20.781 | 31.420
31.329
31.328
31.326
31.326
31.326
31.326 | 32.527
32.527
32.527
32.527
32.527
32.527
32.527 | 6.3117
6.3116
6.3116
6.3116
6.3116
6.3116
6.3116 | 12.770
12.770
12.769
12.769
12.769
12.769
12.769 | 21.485
21.485
21.482
21.482
21.482
21.482
21.482 | 22.347
22.063
22.061
22.054
22.054
22.054 | | | 0.4 | 6×6 7×7 8×8 9×9 10×10 11×11 12×12 | 17.778
17.713
17.699
17.670
17.657
17.643
17.632 | 22.121
22.040
21.722
21.667
21.435
21.410
21.298 | 32.194
31.743
30.025
29.656
28.206
28.023
27.267 | 35.369
35.201
35.036
34.889
34.678
34.488
34.316 | 6.5147
6.2617
6.2558
6.1370
6.1342
6.0967
6.0945 | 13.005
12.952
12.720
12.663
12.408
12.371
12.196 | 21.289
21.064
20.138
19.829
18.495
18.221
17.050 | 24.225
23.906
23.840
23.758
23.668
23.574
23.469 | Results of a convergence study of eigenvalues $\omega a^2 \sqrt{\rho h/D_0}$ of elliptical solid and annular laminated plates are presented in Tables 5 and 6. Four-ply graphite/epoxy laminates with stacking sequence $[(30^\circ, -30^\circ)_2]_{\rm sym}$ are considered. The rate of convergence of eigenvalues is shown for C–F and SS–F in Table 5 and for R–F and T–F in Table 6. It has been demonstrated that N = 12, M = 12, is sufficient, from an engineer- ing viewpoint, to obtain satisfactory convergence for the first few eigenvalues. In Table 7, for comparison purpose with Ref. [8], values of the first eight frequency parameters $\omega a^2 \sqrt{\rho h/D_0}$ of E-glass/epoxy $[(-\beta,\beta,-\beta,\beta)_2]_{\rm sym}$ annular circular plates and two boundary conditions, are included. Good agreement can be observed. **Table 6** Frequency parameters $\omega a^2 \sqrt{\rho h/D_0}$, for $[(30^\circ, -30^\circ)_2]_{\text{sym}}$ Graphite/epoxy laminated solid and annular elliptical plates with different aspect ratios and boundary conditions | a/b | $a_2/a = b_2/b$ | $N \times M$ | R–F, $R = 100$ |) | | | T–F, T = 10 | 00 | | | |-----|-----------------|--|--|--|--|--|--|--|--|---| | | | | Ω_1 | Ω_2 | Ω_3 | Ω_4 | Ω_1 | Ω_2 | Ω_3 | Ω_4 | | 1 | 0 | 6×6 7×7 8×8 9×9 10×10 11×11 12×12 | 6.5582
6.5565
6.5565
6.5565
6.5565
6.5565 | 10.180
10.178
10.169
10.169
10.169
10.169
10.169 | 16.285
15.522
15.510
15.472
15.472
15.471
15.471 | 16.330
16.326
16.304
16.304
16.304
16.304
16.304 | 3.1035
3.1003
3.1003
3.1003
3.1003
3.1003
3.1003 | 6.0126
6.0048
5.9817
5.9816
5.9814
5.9814 | 9.9476
9.9369
9.8830
9.8829
9.8820
9.8820
9.8820 | 12.109
10.394
10.360
10.260
10.259
10.257
10.257 | | | 0.4 | 6×6
7×7
8×8
9×9
10×10
11×11
12×12 | 8.8885
8.8398
8.8277
8.7955
8.7878
8.7735
8.7664 | 11.022
10.987
10.834
10.800
10.647
10.625
10.513 | 16.964
16.774
16.093
15.866
14.980
14.789
14.041 | 18.069
17.460
17.387
17.304
17.223
17.150
17.048 | 3.3637
3.2080
3.2005
3.0772
3.0740
3.0155
3.0137 | 6.2150
6.1924
6.0842
6.0627
5.9588
5.9357
5.8207 | 10.166
10.109
9.8365
9.7520
9.3897
9.2680
8.7154 | 12.367
11.047
10.963
10.835
10.807
10.771 | | 2 | 0 | 6×6
7×7
8×8
9×9
10×10
11×11
12×12 | 13.023
13.019
13.019
13.019
13.019
13.019
13.019 | 20.605
20.600
20.580
20.580
20.580
20.580
20.580 | 32.222
31.151
31.126
31.041
31.040
31.039
31.039 | 32.749
32.216
32.181
32.181
32.180
32.180
32.180 | 5.9528
5.9490
5.9490
5.9489
5.9489
5.9489
5.9489 | 11.461
11.454
11.421
11.421
11.421
11.421
11.421 | 17.461
17.453
17.412
17.411
17.411
17.411 | 20.479
18.340
18.317
18.216
18.215
18.214 | | | 0.4 | 6×6 7×7 8×8 9×9 10×10 11×11 12×12 | 17.633
17.535
17.514
17.449
17.436
17.406
17.395 | 22.263
22.180
21.866
21.784
21.471
21.415
21.188 | 33.477
33.110
31.812
31.373
29.672
29.312
27.873 | 36.385
35.135
35.002
34.836
34.678
34.530
34.328 | 6.4601
6.1775
6.1659
5.9392
5.9340
5.8259
5.8233 | 11.815
11.778
11.615
11.575
11.405
11.361
11.168 | 17.789
17.731
17.412
17.307
16.821
16.660
15.872 | 21.004
19.219
19.168
19.022
19.000
18.950
18.9214 | **Table 7** Frequency parameters $\omega a^2 \sqrt{\rho h/D_0}$, for $[(-\beta, \beta, -\beta, \beta)_2]_{\text{sym}}$ E-glass/epoxy laminated circular annular plates with two boundary conditions | $a_2/a = b_2/b$ | β | $N \times M$ | Ω_1 | Ω_2 | Ω_3 | Ω_4 | Ω_5 | Ω_6 | Ω_7 | Ω_8 | |-----------------|-----|---------------------|-------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------| | 0.3 | 15° | Present | SS-F
3.7825 | 9.5390 | 11.890 | 18.324 | 19.192 | 29.055 | 29.618 | 30,809 | | | | Ref. [8] | 3.7520
C-F | 9.2565 | 11.276 | 18.145 | 19.057 | 28.640 | 29.410 | 30.953 | | | | Present
Ref. [8] | 9.3484
9.4193 | 14.955
14.539 | 17.775
17.096 | 25.360
24.993 | 26.347
26.070 | 37.104
36.688 | 37.818
37.638 | 42.551
42.573 | | | 30° | | SS-F | | | | | | | | | | 30° | Present
Ref. [8] | 3.7842
3.7520
C-F | 9.9929
9.6648 | 11.567
11.017 | 18.866
18.653 | 19.497
19.354 | 30.015
29.725 | 30.484
30.398 | 30.583
30.773 | | | | Present
Ref. [8] | 9.3484
9.4168 | 15.490
15.018 | 17.379
16.755 | 26.013
25.563 | 26.639
26.340 | 38.317
37.988 | 38.880
38.673 | 42.344
42.725 | | | 45° | | SS-F | | | | | | | | | | | Present
Ref. [8] | 3.7844
3.7473
C-F | 10.316
9.9575 | 11.302
10.785 | 19.218
18.959 | 19.581
19.452 | 30.271
30.508 | 30.684
30.645 | 31.048
30.845 | | | | Present
Ref. [8] | 9.3476
9.4073 | 15.879
15.410 | 17.055
16.397 | 26.469
25.888 | 26.675
26.413 | 39.110
38.853 | 39.424
39.138 | 42.168
42.818 | Table 8 Frequency
parameters $\omega a^2 \sqrt{\rho h/D_0}$, for $[(\beta, -\beta)_2]_{\text{sym}}$ E-glass/epoxy laminated solid elliptical plates with different aspect ratios and boundary conditions | | R | | | | | | | | | | | | |---|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | | a/b = 1.5 | | | | | | a/b = 2 | | | | | | | | Ω_1 | Ω_2 | Ω_3 | Ω_4 | Ω_5 | Ω_6 | Ω_1 | Ω_2 | Ω_3 | Ω_4 | Ω_5 | Ω_6 | | $\beta = 30^{\circ}$ $T = \infty$ 0 1 10 | 6.1079 | 14.255 | 19.980 | 25.780 | 31.984 | 40.847 | 9.4905 | 18.463 | 30.897 | 2.870 | 47.073 | 47.159 | | | 7.9143 | 15.921 | 21.835 | 27.382 | 33.713 | 42.430 | 11.875 | 20.634 | 32.906 | 35.402 | 48.995 | 49.505 | | | 11.349 | 20.183 | 27.080 | 32.388 | 39.449 | 48.183 | 17.154 | 26.631 | 39.513 | 43.665 | 56.307 | 58.103 | | 100 | 12.684 | 22.299 | 29.898 | 35.401 | 43.190 | 52.311 | 19.521 | 29.878 | 43.768 | 48.900 | 61.941 | 64.402 | | ∞ | 12.879 | 22.633 | 30.355 | 35.908 | 43.849 | 52.750 | 19.885 | 30.410 | 44.509 | 49.807 | 62.354 | 65.562 | | $T = 100$ 0 1 10 100 ∞ | 5.7688 | 12.379 | 16.176 | 19.825 | 22.343 | 27.408 | 8.4113 | 14.682 | 21.770 | 21.901 | 27.288 | 29.330 | | | 7.2253 | 13.217 | 16.654 | 20.050 | 22.407 | 27.423 | 9.9360 | 15.476 | 21.974 | 21.984 | 27.334 | 29.356 | | | 9.5911 | 14.884 | 17.550 | 20.536 | 22.539 | 27.468 | 12.421 | 17.028 | 22.144 | 22.422 | 27.455 | 29.434 | | | 10.384 | 15.527 | 17.865 | 20.735 | 22.591 | 27.492 | 13.224 | 17.612 | 22.201 | 22.608 | 27.517 | 29.479 | | | 10.495 | 15.621 | 17.910 | 20.764 | 22.598 | 27.496 | 13.334 | 17.696 | 22.209 | 22.635 | 27.526 | 29.488 | | $T = 10$ 0 1 10 100 ∞ | 3.9705 | 6.2855 | 7.1389 | 9.3112 | 10.620 | 14.550 | 4.7606 | 6.7907 | 8.2851 | 9.8351 | 12.896 | 16.543 | | | 4.3402 | 6.2935 | 7.4056 | 9.7234 | 11.266 | 16.468 | 5.0040 | 6.7999 | 9.2771 | 10.249 | 14.249 | 17.557 | | | 4.6872 | 6.3075 | 7.7816 | 10.434 | 12.401 | 18.327 | 5.2637 | 6.8169 | 10.712 | 11.003 | 16.719 | 19.620 | | | 4.7638 | 6.3122 | 7.8911 | 10.677 | 12.801 | 19.026 | 5.3266 | 6.8230 | 11.130 | 11.279 | 17.603 | 20.458 | | | 4.7735 | 6.3129 | 7.9058 | 10.711 | 12.858 | 19.128 | 5.3346 | 6.8238 | 11.186 | 11.318 | 17.728 | 20.583 | | $T = 1$ 0 1 10 100 ∞ | 1.5449 | 2.1188 | 2.3454 | 5.8101 | 7.4244 | 12.225 | 1.7212 | 2.2630 | 2.6691 | 6.1241 | 9.6615 | 14.405 | | | 1.5637 | 2.5211 | 3.7620 | 6.8496 | 8.6377 | 14.691 | 1.7345 | 2.6198 | 5.5917 | 7.1589 | 11.688 | 15.719 | | | 1.5777 | 2.9841 | 5.1083 | 8.3531 | 10.527 | 17.017 | 1.7459 | 3.0714 | 8.3808 | 8.7314 | 15.044 | 18.308 | | | 1.5805 | 3.1020 | 5.4316 | 8.8120 | 11.142 | 17.893 | 1.7483 | 3.1952 | 9.0781 | 9.2425 | 16.171 | 19.329 | | | 1.5808 | 3.1172 | 5.4731 | 8.8743 | 11.227 | 18.019 | 1.7486 | 3.2116 | 9.1684 | 9.3133 | 16.329 | 19.480 | | $\beta = 45^{\circ}$ $T = \infty$ 0 1 10 100 ∞ | 6.5008 | 13.996 | 21.896 | 24.602 | 33.255 | 38.457 | 10.336 | 18.796 | 30.265 | 36.315 | 45.043 | 50.229 | | | 8.2190 | 15.675 | 23.602 | 26.240 | 34.922 | 40.088 | 12.551 | 20.898 | 32.267 | 38.621 | 47.003 | 52.420 | | | 11.837 | 19.991 | 29.112 | 31.230 | 40.835 | 45.820 | 18.166 | 27.074 | 38.964 | 47.235 | 54.411 | 61.265 | | | 13.422 | 22.202 | 32.596 | 34.188 | 45.073 | 49.770 | 21.131 | 30.810 | 43.557 | 53.799 | 60.270 | 68.791 | | | 13.665 | 22.560 | 33.203 | 34.689 | 45.856 | 50.096 | 21.620 | 31.463 | 44.396 | 55.045 | 60.623 | 70.293 | | $T = 100$ 0 1 10 100 ∞ | 6.0632 | 12.076 | 16.980 | 19.126 | 22.591 | 26.553 | 8.9096 | 14.527 | 21.078 | 22.557 | 27.579 | 28.313 | | | 7.4144 | 12.940 | 17.310 | 19.420 | 22.631 | 26.561 | 10.239 | 15.287 | 21.333 | 22.586 | 27.648 | 28.322 | | | 9.7788 | 14.645 | 17.997 | 20.034 | 22.720 | 26.582 | 12.625 | 16.813 | 21.883 | 22.651 | 27.831 | 28.349 | | | 10.624 | 15.298 | 18.263 | 20.279 | 22.757 | 26.593 | 13.458 | 17.401 | 22.110 | 22.680 | 27.925 | 28.366 | | | 10.744 | 15.392 | 18.302 | 20.314 | 22.763 | 26.593 | 13.575 | 17.487 | 22.143 | 22.684 | 27.939 | 28.370 | | $T = 10$ 0 1 10 100 ∞ | 3.9983 | 6.2228 | 7.1805 | 9.0138 | 10.647 | 14.647 | 4.7676 | 6.7271 | 8.3085 | 9.4774 | 12.984 | 15.259 | | | 4.3402 | 6.2260 | 7.5047 | 9.3878 | 11.342 | 15.626 | 4.9934 | 6.7316 | 9.4006 | 9.8461 | 14.416 | 16.307 | | | 4.6799 | 6.2316 | 8.0163 | 9.9866 | 12.579 | 17.351 | 5.2486 | 6.7402 | 10.472 | 11.186 | 17.161 | 18.232 | | | 4.7566 | 6.2335 | 8.1779 | 10.177 | 13.026 | 17.957 | 5.3118 | 6.7432 | 10.686 | 11.767 | 18.208 | 18.940 | | | 4.7663 | 6.2337 | 8.1999 | 10.203 | 13.090 | 18.042 | 5.3200 | 6.7437 | 10.716 | 11.847 | 18.360 | 19.042 | | $T = 1$ 0 1 10 100 ∞ | 1.5423 | 2.1164 | 2.3467 | 5.3709 | 7.4266 | 12.401 | 1.7167 | 2.2606 | 2.6699 | 5.5655 | 9.7498 | 12.932 | | | 1.5625 | 2.4902 | 3.8406 | 6.4329 | 8.7163 | 13.738 | 1.7325 | 2.5914 | 5.7084 | 6.6234 | 11.870 | 14.346 | | | 1.5771 | 2.8828 | 5.4217 | 7.8404 | 10.732 | 16.022 | 1.7450 | 2.9764 | 8.0943 | 8.9474 | 15.527 | 16.852 | | | 1.5800 | 2.9773 | 5.8337 | 8.2382 | 11.405 | 16.802 | 1.7476 | 3.0771 | 8.5345 | 9.8477 | 16.836 | 17.744 | | | 1.5803 | 2.9894 | 5.8878 | 8.2911 | 11.499 | 16.911 | 1.7479 | 3.0903 | 8.5943 | 9.9679 | 17.023 | 17.872 | | $\beta = 60^{\circ}$ $T = \infty$ 0 1 10 100 ∞ | 6.9160 | 13.699 | 23.456 | 23.838 | 34.243 | 36.294 | 11.263 | 18.960 | 29.436 | 40.112 | 43.025 | 52.900 | | | 8.5323 | 15.371 | 25.129 | 25.408 | 35.821 | 37.982 | 13.290 | 20.975 | 31.423 | 42.195 | 45.019 | 54.929 | | | 12.311 | 19.740 | 30.101 | 31.117 | 41.866 | 43.677 | 19.195 | 27.326 | 38.226 | 51.027 | 52.551 | 63.945 | | | 14.199 | 22.108 | 33.054 | 35.337 | 46.690 | 47.484 | 22.903 | 31.669 | 43.258 | 58.604 | 59.306 | 72.894 | | | 14.506 | 22.506 | 33.563 | 36.128 | 47.631 | 47.725 | 23.567 | 32.481 | 44.227 | 58.972 | 60.966 | 74.793 | | $T = 100$ 0 1 10 100 ∞ | 6.3558 | 11.754 | 17.652 | 18.445 | 22.649 | 25.626 | 9.3932 | 14.316 | 20.423 | 23.077 | 27.466 | 27.608 | | | 7.5954 | 12.6473 | 17.8692 | 18.8186 | 22.6748 | 25.6455 | 10.530 | 15.062 | 20.742 | 23.084 | 27.479 | 27.696 | | | 9.9404 | 14.396 | 18.371 | 19.572 | 22.734 | 25.828 | 12.801 | 16.599 | 21.411 | 23.104 | 27.512 | 27.933 | | | 10.845 | 15.065 | 18.588 | 19.859 | 22.759 | 25.844 | 13.676 | 17.207 | 21.680 | 23.114 | 27.529 | 28.056 | | | 10.978 | 15.162 | 18.621 | 19.901 | 22.763 | 25.845 | 13.803 | 17.296 | 21.719 | 23.116 | 27.533 | 28.075 | | | R | | | | | | | | | | | | |----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | | a/b = 1.5 | | | | | | a/b = 2 | | | | | | | | Ω_1 | Ω_2 | Ω_3 | Ω_4 | Ω_5 | Ω_6 | Ω_1 | Ω_2 | Ω_3 | Ω_4 | Ω_5 | Ω_6 | | T = 10 | | | | | | | | | | | | | | 0 | 4.0091 | 6.1517 | 7.2103 | 8.8342 | 10.446 | 13.986 | 4.7615 | 6.6581 | 8.3242 | 9.2679 | 12.661 | 14.468 | | 1 | 4.3333 | 6.1549 | 7.5806 | 9.1630 | 11.185 | 14.977 | 4.9782 | 6.6620 | 9.4906 | 9.5865 | 14.190 | 15.504 | | 10 | 4.6690 | 6.1594 | 8.2205 | 9.6445 | 12.541 | 16.540 | 5.2328 | 6.6684 | 10.088 | 11.603 | 17.225 | 17.227 | | 100 | 4.7467 | 6.1608 | 8.4382 | 9.7900 | 13.042 | 17.048 | 5.2976 | 6.6706 | 10.252 | 12.369 | 17.813 | 18.440 | | ∞ | 4.7565 | 6.1610 | 8.4686 | 9.8097 | 13.114 | 17.120 | 5.3060 | 6.6709 | 10.274 | 12.478 | 17.896 | 18.620 | | T = 1 | | | | | | | | | | | | | | 0 | 1.5379 | 2.1137 | 2.3476 | 5.1255 | 7.1146 | 11.670 | 1.7113 | 2.2578 | 2.6703 | 5.2600 | 9.2879 | 12.026 | | 1 | 1.5609 | 2.4567 | 3.9014 | 6.1906 | 8.4914 | 13.064 | 1.7304 | 2.5610 | 5.7932 | 6.3130 | 11.572 | 13.482 | | 10 | 1.5764 | 2.7890 | 5.6918 | 7.4532 | 10.689 | 15.194 | 1.7440 | 2.8874 | 7.6369 | 9.4371 | 15.597 | 15.796 | | 100 | 1.5794 | 2.8668 | 6.1939 | 7.7891 | 11.435 | 15.868 | 1.7468 | 2.9713 | 8.0110 | 10.562 | 16.560 | 17.099 | | 00 | 1.5797 | 2.8767 | 6.2611 | 7.8334 | 11.541 | 15.961 | 1.7471 | 2.9824 | 8.0615 | 10.718 | 16.668 | 17.318 | **Table 9** Frequency parameters $\omega a^2 \sqrt{\rho h/D_0}$, for two cross-ply (1) $[(0^\circ, 90^\circ)_2]_{\text{sym}}$, (2) $[(90, 0)_2]_{\text{sym}}$, E-glass/epoxy laminated solid elliptical plates with different aspect ratios and boundary conditions | | R | | | | | | | | | | | | |--|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | | a/b = 1.5 | | | | | | a/b = 2 | | | | | | | | Ω_1 | Ω_2 | Ω_3 | Ω_4 | Ω_5 | Ω_6 | Ω_1 | Ω_2 | Ω_3 | Ω_4 | Ω_5 | Ω_6 | | $T = \infty$ 0 1 10 100 ∞ | 5.9816 | 14.414 | 19.277 | 27.328 | 30.374 | 40.456 | 9.3177 | 18.020 | 31.253 | 32.263 | 45.022 | 49.084 | | | 7.8252 | 16.055 | 21.214 | 28.789 | 32.231 | 42.438 | 11.732 | 20.274 | 33.266 | 34.811 | 47.479 | 50.914 | | | 11.212 | 20.357 | 26.364 | 33.790 | 38.003 | 49.208 | 16.941 | 26.311 | 39.940 | 42.984 | 56.091 | 58.183 | | | 12.454 | 22.469 | 28.913 | 37.047 | 41.354 | 53.505 | 19.201 | 29.365 | 44.067 | 48.046 | 61.977 | 63.833 | | | 12.630 | 22.797 | 29.311 | 37.609 | 41.907 | 54.235 | 19.544 | 29.847 | 44.759 | 48.914 | 63.020 | 64.299 | | $T = 100$ 0 1 10 100 ∞ | 5.6705 | 12.597 | 15.822 | 20.556 | 21.939 | 27.186 | 8.2812 | 14.720 | 21.683 | 22.358 | 26.857 | 30.401 | | | 7.1654 | 13.414 | 16.367 | 20.716 | 22.028 | 27.205 | 9.8517 | 15.568 | 21.778 | 22.534 | 26.886 | 30.453 | | | 9.5463 | 15.075 | 17.355 | 21.085 | 22.205 | 27.246 | 12.396 | 17.194 | 21.958 | 22.921 | 26.953 | 30.618 | | | 10.325 | 15.721 | 17.693 | 21.245 |
22.271 | 27.262 | 13.215 | 17.796 | 22.022 | 23.080 | 26.981 | 30.720 | | | 10.432 | 15.815 | 17.740 | 21.269 | 22.281 | 27.264 | 13.327 | 17.883 | 22.031 | 23.103 | 26.986 | 30.738 | | $T = 10$ 0 1 10 100 ∞ | 3.9705 | 6.3252 | 7.1234 | 9.8930 | 10.079 | 14.260 | 4.7689 | 6.8334 | 8.2752 | 10.395 | 12.069 | 18.502 | | | 4.3455 | 6.3400 | 7.3648 | 10.267 | 10.807 | 16.165 | 5.0144 | 6.8481 | 9.2223 | 10.784 | 13.574 | 19.279 | | | 4.6964 | 6.3676 | 7.6657 | 11.035 | 11.968 | 19.045 | 5.2782 | 6.8761 | 10.498 | 11.601 | 16.020 | 21.237 | | | 4.7737 | 6.3775 | 7.7427 | 11.335 | 12.328 | 19.887 | 5.3420 | 6.8864 | 10.846 | 11.932 | 16.785 | 22.175 | | | 4.7834 | 6.3788 | 7.7526 | 11.379 | 12.377 | 19.999 | 5.3502 | 6.8879 | 10.891 | 11.981 | 16.888 | 22.322 | | $T = 1$ 0 1 10 100 ∞ | 1.5474 | 2.1201 | 2.3450 | 6.5281 | 6.8219 | 11.851 | 1.7247 | 2.2647 | 2.6688 | 7.0966 | 8.4324 | 16.696 | | | 1.5646 | 2.5410 | 3.7333 | 7.6182 | 7.9895 | 14.499 | 1.7359 | 2.6390 | 5.5410 | 7.9231 | 10.832 | 17.649 | | | 1.5782 | 3.0633 | 4.9505 | 9.0675 | 10.014 | 18.135 | 1.7459 | 3.0714 | 8.3808 | 8.7314 | 15.044 | 18.308 | | | 1.5809 | 3.2053 | 5.0215 | 9.5836 | 10.590 | 19.145 | 1.7490 | 3.2856 | 8.7305 | 10.022 | 15.273 | 21.122 | | | 1.5813 | 3.2240 | 5.2484 | 9.6566 | 10.667 | 19.278 | 1.7493 | 3.3048 | 8.8080 | 10.103 | 15.407 | 21.294 | | (2) $T = \infty$ 0 1 10 100 ∞ | 7.1727 | 13.505 | 23.085 | 24.979 | 34.399 | 36.000 | 11.871 | 18.900 | 28.866 | 42.144 | 42.643 | 54.036 | | | 8.7270 | 15.183 | 24.787 | 26.470 | 35.931 | 37.708 | 13.772 | 20.869 | 30.871 | 44.190 | 44.588 | 55.959 | | | 12.596 | 19.632 | 29.831 | 32.262 | 42.049 | 43.454 | 19.828 | 27.363 | 37.841 | 51.906 | 53.504 | 65.051 | | | 14.684 | 22.098 | 32.789 | 36.957 | 47.207 | 47.229 | 24.086 | 32.142 | 43.179 | 58.272 | 62.793 | 75.030 | | | 15.035 | 22.518 | 33.298 | 37.880 | 47.881 | 48.274 | 24.893 | 33.072 | 44.233 | 58.585 | 64.902 | 76.258 | | $T = 100$ 0 1 10 100 ∞ | 6.5243 | 11.631 | 17.961 | 18.395 | 22.528 | 25.873 | 9.6744 | 14.223 | 20.359 | 23.300 | 27.394 | 27.550 | | | 7.7015 | 12.548 | 18.127 | 18.785 | 22.547 | 25.886 | 10.702 | 14.982 | 20.699 | 23.303 | 27.481 | 27.562 | | | 10.044 | 14.354 | 18.538 | 19.571 | 22.592 | 25.914 | 12.919 | 16.585 | 21.417 | 23.309 | 27.592 | 27.716 | | | 10.993 | 15.042 | 18.729 | 19.869 | 22.612 | 25.927 | 13.839 | 17.230 | 21.702 | 23.313 | 27.606 | 27.838 | | | 11.135 | 15.141 | 18.759 | 19.912 | 22.615 | 25.928 | 13.975 | 17.325 | 21.743 | 23.314 | 27.609 | 27.858 | | T = 10 0 1 | 4.0229 | 6.1492 | 7.2183 | 8.9478 | 10.055 | 14.388 | 4.7687 | 6.6609 | 8.3260 | 9.3674 | 12.015 | 14.857 | | | 4.3362 | 6.1505 | 7.6021 | 9.2747 | 10.843 | 15.327 | 4.9789 | 6.6619 | 9.5068 | 9.6884 | 13.643 | 15.866 | | Table 9 (continued) | | | | | | | | | | | | | | |---------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--| | | R | | | | | | | | | | | | | | | a/b = 1.5 | | | | | | a/b = 2 | | | | | | | | | Ω_1 | Ω_2 | Ω_3 | Ω_4 | Ω_5 | Ω_6 | Ω_1 | Ω_2 | Ω_3 | Ω_4 | Ω_5 | Ω_6 | | | 10 | 4.6715 | 6.1521 | 8.2962 | 9.7245 | 12.289 | 16.763 | 5.2357 | 6.6635 | 10.166 | 11.767 | 16.859 | 17.472 | | | 100 | 4.7499 | 6.1526 | 8.5441 | 9.8508 | 12.817 | 17.220 | 5.3019 | 6.6639 | 10.309 | 12.654 | 17.984 | 18.162 | | | ∞ | 4.7598 | 6.1526 | 8.5793 | 9.8674 | 12.893 | 17.283 | 5.3105 | 6.6401 | 10.328 | 12.784 | 18.054 | 18.358 | | | T = 1 | | | | | | | | | | | | | | | 0 | 1.5385 | 2.1137 | 2.3479 | 5.3651 | 6.4773 | 12.231 | 1.7120 | 2.2581 | 2.6704 | 5.4731 | 8.3454 | 12.571 | | | 1 | 1.5609 | 2.4552 | 3.9183 | 6.3990 | 8.0024 | 13.515 | 1.7304 | 2.5608 | 5.8071 | 6.5010 | 10.872 | 13.949 | | | 10 | 1.5765 | 2.7732 | 5.7943 | 7.5747 | 10.393 | 15.454 | 1.7441 | 2.8732 | 7.7535 | 9.6297 | 15.193 | 16.084 | | | 100 | 1.5794 | 2.8440 | 6.3445 | 7.8733 | 11.187 | 16.063 | 1.7469 | 2.9491 | 8.0865 | 10.902 | 16.751 | 16.810 | | | ∞ | 1.5798 | 2.8529 | 6.4192 | 7.9120 | 11.298 | 16.146 | 1.7472 | 2.9589 | 8.1302 | 11.084 | 16.843 | 17.048 | | **Fig. 2.** Variation of the fundamental frequency coefficient Ω_1 with the rotational restraint parameter R ($T=\infty$), of circular and elliptical cross-ply $[(0^\circ,90^\circ)_2]_{\text{sym}}$ E-glass/epoxy laminates. **Fig. 3.** Variation of the fundamental frequency coefficient Ω_1 with the translational restraint parameter T (R=0), of circular and elliptical cross-ply $[(0^\circ, 90^\circ)_2]_{\text{sym}}$ E-glass/epoxy laminates. #### 5.4. New results In this section new results are presented. Table 8 shows values of the frequency parameters $\omega a^2 \sqrt{\rho h/D_0}$, for angle-ply $[(\beta, -\beta)_2]_{\text{sym}}$ E-glass/epoxy elliptical laminates with different **Fig. 4.** Variation of the fundamental frequency coefficient $Ω_1$ with the translational and the rotational restraint parameters T and R for: (1) angle-ply $[(45^\circ, -45^\circ)_2]_{\text{sym}}$ and (2) cross-ply $[(0^\circ, 90^\circ)_2]_{\text{sym}}$ E-glass/epoxy composite laminates with a/b = 2. aspect ratios and boundary conditions. Table 9 depicts values of the frequency parameters $\omega a^2 \sqrt{\rho h/D_0}$, for two cross-ply $[(0,90)_2]_{\text{sym}}$, $[(90,0)_2]_{\text{sym}}$ E-glass/epoxy laminated elliptical plates, different aspect ratios and boundary conditions. In Figs. 2–4 the fundamental frequency coefficient $\Omega_1 =$ $\omega_1 a^2 \sqrt{\rho h/D_0}$ of laminated elliptical plates is plotted against the restraint parameters R and T. Fig. 2 shows the variation of Ω_1 for various values of the rotational restraint R, while Fig. 3 shows the variation of Ω_1 for various values of the translational restraint T. In both figures the effect due to three different aspect ratio is included. It can be observed that a major increase of frequency occurs when the elastic restraint values are in the interval (1–100). Fig. 4 shows the variation of the fundamental frequency coefficient Ω_1 for various values of the rotational and the translational restraint parameters: (a) R = 0, T = S, (b) R = S, $T = \infty$ and (c) R = T = S. In this case, Ω_1 is plotted against S for (1) angle-ply [(45°, $-45^{\circ})_2]_{sym}$ and (2) cross-ply [(0°, 90°) $_2]_{sym}$ E-glass/ epoxy composite laminates with a/b = 2. The obtained curves illustrate the intervals of variation of the restraint parameters for which the frequency coefficient Ω_1 is sensitive to the values of R or T. The frequencies which correspond to the angle-ply case are higher in all cases, specially when the restraint parameters vary in the interval $(100, \infty)$. **Fig. 5.** First seven natural free vibration frequencies and mode shapes for elliptical (a/b = 1.5) cross-ply and angle-ply E-glass epoxy laminates, with T = 10, R = 10. Also, in this section, the first seven natural free vibration frequencies, mode shapes and nodal patterns of different solid and annular elliptical angle-ply and cross-ply E-glass/epoxy laminated plates with different boundary conditions are shown. Fig. 5 corresponds to elliptical plates (a/b=1.5) with elastically restrained edges for T=10 and R=10. Figs. 6 and 7 present the results which correspond to SS-F and C-F annular elliptical laminates with $a_2/a=b_2/b=0.25$ and a/b=1.5. Finally, Fig. 8 shows the results corresponding to elliptical laminates (a/b=1.5) with a concentric ring support ($a_1/a=b_1/b=0.5$). ## 6. Conclusions A simple, computationally efficient and accurate approximate approach has been developed for the determination of natural frequencies and mode shapes of free vibration of symmetrically laminated cross-ply and angle-ply elliptical solid and annular plates. The approach is based on the Rayleigh–Ritz method with polynomial expressions as approximate functions. The obtained algorithm is very general and also attractive regarding its versatility in handling any boundary conditions, including edges **Fig. 6.** First seven natural free vibration frequencies and mode shapes for SS–F annular elliptical cross-ply and angle-ply E-glass epoxy laminates with $a_2/a = b_2/b = 0.25$, a/b = 1.5. Fig. 7. First seven natural free vibration frequencies and mode shapes for C–F annular elliptical cross-ply and angle-ply E-glass epoxy laminates with $a_2/a = b_2/b = 0.25$, a/b = 1.5. elastically restrained against rotation and against translation. Besides, it takes into account a great variety of anisotropic characteristics, geometric planforms (including annular plates), a concentric ring support and the presence of concentrated masses. Circular isotropic plates and classical boundary conditions can be easily generated as particular cases. Close agreement with results presented by previous investigators is demonstrated for several examples. New results are presented for several symmetrically laminated composite circular and elliptical plates with elastically restrained edges. These results may provide useful information for structural designers and engineers and the method may be easily modified to apply to static deflection problems. **Fig. 8.** First seven natural free vibration frequencies and mode shapes for solid elliptical cross-ply and angle-ply E-glass epoxy laminates a/b = 1.5, with a concentric ring support $(a_1/a = b_1/b = 0.5)$. ### Acknowledgments The authors are grateful to Professor Rama B. Bhat and to the reviewers of the paper for their constructive comments and suggestions. The present investigation has been sponsored by FONCyT (Project: PICTO No. 36690). #### References - Leissa AW. Vibration of plates, NASA SP-160. Washington DC: Office of Technology Utilization, NASA; 1969. - [2] Leissa AW. Recent research in plate vibrations, 1973–1979: classical theory. The Shock and Vibration Digest
1977;9(10):13–24. - [3] Leissa AW. Plate vibration research, 1976–1980: classical theory. The Shock and Vibration Digest 1981;13(9):11–22. - [4] Leissa AW. Recent studies in plate vibrations, 1981–1985, part I: classical theory. The Shock and Vibration Digest 1987;19(2):11–8. - [5] Rajalingham C, Bhat RB, Xistris GD. Vibration of clamped elliptic plates using exact circular plate modes as shape functions in Rayleigh-Ritz method. International Journal of Mechanical Science 1994;36(3):231-46. - [6] Young PG, Dickinson SM. Further studies on the vibration of plates with curved edges, including complicating effects. Journal of Sound and Vibration 1994;177(1):93–109. - [7] Chakraverty S, Petyt M. Natural frequencies for free vibration of non homogeneous elliptic and circular plates using two-dimensional orthogonal polynomials. Applied Mathematical Modelling 1997;21(7):399–417. - [8] Lim CW, Kitipornchai S, Liew KM. A free vibration analysis of doubly connected super-elliptical laminated composite plates. Composites Science and Technology 1998;58(3-4):435-45. - [9] Nallim LG, Grossi R, Laura PA. Transverse vibrations of circular plates of rectangular orthotropy carrying a central concentrated mass. Journal of Sound and Vibration 1998;216(2):337–41. - [10] Chakraverty S, Bhat RB, Stiharu I. Free vibration of annular elliptic plates using boundary characteristic orthogonal polynomials as shape functions in the Rayleigh–Ritz method. Journal of Sound and Vibration 2001;241(3): 524–39 - [11] Bayer I, Guven U, Altay G. A parametric study on vibrating clamped elliptical plates with variable thickness. Journal of Sound and Vibration 2002;254(1): 179–88. - [12] Kim SC. Natural frequencies of orthotropic, elliptical and circular plates. Journal of Sound and Vibration 2003;259(3):733–45. - [13] Hassan SM. Numerical solution for frequencies and mode shapes of elliptical plate half of whose boundary is simply supported and the rest free. International Journal of Mechanical Science 2004;46(12):1747–61. - [14] Hassan SM. Free transverse vibrations of elliptical plates of variable thickness with half of the boundary clamped and the rest free. International Journal of Mechanical Science 2004;46(12):1861–82. - [15] Kukla S, Szewczyk M. Frequency analysis of annular plates with elastic concentric supports by Green's function method. Journal of Sound and Vibration 2007;300(1–2):387–93. - [16] Reddy JN. Mechanics of Laminated Anisotropic Plates: Theory and Analysis. Boca Raton, FL: CRC Press; 1997. - [17] Whitney JM. Structural Analysis of Laminated Anisotropic Plates. Pennsylvania, USA: Technomic Pub Co; 1987. - [18] Grossi R, Nallim LG. Boundary and eigenvalue problems for generally restrained anisotropic plates. Journal of Multi-body Dynamics 2003;217(3): 241–51 - [19] Rektorys K. Variational methods in mathematics, science and engineering. Dordrecht: D. Reidel; 1980. - [20] Achong A. Vibrational analysis of circular and elliptical plates carrying point and ring masses and with edges elastically restrained. Journal of Sound and Vibration 1995;185(1):157–68. - [21] Sonemblum M, Gil E, Laura P A, Filipich P, Bergman A, Sanzi H C. A note on vibrations of elliptical plates carrying concentric, concentrated masses. Applied Acoustics 1989;28(1):1–7.