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h i g h l i g h t s

• Symmetric quadratic operators are useful models for many physical applications.
• Any such operator exhibits a pseudo-Hermitian matrix representation.
• Its eigenvalues are the natural frequencies of the Hamiltonian operator.
• The eigenvalues may be real or complex and describe a phase transition.
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a b s t r a c t

We prove that any symmetric Hamiltonian that is a quadratic
function of the coordinates and momenta has a pseudo-Hermitian
adjoint or regularmatrix representation. The eigenvalues of the lat-
ter matrix are the natural frequencies of the Hamiltonian operator.
When all the eigenvalues of the matrix are real, then the spectrum
of the symmetric Hamiltonian is real and the operator is Hermitian.
As illustrative exampleswe choose the quadraticHamiltonians that
model a pair of coupled resonators with balanced gain and loss, the
electromagnetic self-force on an oscillating charged particle and an
active LRC circuit.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In two recent papers Bender et al. [1] and Bender and Gianfreda[2] discussed two interesting
physical problems: a pair of optical resonators with balanced gain and loss and the electromagnetic
self-force on an oscillating charged particle, respectively. In both cases the authors resorted to
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Hamiltonians that are quadratic functions of the coordinates and momenta to describe the dynamics.
They found that those quadratic Hamiltonians exhibit PT symmetry so that the quantum-mechanical
counterparts show real spectra when PT symmetry is exact.

In the first case Bender et al. solved the Schrödinger equation in coordinate representation bywrit-
ing each eigenfunction as the product of a Gaussian function times a polynomial function of the two
coordinates and obtained suitable recurrence relations for the polynomials. In the second case Bender
and Gianfreda [2] resorted to the approach proposed by Rossignoli and Kowalski [3] that consists in
converting the quadratic Hamiltonian into a diagonal form by means of a canonical transformation of
the creation and annihilation operators.

In two recent papers Fernández [4,5] proposed the application of a simple and straightforward
algebraic method based on the construction of the adjoint or regular matrix representation of the
Hamiltonian operator in a suitable basis set of operators [6,7]. The eigenvalues of such matrix rep-
resentation are the natural frequencies of the Hamiltonian operator. Instead of invoking the PT sym-
metry of the problem the algebraic method takes advantage of the fact that those Hamiltonians are
symmetric.

There are many other problems that can be modelled by quadratic Hamiltonians. For example,
Schindler et al. [8] studied mutually coupled modes of a pair of active LRC circuits, one with ampli-
fication and another with an equivalent amount of attenuation, and found a remarkable agreement
between theoretical results and experimental data. They argued that the gain and loss mechanism
breaksHermiticitywhile preserving PT symmetry. In a discussion of the bandwidth theoremRamezani
et al. [9] resorted to the same system of differential equations derived from Kirchhoff´s laws.

The purpose of this paper is to apply the algebraic method to a general quadratic Hamiltonian in
order to derive some general conclusion about its spectral properties. In Section 2we outline themain
ideas of the algebraic method. In Section 3 we apply the approach to a general quadratic Hamiltonian,
derive the main result of this paper and illustrate the general results by means of two toy models.
In Sections 4 and 5 we discuss the pair of resonators and the electromagnetic self-force mentioned
above. In Section 6 we apply the algebraic method to the Hamiltonian associated to the differential
equations for the active LRC circuit. Finally, in Section 7 we summarize the main results of the paper
and draw conclusions.

2. The algebraic method

We begin the discussion of this section with some well known definitions that will facilitate the
presentation of the algebraic method. Given a linear operator A its adjoint AĎ satisfies

⟨f | AĎ |f ⟩ = ⟨f | A |f ⟩∗ , (1)
for any vector |f ⟩ in the Hilbert space where it is defined. If AĎ = A we say that the operator A is
symmetric. If |ψ⟩ is an eigenvector of the symmetric operator H with eigenvalue E

H |ψ⟩ = E |ψ⟩ , (2)
then ⟨f |H |f ⟩ = ⟨f |H |f ⟩∗ leads to (E − E∗) ⟨ψ | ψ⟩ = 0. Therefore, if 0 < ⟨ψ | ψ⟩ < ∞ then E is real.

The algebraic method enables us to solve the eigenvalue equation for a symmetric operator H
when there exists a set of symmetric operators SN = {O1,O2, . . . ,ON} that satisfy the commutation
relations

[H,Oi] =

N
j=1

HjiOj. (3)

Without loss of generality we assume that the operators in SN are linearly independent; that is to say,
the only solution to

N
j=1

djOj = 0, (4)

is di = 0, i = 1, 2, . . . ,N . It follows from Eq. (3) and [H,Oi]
Ď

= −[H,Oi] that

H∗

ij = −Hij; (5)
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that is to say:

HĎ
= −Ht . (6)

Because of Eq. (3) it is possible to find an operator of the form

Z =

N
i=1

ciOi, (7)

such that

[H, Z] = λZ . (8)

The operator Z is important for our purposes because

HZ |ψ⟩ = ZH |ψ⟩ + λZ |ψ⟩ = (E + λ)Z |ψ⟩ , (9)

that is to say, Z |ψ⟩ is eigenvector of H with eigenvalue E + λ. Obviously, if |ψ⟩ and Z |ψ⟩ are
normalizable, then both E and λ are real as argued above.

It follows from Eqs. (3), (7) and (8) that the coefficients ci are solutions to the homogeneous linear
system of equations

(H − λI)C = 0, (10)

whereH is an N ×N matrix with elements Hij, I is the N ×N identity matrix, and C is an N ×1 column
matrix with elements ci. H is called the adjoint or regular matrix representation of the symmetric
operator H in the operator basis set SN [6,7]. Eq. (10) admits nontrivial solution if λ is a root of the
secular determinant

det(H − λI) = 0. (11)

IfH is Hermitian, then all its eigenvalues are real and, consequently, all the roots λi, i = 1, 2, . . . ,N , of
the characteristic polynomial (11) are real. These roots are obviously related to the natural frequencies
of the quantum-mechanical system with Hamiltonian H . However, since the regular matrix
representation of H is not normal: HHĎ

≠ HĎHwe cannot assure that it is always diagonalizable.
If λ is real then it follows from Eq. (8) and [H, Z]

Ď
= −[H, ZĎ

] that

[H, ZĎ
] = −λZĎ, (12)

where ZĎ, the adjoint of Z , is a linear combination like (7) with coefficients c∗

i . This equation tells us
that if λ is a real root of the characteristic polynomial (11) then −λ is also a root. In the language of
quantummechanics we often say that Z and ZĎ are a pair of annihilation–creation or ladder operators
because, in addition to (9), we also have

HZĎ
|ψ⟩ = (E − λ)ZĎ

|ψ⟩ . (13)

If N is odd then there is an operator Z0 with eigenvalue λ0 = 0 that commutes with H . If H is
the Hamiltonian operator of a quantum-mechanical system then Z0 is a constant of the motion. For
concreteness, in what follows we assume that N = 2K and |λi| > 0 for all i = 1, 2, . . . , K . More
precisely, we arrange the eigenvalues of H as follows:

− λK < −λK−1 < · · · < −λ1 < 0 < λ1 < · · · < λK , (14)

so that−λi andλi are the eigenvalues ofH associated to Zi and ZĎ
i , respectively. Under these conditions

any operator of the form

L =

K
i=1

liZ
Ď
i Zi, (15)

commutes with H .
If at least one of the roots of the characteristic polynomial (11) is complex then we are sure that

the spectrum of H is not real and that not all of its eigenvectors are normalizable.
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Of particular interest for the present paper is the case where the basis operators satisfy

[Oi,Oj] = Uij1̂, (16)

where 1̂ is the identity operator that we omit from now on. It follows from [Oj,Oi] = −[Oi,Oj] and
[Oi,Oj]

Ď
= −[Oi,Oj] that

Uij = −U∗

ij = −Uji; (17)
that is to say:

UĎ
= −Ut

= U, (18)
whereU is the N ×N matrix with elements Uij. Under these conditions the well known Jacobi identity

[Ok, [H,Oi]] + [Oi, [Ok,H]] + [H, [Oi,Ok]] = 0, (19)
reduces to

[Ok, [H,Oi]] = [Oi, [H,Ok]]. (20)
Therefore, Eqs. (3), (16), (18), (20) and (6) lead to

HĎU = UH. (21)
Note that H and HĎ share eigenvalues:

HĎUC = UHC = λUC. (22)
The matrix U is invertible because the operators in the set SN are linearly independent. In fact, the

commutator between Ok and the linear combination (4) yields
N
j=1

Ukjdj = 0, k = 1, 2, . . . ,N, (23)

so that the solution dj = 0 for all j is unique if and only if |U| ≠ 0. Consequently, the regular
matrix representation of a symmetric operator H in a basis set of symmetric operators that satisfy
the commutation relations (16) is pseudo-Hermitian [10–12]:

HĎ
= UHU−1. (24)

3. Quadratic Hamiltonians

The two quadratic Hamiltonians mentioned in the introduction [1,2] are particular cases of the
general quadratic Hamiltonian

H =

2K
i=1

2K
j=1

γijOiOj, (25)

where {O1,O2, . . . ,O2K } = {x1, x2, . . . , xK , p1, p2, . . . , pk}, [xm, pn] = iδmn, and [xm, xn] = [pm, pn] =

0. If γĎ
= γ , where γ is the matrix with elements γmn, then this quadratic Hamiltonian is symmetric.

In this case the matrix U has the form

U = i

0 I
−I 0


(26)

where 0 and I are the K × K zero and identity matrices, respectively, so that UĎ
= U−1

= U.
We have thus arrived at the main result of the paper:

Theorem. The regular or adjoint matrix representation H of a symmetric quadratic Hamiltonian
like (25) is pseudo-Hermitian

HĎ
= UHU−1, (27)

where U is given by Eq. (26).
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The matrices H, γ and U are connected by

H = (γ + γ t)U. (28)

If Ci and Cj are two eigenvectors ofHwith eigenvalues λi and λj, respectively, then it is not difficult
to prove that

λj − λ∗

i


CĎi UCj = 0, (29)

which is just thematrix version of the result proved some time ago byMostafazadeh [10]. In particular,
when i = j we conclude that λi = λ∗

i if CĎi UCi ≠ 0 and that CĎi UCi = 0 if λi is a complex number.
It is clear that the eigenvalues of H may be real or complex [10]. The occurrence of one or another
will depend on the matrix elements that are given in terms of the parameters of the Hamiltonian
operator. Therefore, all the symmetric quadratic Hamiltonians are bound to exhibit some regions in
model-parameter space where the spectrum is real and other regions where it is complex. This result
is independent of the existence of PT symmetry (or any other kind of antiunitary symmetry) in the
problem. At the phase transition from real to complex eigenvalues at least one eigenvector of H is no
longer normalizable, CĎi UCi = 0 and H ceases to be diagonalizable. A phase transition may also be
interpreted as a broken Hermiticity.

In this paper we do not try to solve the eigenvalue equation completely by means of the algebraic
method and simply obtain the eigenvalues of the adjoint matrix to determine whether the spectrum
is real or not.

3.1. Simple examples

In this subsection we discuss two toy problems. The first one is given by the symmetric quadratic
Hamiltonian

H = p2 + αx2 +
β

2
(xp + px) , (30)

where α and β are positive real numbers. In this case the adjoint matrix representation reads

H = i


−β 2α
−2 β


, (31)

and its eigenvalues are −λ1 and λ1, where

λ1 =


4α − β2. (32)

It is clear that the spectrum of the symmetric operator (30) is real when 4α − β2 > 0.

The ground-state eigenfunction is ψ0(x) = De−ax2 , where a =

√
4α−β2

4 + i β4 , with eigenvalue

E0 =

√
4α−β2

2 . This eigenfunction is square integrable when 4α − β2 > 0. We clearly see the
connection between the eigenvalues of H and the spectrum of H .

The results just obtained are not surprising because

H = exp

−i
β

4
x2


H0 exp


i
β

4
x2


,

H0 = p2 +


α −

β2

4


x2. (33)

The second example

H = p2x + p2y + x2 + y2 + βxy, (34)
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is similar to the one chosen by Bender et al. [13] to illustrate a PT phase transition in a simple
mechanical system. In this case the adjoint matrix representation reads

H = i

0 0 2 β
0 0 β 2
−2 0 0 0
0 −2 0 0

 . (35)

The characteristic polynomial has four roots −
√
ξ2 < −

√
ξ1 <

√
ξ1 <

√
ξ2, where

ξ1 = 2(2 − β), ξ2 = 2(2 + β). (36)

Therefore, the spectrum of the symmetric Hamiltonian (34) is real when −2 < β < 2.
In this case the ground state is ψ0(x, y) = De−a(x2+y2)−bxy, where

a =


2 −


4 − β2


4 − β2 + 2


4β

, b =


2 −


4 − β2

2
, (37)

and the corresponding eigenvalue is E0 = 4a. We appreciate that ψ0(x, y) is square integrable only if
−2 < β < 2 as predicted by the algebraic method.

4. Coupled resonators with balanced gain and loss

From the classical equations of motion for the case of equal gain and loss between the two
resonators Bender et al. [1] derived the following quadratic Hamiltonian

H = pxpy + γ (ypy − xpx)+

ω2

− γ 2 xy +
ϵ

2


x2 + y2


, (38)

whereω is the natural frequency of the oscillators, γ is related to the friction force and ϵ is a coupling
strength. One can easily verify that this operator is symmetric.

The set of operators {O1,O2,O3,O4} = {x, y, px, py} leads to the matrix representation [4]

H = i

 γ 0 ϵ ω2
− γ 2

0 −γ ω2
− γ 2 ϵ

0 −1 −γ 0
−1 0 0 γ

 , (39)

with characteristic polynomial

ξ 2 + 2ξ

2γ 2

− ω2
− ϵ2 + ω4

= 0, (40)

where ξ = λ2. A necessary condition for the spectrum of the symmetric quadratic Hamiltonian (38)
to be real is that the two roots of the polynomial (40) are real and positive. A more detailed discussion
of this spectrum is given elsewhere [1,4].

5. Electromagnetic self-force

From the pair of classical equations of motion proposed by Englert [14], Bender and Gianfreda [2]
derived the Hamiltonian function

Hc =
pxpw − pypz

mτ
+

2pzpw
mτ 2

+
wpy + zpx

2
−

mzw
2

+ kxy. (41)

In this expression k is the restoring force of the oscillator, m the mass of the particle and τ is related
to the classical radius of the charged particle. The quantum-mechanical version of this operator is
PT-symmetric but its eigenvalues are not real because the PT symmetry is broken for all m, τ , k.
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In order to illustrate how PT symmetry is broken the authors added two coupling terms and obtained
the modified Hamiltonian operator

H =
B (wpz − zpw)

mτ
+

2pzpw
mτ 2

+
pxpw − pypz

mτ
−

mzw
2

+
wpy + zpx

2
+ kxy

+
A


x2 + y2


2

, (42)

where every term is obviously symmetric. Following a recent communication [5] we choose the
basis set of operators {O1,O2, . . . ,O8} =


x, y, z, w, px, py, pz, pw


and obtain the adjoint matrix

representation

H = i



0 0 0 0 A k 0 0
0 0 0 0 k A 0 0

−
1
2

0 0
B
mτ

0 0 0 −
m
2

0 −
1
2

−
B
mτ

0 0 0 −
m
2

0

0 0 0 −
1
mτ

0 0
1
2

0

0 0
1
mτ

0 0 0 0
1
2

0
1
mτ

0 −
2

mτ 2
0 0 0

B
mτ

−
1
mτ

0 −
2

mτ 2
0 0 0 −

B
mτ

0



. (43)

The characteristic polynomial can be factorized as
m2τ 2ξ − B2

+ m2 
m2τ 2ξ 3 + ξ 2


m2

− B2
+ ξ (2AB − 2km)− A2

+ k2


= 0, (44)

where ξ = λ2. Obviously, one of the roots is

ξ =
B2

− m2

m2τ 2
, (45)

and the remaining three ones are solutions to the cubic equation

m2τ 2ξ 3 +

m2

− B2 ξ 2 + 2 (AB − km) ξ − A2
+ k2 = 0. (46)

It is clear that the spectrum of the Hamiltonian (42) will not be real unless the rhs of Eq. (45) as well
as the three roots of Eq. (46) are positive numbers.

6. Active LRC circuits

From the first and second Kirchhoff’s laws Schindler et al. [8] derived the following system of
differential equations for the charges Q c

1 and Q c
2 in an LRC circuit

d2Q c
1

dτ 2
= −

1
1 − µ2

Q c
1 +

µ

1 − µ2
Q c
2 + γ

dQ c
1

dτ
,

d2Q c
2

dτ 2
=

µ

1 − µ2
Q c
1 −

1
1 − µ2

Q c
2 − γ

dQ c
2

dτ
, (47)

where τ is a dimensionless time and µ and γ are related to circuit features such as resistance,
inductance and capacitance. This systemof differential equations can be derived from theHamiltonian
function

H = pxpy +
γ

2
(xpx − ypy)+


1

1 − µ2
−
γ 2

4


xy −

µ

2

1 − µ2

 
x2 + y2


, (48)
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where x = Q c
1 , y = Q c

2 , and px, py their conjugate momenta. The corresponding quantum-mechanical
Hamiltonian operator is similar to the one in Eq. (38) and, therefore, symmetric. The resulting adjoint
matrix

H = i



−
γ

2
0

µ

µ2 − 1
γ 2


µ2

− 1

+ 4

4

1 − µ2


0

γ

2
γ 2


µ2

− 1

+ 4

4

1 − µ2

 µ

µ2 − 1

0 −1
γ

2
0

−1 0 0 −
γ

2


, (49)

is pseudo-Hermitian as argued in Section 3. The characteristic polynomial is

ξ 2

µ2

− 1

+ ξ


γ 2 

µ2
− 1


+ 2


− 1 = 0, (50)

where ξ = λ2. Its two roots

ξ1 =


γ 4


µ2 − 1

2
+ 4γ 2


µ2 − 1


+ 4µ2 + γ 2


1 − µ2


− 2

2

µ2 − 1

 ,

ξ2 =


γ 4


µ2 − 1

2
+ 4γ 2


µ2 − 1


+ 4µ2 + γ 2


µ2

− 1

+ 2

2

1 − µ2

 , (51)

are the squares of the eigenfrequencies obtained by Schindler et al. [8] from Eq. (47).
The fact that the classical and quantal versions of the system have the same frequencies is due to

the fact that [Qj,Qk] = i{Qj,Qk}, where {. . . , . . .} is the classical Poisson bracket [15].

7. Conclusions

The main result of this paper is that the frequencies of any symmetric quadratic Hamiltonian like
(25) are the eigenvalues of a nonnormal but pseudo-Hermitianmatrix. Consequently, the eigenvalues
of any Hamiltonian belonging to such family may be real or complex independently of the existence
of a PT symmetry in the Hamiltonian.

The occurrence of real or complex eigenvalues depends on the matrix elements of the adjoint or
regular matrix representation of the Hamiltonian that are functions of the Hamiltonian parameters.
If the eigenvalues of the symmetric Hamiltonian are real its eigenvectors are normalizable and the
operator is Hermitian. On the other hand, complex eigenvalues reveal that the norm of some eigen-
vectors are either zero or infinity. Looking for exact or broken PT symmetry is equivalent to finding
whether the Hamiltonian is Hermitian or not.

Real and complex eigenvalues of the symmetric quadratic Hamiltonian correspond to real or com-
plex eigenvalues of the adjointmatrix representation. Since the analysis of amatrix of finite dimension
does not offer any difficulty we think that the algebraic methodmay be a suitable tool for the analysis
of physical problems that can be modelled by symmetric quadratic Hamiltonians.

Note added in proof

We would like to mention another interesting application of a quadratic Hamiltonian given by
two harmonic oscillators coupled by their angular momentum. It proved useful for the study of the
dynamics of entanglement between two harmonic modes in stable and unstable regimes and also
belongs to the class of quadratic operators discussed in this paper [16].
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