
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 168.96.15.8

This content was downloaded on 06/10/2015 at 12:28

Please note that terms and conditions apply.

 d-wave bond-order charge excitations in electron-doped cuprates

View the table of contents for this issue, or go to the journal homepage for more

2015 EPL 111 57005

(http://iopscience.iop.org/0295-5075/111/5/57005)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/0295-5075/111/5
http://iopscience.iop.org/0295-5075
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


September 2015

EPL, 111 (2015) 57005 www.epljournal.org
doi: 10.1209/0295-5075/111/57005

d-wave bond-order charge excitations in electron-doped cuprates

Hiroyuki Yamase
1
, Mat́ıas Bejas

2 and Andrés Greco
2

1 National Institute for Materials Science - Tsukuba 305-0047, Japan
2 Facultad de Ciencias Exactas, Ingenieŕıa y Agrimensura and Instituto de F́ısica Rosario (UNR-CONICET)
Avenida Pellegrini 250, 2000 Rosario, Argentina

received 19 June 2015; accepted in final form 28 August 2015
published online 28 September 2015

PACS 74.72.Ek – Cuprate superconductors: Electron-doped
PACS 75.25.Dk – Orbital, charge, and other orders, including coupling of these orders
PACS 78.70.Ck – X-ray scattering

Abstract – We study charge excitation spectra in the two-dimensional t-J model on a square
lattice to explore a charge-order tendency recently found in electron-doped cuprates around the
carrier density 0.15. The static susceptibility of d-wave charge density, which corresponds to
the nematic susceptibility at the momentum transfer q = (0, 0), shows two characteristic peaks at
momenta of the form q1 = (q′, q′) and q2 = (q, 0). These two peaks originate from the so-called
2kF scattering processes enhanced by the d-wave character of the bond-charge density. The peak
at q1 is much broader, but develops to be very sharp in the vicinity of its instability, whereas
the peak at q2 becomes sharper with decreasing temperature, but does not diverge. The equal-
time correlation function, which is measured by resonant x-ray scattering, exhibits a momentum
dependence similar to the static susceptibility. We also present energy-resolved charge excitation
spectra. The spectra show a V-shaped structure around q = (0, 0) and bend back toward close-
to-zero energy due to the charge-order tendency at q1 and q2. The resulting spectra form gap-like
features with a maximal gap at q ≈ q1/2 and q2/2. We discuss implications for the recent
experiments in electron-doped cuprates.

Copyright c© EPLA, 2015

Introduction. – Charge order (CO) in high-
temperature cuprate superconductors attracts renewed in-
terest. CO is known in La-based materials as a spin-charge
stripe order [1], in which CO is accompanied by a spin or-
der. However, a different type of CO has been observed
recently in various hole-doped cuprates such as Y- [2–8],
Bi- [9–11], and Hg-based [12] materials. In these materials,
the CO is not accompanied by a spin order. Furthermore
a modulation vector of the CO decreases with doping,
the opposite tendency observed in the La-based materials.
The origin of the newly found CO as well as its relation
to superconductivity is under active debate [13–17].

Research interest also goes to electron-doped cuprates.
Resonant inelastic x-ray scattering (RIXS) reveals that
charge excitation spectra develop to form a V-shaped dis-
persion [18] around the momentum q = (0, 0) and extends
up to around 1.5 eV at q = (0.6π, 0) and (0.6π, 0.6π) [19]
in Nd2−xCexCuO4 with x = 0.15. Quite recently resonant
x-ray scattering (RXS), which integrates a RIXS spectrum
up to infinity with respect to energy, has revealed a charge
excitation peak at q ≈ (0.48π, 0) near x = 0.15 [20].
The observed wave vector is rather close to that found in
hole-doped cuprates [2–12], implying a possible universal

phenomenon for the CO in cuprate superconductors. The
correlation length of the CO is, however, estimated to be
4–7 lattice constants, i.e., it is not a long-range order [20].

The wave vector of q ≈ (0.48π, 0) obtained by RXS [20]
is covered by the RIXS by Ishii et al. [19], but the observed
RIXS spectra do not seem to clearly suggest some char-
acteristic feature associated with a CO, such as softening
of the spectrum toward a long-range order at the corre-
sponding wave vector. This peculiar situation motivates
us to study charge excitations in electron-doped cuprates
more closely from a theoretical point of view.

Charge excitations in electron-doped cuprates are
not much known theoretically. Ishii et al. studied
the usual density-density correlation functions and dis-
cussed the RIXS spectra [19]. Bejas et al. [21], on
the other hand, studied all possible COs in the t-J
model with parameters appropriate for electron-doped
cuprates. They found that instead of a usual charge-
order instability, various types of bond order tend to
occur much more strongly. In particular, a d-wave
bond-order tendency is dominant in a moderate doping
region. While its instability is expected at a wave vec-
tor close to (π, π), they found a meta-stable solution of
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the d-wave bond order at q ≈ (0.49π, 0). This wave
vector is very close to the experimental observation by
RXS [20].

Encouraged by this agreement with the experiment, we
study charge excitations associated with a d-wave bond
order in the two-dimensional t-J model on a square lat-
tice by taking parameters appropriate for electron-doped
cuprates. We compute three quantities: static d-wave
bond-order susceptibility χd(q, 0), its spectral weight
Imχd(q, ω), and the corresponding equal-time correlation
function S(q). The second and third quantities can be
measured directly by RIXS and RXS, respectively. Our
obtained results capture essential features observed in ex-
periments such as a V-shape dispersion of Imχd(q, ω)
near q = (0, 0) [18,19] and a short-range CO with q ≈
(0.48π, 0) [20]. In addition, we obtain several new in-
sights: First, a CO is expected also at q1 = (q′, q′) with
q′ ≈ 0.84π. In fact this CO has a stronger intensity than
the CO at q2 = (q, 0) with q ≈ 0.49π. However, the peak
at q1 is much broader in momentum space than that at
q2 and becomes sharp only in the vicinity of its instabil-
ity. Second, the dispersive peak of Imχd(q, ω) bends back
toward close-to-zero energy at q1 and q2 where χd(q, 0)
and S(q) exhibit a peak. The resulting charge excitation
spectra show gap-like features between q1 and q = (0, 0),
and between q = (0, 0) and q2, with a maximal gap at
q ≈ 1

2q1 and 1
2q2.

Model and formalism. – Various approximations
to the t-J [21–23] and the strong coupling Hub-
bard [24] model show that the models have a strong ten-
dency toward phase separation, especially for parameters
appropriate for electron-doped cuprates. The phase sepa-
ration, however, can be an artifact caused by neglecting
the long-range Coulomb interaction. In fact, the Coulomb
interaction term appears naturally when the t-J model is
derived from the three-band Hubbard model [25]. Hence
we include the nearest-neighbor Coulomb interaction in
the t-J model as a minimal model to study electron-doped
cuprates. Our model then reads

H = −
∑
i,j,σ

tij c̃
†
iσ c̃jσ+J

∑
〈i,j〉

[
�Si · �Sj − 1

4
ninj

]
+V

∑
〈i,j〉

ninj ,

(1)
where tij = t (t′) is the hopping between the first (sec-
ond) nearest-neighbor sites on a square lattice, J and
V are the exchange and Coulomb interactions between
the nearest-neighbor sites, respectively. 〈i, j〉 indicates a
nearest-neighbor pair of sites. c̃†

iσ (c̃iσ) is the creation
(annihilation) operator of electrons with spin σ (σ =↓, ↑)
in the Fock space without any double occupancy. ni =∑

σ c̃†
iσ c̃iσ is the electron density operator and �Si is the

spin operator. The role of the V -term turns out to merely
suppress phase separation in a doping and temperature
(T ) range relevant to cuprates. In fact, our obtained re-
sults are not affected essentially by the V -term.

In leading order of a 1/N -expansion [26], the kinetic
term of the electrons is characterized by an effective elec-
tronic dispersion

εk = −2
[
t
δ

2
+ JΔ

]
(cos kx+cos ky)−4t′

δ

2
cos kx cos ky−μ,

(2)
where δ is the doping rate away from half-filling and μ is
the chemical potential. The bare hopping integrals t and t′

are renormalized by a factor of δ. The term JΔ in eq. (2),
which is not present at bare level, comes from the exchange
term (the second term in eq. (1)). The magnitude of Δ
describes a bond amplitude between the nearest neighbor
sites. Values of Δ and μ are determined self-consistently
at a given δ by solving the following equations:

Δ =
1

4Ns

∑
k

(cos kx + cos ky)nF (εk) (3)

and

1 − δ =
2

Ns

∑
k

nF (εk). (4)

Here nF is the Fermi function and Ns the total number of
lattice sites.

In the above scheme Bejas et al. studied all possible
charge instabilities for both hole-doped [17] and electron-
doped [21] cuprates. They found that a relevant instability
to discuss the electron-doped cuprates around δ = 0.15 is
a d-wave bond order where bond amplitude is modulated
along both x- and y-direction, and its relative phase is
in antiphase1. This ordering pattern is shown in fig. 1 by
choosing wave vectors close to those relevant in the present
study.

In the present study, we explore closely a charge-
order tendency associated with the d-wave bond order.
In particular, we aim to give some insight into the
charge excitations recently observed by RIXS and RXS in
electron-doped cuprates from a theoretical point of view.
Following [17] and [21] we focus on the effective dynamical
d-wave charge susceptibility,

χd(q, ω) =
(8JΔ2)−1

1 − 2JΠ(q, ω)
(5)

which becomes exact in leading order of 1/N . The bare
polarizability Π(q, ω) reads

Π(q, ω) = − 1
Ns

∑
k

γ2(k)
nF (εk+q/2) − nF (εk−q/2)
εk+q/2 − εk−q/2 − ω − iη

, (6)

where η(> 0) is an infinitesimally small value and we take
η = 10−3 because of a practical reason of numerical com-
putations. The form factor γ(k) = (cos kx − cos ky)/2
comes from the intra-unit-cell symmetry. This form fac-
tor has d-wave symmetry, and χd(q, ω) corresponds to the

1This order is referred to as BOPxȳ in [21].
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Fig. 1: (Color online) d-wave bond order for q1 ≈ q =
(0.8π, 0.8π) (a) and q2 ≈ q = (0.5π, 0) (b). The black lines
denote a stronger (solid line) and weaker (dotted line) bond
relative to the average bond amplitude (gray line), which cor-
responds to Δ in eq. (3). The width of the lines indicates
the modulation amplitude. (c) 2kF scattering processes, which
determine the wave vectors q1 and q2.

well-known nematic susceptibility for q = 0 [27–29]. The
property of χd(q, ω) near q = 0 was already studied in [30]
by focusing on a collective mode of the d-wave bond order
in both paramagnetic and superconducting states. Here
we study eq. (5) in a different situation in which COs tend
to occur at q = q1 and q2.

In what follows we present results for J/t = 0.3 and
t′/t = 0.30, which are suitable for electron-doped cuprates.
We fix the carrier density δ = 0.15 so that our results
will be compared directly with recent experiments [18–20].
Our conclusions do not depend sensitively on a precise
choice of parameters and we choose V/t = 1. Below we
present all quantity of the dimension of energy in units
of t.

Results. – We present the static susceptibility
χd(q, 0), the equal-time correlations function S(q), and
the spectral weight Imχd(q, ω) in (q, ω) space. RXS and
RIXS measure S(q) and Imχd(q, ω), respectively.

We first computed χd(q, 0) in the entire Brillouin zone
and found two well-defined peaks at q1 = (0.84π, 0.84π)
and q2 = (0.49π, 0) near zero temperature. To clarify
their temperature dependence, we plot χd(q, 0) along the
(0, 0)-(π, π) direction in fig. 2(a). At T = 10−5 a very
sharp peak forms at q = q1. This peak is due to the prox-
imity to a quantum critical point of the d-wave bond-order
instability, which is present at δc ≈ 0.13 [21]. However,
once the temperature is increased, the peak is immediately
broadened and becomes less clear already at T = 0.01. In
fig. 2(b) we plot χd(q, 0) along the (0, 0)-(π, 0) direction.

Fig. 2: (Color online) The static susceptibility χd(q, 0) along
the directions of (0, 0)-(π, π) (a) and (0, 0)-(π, 0) (b) for various
temperatures. In (a), the curve at T = 10−5 is scaled by a
factor of 0.5.

In contrast to fig. 2(a), the temperature dependence of the
peak features more usual behavior in the sense that the
peak is broad at high T and smoothly grows to be a pro-
nounced peak at low temperature. In spite of this clear
peak structure, χd(q, 0) does not diverge at q2. That is,
there is no indication that the d-wave bond order becomes
long range along the (0, 0)-(π, 0) direction.

The static susceptibility χd(q, 0) is a useful quantity
to study the stability of a system, i.e., an ordering phe-
nomenon. This quantity is, however, not measured di-
rectly by RXS. Rather, RXS measures the equal-time
correlation function S(q), which is defined by

S(q) =
1
π

∫ ∞

−∞
dω Imχd(q, ω) [nB(ω) + 1] , (7)

where nB is the Bose factor. In fig. 3(a) we show an in-
tensity map of S(q) along the (0, 0)-(π, π) direction in a
temperature range 0 < T ≤ 0.1. Although the spectral
weight tends to accumulate around q = q1 with decreasing
T , the temperature dependence is weak and the spectral
weight still spreads down to zero temperature in spite of
the proximity of the corresponding charge instability. To
show the temperature dependence of S(q) more clearly,
we plot a spectrum ΔS(q; T ) = S(q; T ) − S(q; T = 0.1)
in fig. 3(b). Its temperature dependence is very similar to
that of the static susceptibility shown in fig. 2(a) except at
T = 10−5. In fig. 3(c) and (d), we present the correspond-
ing results along the (0, 0)-(π, 0) direction. Although the
CO tendency is stronger at q = q1 than at q = q2 (see
fig. 2), the peak structure at q = q2 is much clearer, being
sharp and pronounced with decreasing T , as demonstrated
in fig. 3(d).

The energy-resolved spectral weight Imχd(q, ω) is
shown in fig. 4 at low temperature in the plane of q and
ω. A V-shape dispersion develops from q = (0, 0). This
dispersion originates from individual particle-hole excita-
tions and extends up to high energy. However, the spec-
trum bends back and softens toward close-to-zero energy
at q = q1 and q2, where both static susceptibility (fig. 2)
and equal-time correlation function (fig. 3) exhibit a peak.
These dispersions near q1 and q2 are interpreted as coming
from collective charge excitations. This collective feature
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Fig. 3: (Color online) (a) Intensity map of S(q) along the
(0, 0)-(π, π) direction for 0 < T ≤ 0.1. (b) Evolution of the
spectral weight ΔS(q; T ) = S(q; T )−S(q; T = 0.1) for various
temperatures. Consequently ΔS(q; T ) = 0 at T = 0.1. (c) and
(d): results corresponding to (a) and (b), respectively, along
the (0, 0)-(π, 0) direction.

Fig. 4: (Color online) Energy-resolved spectral weight
Imχd(q, ω) in the plane of q and ω along the symmetry axes
at low temperature. The spectral weight is scaled by a factor
of 2 along the (0, 0)-(π, 0) direction to get a better contrast to
that along the (π, π)-(0, 0) direction.

is particularly clear near q = q1 due to the proximity to
the corresponding charge instability. A gap-like feature of
charge excitations is visible between q1 and q = (0, 0), and
also between q = (0, 0) and q2, and forms a maximal gap
of about 0.1 at q ≈ 1

2q1 and 1
2q2. This gap-like feature

is more pronounced along the (0, 0)-(π, π) direction be-
cause the d-wave character of the bond-charge density sup-
presses its low-energy scattering processes substantially.

Discussions. – Now we discuss implications for the
experiments by RXS [20] and RIXS [18,19].

In fig. 3(c) and (d), the charge peak at q = q2 becomes
sharper with decreasing temperature in the equal-time
correlation function, but the real part of the susceptibility
remains finite at the corresponding wave vector (fig. 2(b)).
We therefore conclude that the CO at q = q2 remains a
short range, which is consistent with the RXS measure-
ments [20]. In particular, a short-range feature of the

observed CO can be interpreted as an intrinsic property,
i.e., it does not come from some disorders frequently
present in actual materials.

On the other hand, the present theory predicts that
the CO tendency at q = q1 is much stronger than at
q = q2. This is because a long-range order with modula-
tion vector q ≈ q1 occurs at T = 0 at the critical doping
δc ≈ 0.13 [21]. This peak at q1 is, however, peculiar in
the sense that it is much broader than at q = q2 and be-
comes sharper only in the vicinity of the charge instability.
Since q1 is rather close to (π, π), it is not straightforward
to test it in experiment. In fact, it is difficult to perform
RXS and RIXS up to near (π, π). Hence a usual x-ray
diffraction measurement can be more fruitful by explor-
ing lattice modulations generated by the underlaying CO.
Given that the CO instability at q ≈ q1 is expected below
δ � δc [21], it might seem easier to measure a sample with
lower carrier density than 0.15. However, antiferromag-
netism tends to be stabilized at lower carrier density and
could mask the CO instability.

The peak positions at q1 and q2 found in χd(q, 0) (fig. 2)
and S(q) (fig. 3) are determined mainly by two factors:
the so-called 2kF scattering processes [31] and the d-wave
character of the bond order. The corresponding scattering
processes are depicted in fig. 1(c). In particular, the peak
at q2 becomes pronounced substantially by the d-wave
form factor. Hence we expect that the observed CO at
q = q2 [20] has a d-wave character, which may be tested
by RXS in the future [32].

As shown in fig. 4, charge excitations feature a V-shaped
spectrum around q = (0, 0), which agrees qualitatively
with the experimental observations [18,19]. The spectra
near q = (0, 0) come mainly from individual particle-hole
excitations, in favor of the experimental interpretation by
Ishii et al. [19]. A quantitative comparison with the exper-
iment requires additional care. The V-shaped dispersion
reported in [19] extends to 1.5 eV at q = (0.6π, 0) and
(0.6π, 0.6π). Using t/2 = 500 meV (see footnote 2), which
is the estimated value for cuprates [33], our obtained dis-
persion (fig. 4) extends up to ω ≈ 500 meV at the same
momenta. This energy scale is about a factor of three
lower than the experimental observation. Our small en-
ergy scale originates mainly from a relatively small band
width due to the renormalization of the bare t to an ef-
fective hopping teff = tδ, as seen in eq. (2). On the other
hand, a large band width develops immediately after dop-
ing the Mott insulator phase, which cannot be captured
quantitatively in terms of teff. In this sense, a quantita-
tive comparison of energy scale of charge excitations is
connected with a fundamental issue of doped Mott insu-
lators and remains to be studied. Furthermore in present
study we focus on charge excitations of d-wave bond order
because it gives the most relevant contributions to charge
excitations at low energy. For a full comparison with RIXS

2A factor of 1/2 here comes from a large-N formalism, where
t is scaled by 1/N . We may then invoke N = 2 when making a
comparison with experiment.
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data, however, charge excitations from other types of bond
orders [21] as well as the usual charge density should be
considered since RIXS may contain spectra of those exci-
tations especially in a high energy region. At low energy,
contributions from the d-wave bond order should become
dominant and thus it is interesting to test a softening of
charge excitation spectrum at q1 and q2 (see fig. 4) by
RIXS and to clarify the actual energy scale there.

The square lattice in the present model describes the Cu
sites in the CuO2 plane of cuprate superconductors and
the center of the nearest-neighbor sites corresponds to the
oxygen site. Therefore our bond order may be interpreted
as a charge modulation at the oxygen sites [32].

It is natural to consider whether the present theory can
be applied also to hole-doped cuprates by taking appropri-
ate parameters. Comprehensive calculations in the hole-
doped case [17], however, did not capture a CO tendency
compatible to the experimental observation [2–12]. Such
calculations were performed in the paramagnetic state
whereas in reality the CO is observed as an instability
in the pseudogap state. Hence we consider that the ef-
fect of the pseudogap is crucial to understand the ori-
gin of the CO in hole-doped cuprates. In electron-doped
cuprates, on the other hand, the CO tendency is observed
in the paramagnetic state3. This may be a reason why the
present theory works for that case.

While we have assumed the paramagnetic state, one
may wonder whether the present theoretical framework
actually predicts the strong asymmetry of the pseudo-
gap between electron-doped cuprates (t′ > 0) and hole-
doped cuprates (t′ < 0) simply by taking a different sign
of t′. The origin of the pseudogap remains controver-
sial even in hole-doped cuprates [35,36]. If one assumes
that the pseudogap is driven by a strong charge-order ten-
dency as hinted in some experiments [37–40], a theoretical
study [21] using the present large-N scheme indeed sug-
gests that pseudogap features should appear much weaker
in electron-doped cuprates than hole-doped cuprates in
the sense that a charge-order tendency becomes much
weaker in the former especially in a moderate doping re-
gion relevant to the pseudogap (see fig. 6 in [21]).

Summary. – Motivated by the recent measurements
by RXS and RIXS in electron-doped cuprates, we
have studied charge excitation spectra associated with
a d-wave bond order in the two-dimensional t-J model
on a square lattice. We find that the static d-wave
bond-order susceptibility χd(q, 0) has two peaks at q1 =
(0.84π, 0.84π) and q2 = (0.49π, 0), which are generated
by the 2kF scattering processes enhanced by the d-wave
character of bond-charge density. In spite of the proxim-
ity to the d-wave CO instability at q ≈ q1, the peak at

3Although a pseudogap was reported in the optical conductiv-
ity spectra in the non-superconducting crystals [34], the pseudogap
corresponding to the observed one in hole-doped cuprates, namely
a gap-like feature above the superconducting phase, is missing or at
least very weak.

q1 is very broad and becomes sharp only in the vicinity
of its instability. On the other hand, the peak at q2 be-
comes sharper with decreasing temperature but does not
diverge, indicating that the CO with momentum q2 is
short ranged. These features are seen also in the equal-
time correlation function S(q). The spectral function of
the d-wave bond order (Imχd(q, ω)) forms a V-shape dis-
persion near q = (0, 0). This dispersion comes mainly
from particle-hole excitations. The spectra bend back and
reach close-to-zero energy at q = q1 and q2 where both
the static d-wave susceptibility and the equal-time corre-
lation function show a peak. The resulting spectra have
charge gap-like features with a maximal gap at q ≈ 1

2q1
and 1

2q2. We argue that the CO observed in RXS is in-
terpreted as a short-range order, which may not develop
to become long range. It is interesting to explore gap-like
features of the energy-resolved spectra and a possible CO
near q ≈ q1 by RIXS and usual x-ray diffraction measure-
ments, respectively, for electron-doped cuprates.
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M. K., Dorow C. J., Yu G., Zhao X., Keimer B.

and Greven M., Nat. Commun., 5 (2014) 5875.
[13] Meier H., Pepin C., Einenkel M. and Efetov K.,

Phys. Rev. B, 89 (2014) 195115.
[14] Sachdev S. and Placa R., Phys. Rev. Lett., 111 (2013)

027202.
[15] Wang Y. and Chubukov A., Phys. Rev. B, 90 (2014)

035149.
[16] Atkinson W., Kampf A. and Bulut S., New J. Phys.,

17 (2015) 013025.
[17] Bejas M., Greco A. and Yamase H., Phys. Rev. B, 86

(2012) 224509.
[18] Lee W. S., Lee J. J., Nowadnick E. A., Gerber S.,

Tabis W., Huang S. W., Strocov V. N., Motoyama

E. M., Yu G., Moritz B., Huang H. Y., Wang R. P.,

Huang Y. B., Wu W. B., Chen C. T., Huang D. J.,

Greven M., Schmitt T., Shen Z. X. and Devereaux

T. P., Nat. Phys., 10 (2014) 883.
[19] Ishii K., Fujita M., Sasaki T., Minola M., Dellea

G., Mazzoli C., Kummer K., Ghiringhelli G.,

Braicovich L., Tohyama T., Tsutsumi K., Sato K.,

Kajimoto R., Ikeuchi K., Yamada K., Yoshida M.,

Kurooka M. and Mizuki J., Nat. Commun., 5 (2014)
3714.

[20] da Silva Neto E. H., Comin R., He F., Sutarto

R., Jiang Y., Greene R. L., Sawatzky G. A. and
Damascelli A., Science, 347 (2015) 282.

[21] Bejas M., Greco A. and Yamase H., New J. Phys., 16
(2014) 123002.

[22] Gooding R. J., Vos K. J. E. and Leung P. W., Phys.
Rev. B, 50 (1994) 12866.

[23] Martins G. B., Xavier J. C., Arrachea L. and
Dagotto E., Phys. Rev. B, 64 (2001) R1805.

[24] Macridin A., Jarrell M. and Maier T., Phys. Rev. B,
74 (2006) 085104.

[25] Feiner L., Jefferson J. and Raimondi R., Phys. Rev.
B, 53 (1996) 8751.

[26] Foussats A. and Greco A., Phys. Rev. B, 70 (2004)
205123.

[27] Yamase H. and Kohno H., J. Phys. Soc. Jpn., 69 (2000)
332.

[28] Yamase H. and Kohno H., J. Phys. Soc. Jpn., 69 (2000)
2151.

[29] Halboth C. J. and Metzner W., Phys. Rev. Lett., 85
(2000) 5162.

[30] Yamase H., Phys. Rev. Lett., 93 (2004) 266404.
[31] Holder T. and Metzner W., Phys. Rev. B, 85 (2012)

165130.
[32] Comin R., Sutarto R., He F., da Silva Neto E. H.,

Chauviere L., Frano A., Liang R., Hardy W. N.,

Bonn D. A., Yoshida Y., Eisaki H., Achkar A. J.,

Hawthorn D. G., Keimer B., Sawatzky G. A. and
Damascelli A., Nat. Mater., 14 (2015) 796.

[33] Hybertsen M. S., Stechel E. B., Schluter M. and
Jennison D. R., Phys. Rev. B, 41 (1990) 11068.

[34] Onose Y., Taguchi Y., Ishizaka K. and Tokura Y.,
Phys. Rev. Lett., 87 (2001) 217001.

[35] Mishra V., Chatterjee U., Campuzano J. C. and
Norman M. R., Nat. Phys., 10 (2014) 357.

[36] Hashimoto M., Vishik I. M., He R.-H., Devereaux

T. P. and Shen Z.-X., Nat. Phys., 10 (2014) 483.
[37] Tanaka K., Lee W. S., Lu D. H., Fujimori A.,

Fujii T., Risdiana, Terasaki I., Scalapino D. J.,

Devereaux T. P., Hussain Z. and Shen Z.-X., Science,
314 (2006) 1910.

[38] Vishik I. M., Lee W. S., He R.-H., Hashimoto M.,

Hussain Z., Devereaux T. P. and Shen Z.-X., New J.
Phys., 12 (2010) 105008.

[39] Kondo T., Hamaya Y., Palczewski A. D., Takeuchi

T., Wen J. S., Xu Z. J., Gu G., Schmalian J. and
Kaminski A., Nat. Phys., 7 (2011) 21.

[40] Yoshida T., Hashimoto M., Vishik I. M., Shen Z.-X.

and Fujimori A., J. Phys. Soc. Jpn., 81 (2012) 011006.

57005-p6


