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The calibration of a general model for composite materials and its application to the case of
fiber reinforced composite laminates are presented in this paper. The constitutive equation
for the composite results from the combination of the constitutive equations of the laminae
that, in turn, are obtained from the combination of fibers and matrix. The behavior of each

Iézmoggisés component is simulated by a general elastoplastic anisotropic model. The combination
Laminates rules obey to the microstructure of the composite. In order to calibrate the general model,
Fibers the behavior of composites formed by laminae reinforced with unidirectional fibers is stud-
Plasticity ied. Three-dimensional finite element models are used to study the distribution of stresses
Anisotropy and strains inside the composite. These finite element models are useful to verify the

Finite elements hypotheses of the proposed composites theory, in a relatively simple way. Comparisons
between elastic properties of laminae obtained with the finite elements model, with
Mori-Tanaka method, with the model for composite studied and experimental results
are included in the paper. Elastic properties of laminates with different stacking sequences
and fibers orientations are also obtained. Additionally, application examples showing the
non-linear response of laminae and laminates obtained with the calibrated model and
comparisons with experimental results are presented. The results show that the calibrated
model describes the behavior up to failure of composite laminates. The failure mode of
the composite produced by the failure of one or more of its components can be identified.
The calibrated model is also able to reproduce complex failure modes that change from the
matrix to the fibers depending on the type of stress state.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, conventional materials are continuously
being replaced by a variety of composite materials. This
fact has caused an increasing interest on the modeling of
composites. Several approaches have been developed but
there is still a strong need of predicting models that can
be used for stiffness and strength assessment of this type
of materials in practical situations (Wang and Yan, 2005).

Constitutive models for fiber reinforced composite lam-
inates can be classified according to the scale in which they
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are defined (Chaboche et al., 1998). In macro-models the
composite material is represented as a unique material
with average properties. This type of approach is generally
not able to describe the overall inelastic behavior and fail-
ure behavior of laminates.

In meso-models the composite is assumed to be formed
by unidirectional laminae for which macroscopic equa-
tions are derived. The constitutive properties of individ-
ual laminae are obtained from experimental tests
(Huang, 2001). Many meso-models including several
non-linear phenomena like fiber microbuckling (Basu et
al,, 2007), plasticity with different non-linear response in
tension and compression (Yokozeki et al., 2007), damage
due to matrix dominated failure modes (Schuecker and
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Pettermann, 2006) damage due to intralaminar failure
mechanisms (Maimi et al., 2007a,b), fiber failure and inter
fibre failure (Knops and Boégle, 2006) have been recently
proposed.

In contrast to meso-models, micro-models use the con-
stitutive equations of the elemental constituents: matrix,
fibers, interfaces, etc. This approach has the advantage of
allowing the identification of the failure mode but requires
accurate experimental data for the individual components,
which are not generally available.

Many micro-models have been proposed recently to
model different phenomena taking place at the micro-le-
vel. Narayana Naik et al. (2005) presented a new failure
theory for laminated based on micro-mechanical analysis
of composites, wherein a representative volume consists
of a fiber surrounded by matrix in appropriate volume
fraction. Bonora and Ruggiero (2006a,b) modeled the ma-
trix-reinforcement assembly process including mechani-
cal interfaces in addition to fiber failure, ductile damage
for the matrix progressive failure and fiber-matrix deb-
onding. Lee and Kim (2007) implemented a micro-
mechanical constitutive model developed by Liang et al.
(2006), based on the concept of the ensemble-volume
average for laminated composites, to numerically charac-
terize the compressive response and damage evolution in
laminated composites.

Most of the theories developed at the micro-level are
generally too complicated or, when they are simple, they
are only able to reproduce a few aspects of the behavior
in fiber directions or they are only valid for compos-
ites in which stiffness and strength of the fibers are sig-
nificantly greater than those of the matrix (Huang,
2001).

An alternative approach is the use of multi-scale models
(Oller et al., 2005; Zhu et al., 2006). Tay-Earn et al. (2006)
presented a new micro-macro approach to model damage
and fracture of composites.

Recently Hinton and Soden, organized a ‘failure exer-
cise’ to compare the predictive capabilities of a number
of the most important strength theories for laminated
composites in current usage (Hinton and Soden, 1998;
Soden et al., 1998a, 2002; Hinton et al., 2002, 2004a).
The results of that exercise (Soden et al., 1998b,
2004; Kaddour et al.,, 2004; Hinton et al., 2004b) were
used for the assessment of the accuracy of current the-
oretical methods of failure prediction in composite
laminates.

A numerical model for general composite materials
(Luccioni, 2006), appropriate for the mechanical analysis
of fiber reinforced composite laminates, is calibrated in
this paper. The model is developed under the assumption
of small strains and is based on an analysis at component
materials level. At a first stage, the behavior of an individ-
ual lamina is obtained from the mechanical properties of
matrix and fibers, their volume ratio and their orientation.
Then, the behavior of the laminate can be reproduced
composing laminae with different fiber orientations. The
final equations of the model are similar to those of ‘bridg-
ing models’ (Huang, 2007). The model is completely
general and can be used for other types of composite
materials.

2. Constitutive model
2.1. Introduction

The model used in this paper is based on very simple
kinematical and equilibrium assumptions that, properly
handled, lead to the composite constitutive equation and
to the strain and stress tensors in all the components.
These assumptions result from the microstructure of the
composite. In this way, departing from the behavior of fi-
bers and matrix, the elastic properties of the laminate
can be obtained and the non-linear behavior and the pro-
gressive failure can be analyzed.

2.2. Constitutive model for the components

It is well known that fibers present a strong anisotropic
behavior generally assumed as transversely isotropic, char-
acterized not only by the elastic orthotropy like in the case
of carbon fibers, but also by the marked difference of
strength in the principal directions. Another important
property of fibers is their slightly lower strength in com-
pression than in tension.

In general, epoxy resins have lower tension than com-
pression strength like brittle materials. In the case of poly-
meric matrix the material itself can be considered as an
isotropic material. Nevertheless, as the fiber/matrix inter-
face is not explicitly modeled, the constitutive model of
the matrix is modified including the interface constitutive
model (Luccioni and Lépez, 2002, 2005). Orthotropic elas-
toplastic or damage interface models can be used to simu-
late fiber debonding or delamination. As a result, the
constitutive model of the matrix including the interface
exhibits tension strength much lower in perpendicular
direction to fiber than in longitudinal direction.

Taking into account the above considerations, each one
of the basic components is supposed to have a general
orthotropic elastoplastic behavior covering the case of fi-
bers, matrix and interface included in matrix (Luccioni,
2006).

The orthotropic model used is based on the assumption
that two spaces can be defined (Betten (1988); Luccioni et
al,, 1995): (a) A real anisotropic space and (b) a fictitious
isotropic space. The problem is solved in the fictitious iso-
tropic space allowing the use of elastoplastic models orig-
inally developed for isotropic materials. The isotropic
elastoplastic model used in this paper includes energy-
based criteria to make it suitable for brittle materials (Oller
et al., 1995; Luccioni et al., 1995).

Stress tensors in both spaces are related by a tensor
transformation that can be written as,

t=A(6,KP) 0 (1)

where 7 and ¢ are the stress tensors in spaces (a) and (b)
respectively, and A is a fourth order transformation tensor
that contains the information about strength anisotropy
depending on material symmetry. In the most general case,
this tensor varies with the stress state and the evolution of
the inelastic process represented by the isotropic plastic
hardening variable kP (Luccioni et al., 1996). In this paper,
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all the components materials are assumed initially ortho-
tropic with three axes of material symmetry. There are dif-
ferent alternatives to define tensor A for this case (Oller et
al., 1995; Luccioni et al., 1996; Luccioni and Martin, 1997;
Car et al., 1999; Oller et al., 2003). The simplest way is a
diagonal fourth order tensor (Luccioni et al., 1995),

33
At = Z Z 0im0jnOkmOinT/ Omn (2)
m=1 n=1

where 7 is the strength in the fictitious isotropic space and
Omn 1S the actual strength in the direction m in the plane
with normal n. A better approach has been proposed by Ol-
ler et al. (2003).

The plastic threshold is defined through a yielding
function,

F(o;a) = F(1;2) =0 3)

where F and F represent the yielding function in the real
anisotropic space and the fictitious isotropic space respec-
tively; @ and a are plastic internal variables in correspon-
dence with both spaces.

The transformation defined by Eq. (1) allows the use of
yielding functions F defined for isotropic materials in the
fictitious isotropic space. It should be noted that this space
is isotropic with respect to yielding thresholds and
strength but not necessarily with respect to other proper-
ties like elastic stiffness.

Evolution of plastic strain in real space is defined with
the well-known flow rule,

& = J(3G/ds) (4)

where G is the plastic potential function defined in the real
stress space. Instead of working with this function that
should be anisotropic, function G defined in the fictitious
isotropic space could be used.

G(o,2) = G(t,3) (5)

Eq. (4) can be then rewritten as,

& = 2(0G/d6) = 1(3G/01) : (9t/d6) = A(0G/0t) : H=h
with H = 3t/d¢ and h = (3G/dt) : H (6)

where H is a fourth-rank tensor and h is a second-rank ten-
sor and represents the plastic flow in the real orthotropic
space.

The constitutive equations for the components can be
written as follows:

6=C:=C:(s—¢), (7)

where ¢ is the stress tensor, C is the elastic stiffness tensor,
&% is the elastic strain tensor, ¢ is the strain tensor and &P is
the plastic or inelastic strain tensor.

If a ‘simple composite’ is analyzed with respect to its
principal directions, some directions in which all the com-
ponents have the same strain (parallel behavior) and other
directions in which all the components have the same
stress (series behavior) can be identified. In correspon-
dence to each stress or strain tensor component a parallel
or series behavior can be assumed. A parallel behavior in
correspondence with one component means that all the

composite constituents have the same value for this strain
component. A series behavior in correspondence with one
component means that all the composite constituents have
the same value for this stress component.

Based on this analysis, stress and strain components
could be rearranged. Tensor & contains strain components
in correspondence with directions of parallel behavior and
stress components in correspondence with directions of
series behavior, and 6" contains stress components in cor-
respondence with directions of parallel behavior and strain
components in correspondence with directions of series
behavior.

In order to express this rearrangement the following
fourth order tensors are defined,

3 3
T = 22 2 OirdjsOkrdisH(Dys)
r=1 s=1 .

. . with

O = Oikji — Uiy
(8)
1 if the rs component works in parallel
Drs = . . .
0 if the rs component works in series

H: Threshold function
Stress and strain components are rearranged as follows,
c=a’:6"+a":¢

and (9)

e=a":0"+a’: ¢

o-=a":0+a:¢

g=d’:0+a" :¢

Combining Egs. (7) and (9), the secant constitutive relation
for the components can be alternatively written as,

o =C.¢ —0o" (10)
where

C=(:Ct+a): (:Cta) (11)
o =(C:a® —a): &P (12)

Actually ¢ is a plastic corrector for the modified stress
tensor. It is a tensor that contains plastic corrector stress
components in correspondence with components working
in series and plastic strain components affected with
minus sign in correspondence with components working
in series.

2.3. Composite constitutive equation

The case of a composite with simple structure, where
principal directions and tensors «® and a® are coincident
for all the constituents, is first analyzed. In such a compos-
ite the following condition is verified,

R (13)

where c indicates an arbitrary material component.

Assuming that the plastic strain of the composite in the
directions in which the material works in series can be ob-
tained as the sum of the plastics strains of the components
multiplied by their respective volume fractions, the follow-
ing secant equation is obtained,

¢t =C:¢ —o" (14)
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where

C=>kC, o =) ko => k(C:a"—a'):

(15)

and k. represents the volume fraction of a generic constit-

uent material. . . .
Eq. (14) can be rearranged with the aid of Eq. (9) to give,

6=C:¢—o" (16)
where

C=(:C+a): (:C+a”)

o =-C:a':6” +a°:6" = (" —C: &) : 6" (17)

Numerical implementation in a finite element program re-
quires the evaluation of the strain tensor for each one of
the components from the composite strains. In this way,
once the strains are known, constitutive equations can be
independently integrated for each constituent and infor-
mation at the constituents material level (fiber and matrix)
can be recorded through the corresponding internal
variables.

INCREMENT: n

AU =AU +K'F, .y
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Starting from condition (13) and Eqgs. (9) and (16), the
following relation can be written,

se=¢.:e+8

(18)
where

b= (@ :C+a):(@:CHa”) ;L =¢.:a: 6P —a: 6P
(19)

It is important to point out that all preceding equations are
only valid in the composite local system of reference,
which is coincident with its principal elasticity symmetry
directions. For an arbitrary reference system, all tensors
must be rotated.

The constitutive equations for a laminated composite or
for a composite material with a more complex structure,
where tensors «® and a® are not the same for all compo-
nents, can be obtained in different steps. The composite
must be decomposed in more simple sub-composites for
which the corresponding constitutive equations can be ob-
tained as described above. Then, the constitutive equation
of the composite can be written with a similar approach
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Fig. 1. Numerical algorithm.
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composing the constitutive equations already found for the
sub-components.

2.4. Numerical implementation

The model presented can be implemented in a non-lin-
ear finite element program using the iterative scheme pre-
sented in Fig. 1. Strains in each component can be
evaluated with Eq. (18) if plastic strains are known. In case
of a more complex composite, this scheme must be used to
decompose the composite in sub-composites and again in-
side each sub-composite to arrive to each one of the
constituents.

In any case, plastic strains of all components are re-
quired for the evaluation of the strains in each component.
As a result, the problem cannot be explicitly solved and, for
example, an iterative scheme must be used. The algorithm
schematized in Fig. 1 is based on a predictor-corrector iter-
ative procedure using the norm of plastic strains as conver-
gence measure. The algorithm is very stable. No more than
two iterations were required to correct the strain distribu-
tion in plastic regime for all application examples pre-
sented in this paper.

Once the strains of each one of the constituents have
been obtained, the correspondent constitutive equations
can be integrated using well-known procedures like Euler
Backward or return mapping algorithms.

3. Model calibration
3.1. Introduction

The constitutive model presented in the previous sec-
tion assumes that each component can be successively

Fig. 2. Unidirectional fiber reinforced composite.

Table 1
Elastic properties of fibers and matrices (Soden et al., 1998a)

subdivided into sub-components, until arriving to simple
composites in which kinematical and equilibrium assump-
tions among simple components can be established. It is
assumed that, in simple composites the components can
work in series or in parallel in correspondence with each
one of the stress or strain components. The elements of
tensors a® and «f must be prescribed according to the
components behavior.

The main purpose of this study is to calibrate the pro-
posed theoretical model for fiber composite laminates. In
order to determine the elements of tensors & and af,
the distribution of stresses and strains inside a simple
composite by means of a linear elastic analysis is per-
formed in this section. According to the model described
in the previous section, tensors « and a«® are constant
and, therefore, they can be determined in elastic regimen.
Taken into account that the elastic deformations in fiber—
matrix or lamina-lamina interfaces are worthless, they
were not considered in the present analysis.

3.2. Unidirectional lamina

A micro-mechanical study of the elastic properties of
laminae reinforced with unidirectional long fibers is pre-
sented in this section. The analysis is carried out by means
of finite element models and applying the theory devel-
oped by Eshelby (1957) together with the interaction ef-
fects of Mori and Tanaka (1973).

Fibers of circular section, regularly spaced, aligned and
perfectly bonded to matrix are considered. The matrix is
supposed to be isotropic itself and free of holes and
imperfections.

The study is carried out for different types of laminae.
All of them are laminae reinforced with unidirectional fi-
bers as it is schematized in Fig. 2 where local axes are also
indicated. Mechanical properties of fiber and matrix
components for different laminae are presented in Table 1
(Soden et al., 1998a).

3.2.1. Micro-model of finite elements
For the micro-mechanical study of elastic properties of
an unidirectional lamina, representative models of the

Lamina  Properties of fibers

Properties of matrices

1 Fiber type: E-glass

Er=73.1GPa v¢=0.22
2 Fiber type: carbon

Ef1 =232 GPa Eg, = 15 GPa Gy = 24 GPa vgy2 = 0.279 vpp3 = 0.49
3 Fiber type: AS4 (carbon)

Eg, = 225 GPa Eg, = 15 GPa Geyz = 15 GPa ve2 = 0.2 veps = 0.25
4 Fiber type: T300 (carbon):

Ef =230 GPa Ep, = 15 GPa Gz = 15 GPa vg2 = 0.2 vp3=0.25
5 Fiber type: E-glass 21xK43 Gevetex

Ef = 80 GPa Ep, = 80 GPa Gfz = 33.33 GPa vg3=0.2 vp3=0.2
6 Fiber type: Silenka E-Glass 1200tex:

Ef1 = 74 GPa Ep, = 74 GPa. G2 = 30.8 GPa vg12 = 0.2 i3 = 0.2
7 Fiber type: E-glass

Efy =72.4 GPa Ep, =72.4 GPa Gy = 30.2 GPa g =0.2 vz = 0.2

Matrix type: epoxi

En =3.45 GPa vy, = 0.35

Matrix type: epoxi

Em=5.35GPa vy, =0.35

Matrix type: 3501-6 epoxi

En=4.2 GPa vy, = 0.34 Gy, = 1.567 GPa
Matrix type: BSL914C epoxi
Em=4.0GPa vy, =035 Gy, = 1.481 GPa
Matrix type: LY556/HT907/DY063 epoxi
Em=3.35GPa vy, = 0.35, Gy, = 1.24 GPa
Matrix type: MY750/HY917/DY063 epoxi
Em=3.35GPa. vy, =0.35 Gy, = 1.24 GPa
Matrix type: epoxi

Em=2.76 GPa. v, =0.35
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lamina structure with different fiber proportions were
built.

The finite element analysis was carried out with the
program SAP 2000 Advanced 9.0.3 (CSI Analysis Reference
Manual, 2004) and 3D solid elements were used to model
the composite structure. The boundary conditions and the
applied displacements considered for the determination of
the longitudinal Young modulus E; (Fig. 3a) and the trans-
verse elastic modulus G (Fig. 3b) are shown in the Fig. 3.

In order to identify and eliminate errors introduced by
the mesh size, different mesh sizes were used and the re-
sults were compared. An unidirectional lamina with a fi-
bers volume fraction k¢= 0.6, identified as Lamina 3 in
Table 1 was taken as witness case.

The values of the scaled elastic constants obtained with
different mesh sizes are presented in Fig. 4. All elastic con-
stants are scaled with the values corresponding to the fin-
est mesh (2576 elements). An appropriate convergence of
the results is obtained for the elastic moduli E;, E;, Gz
and the Poisson ratio v,3 but not the Poisson ratio vs.
The differences can be attributed to the simplification of
considering an homogeneous medium for the determina-
tion of v{, when it is highly heterogeneous in the plane
1-2. From Fig. 4, it could be concluded that meshes of
1020 elements or more are accurate enough to describe
the elastic behavior of laminae. The typical mesh with
1680 elements used in a fiber-matrix unit cell is illustrated
in Fig. 5.

a
2 4
____________ __'I:’
> =
. i
1
[ @
_—
A & 4 RS

Fig. 3. Boundary conditions: (a) longitudinal Young modulus E;; (b) shear
Moduli Gy3.
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3

Fig. 5. Finite element mesh of a symmetric unit cell.

The distributions of stresses and strains obtained with
the above described analysis, leads to the conclusion that
fiber and matrix work in parallel in correspondence with
the stress component &7 and that for the component cor-
responding to the stress 3 fiber and matrix work in series.
In correspondence with the components 6., and 715, the
behavior cannot be considered neither completely in series
nor completely in parallel.

3.2.2. Application of Mori-Tanaka method

The micro-mechanics based Mori-Tanaka method
(Mori and Tanaka, 1973; Benveniste, 1985) is used in this
section to predict the elastic mechanical properties of the
unidirectional laminae depicted in Table 1. This method
may be viewed as the simplest mean field approach for
inhomogeneous materials that encompass the full physical
range of phase volume fraction.

Eshelby’s results (Eshelby, 1957) show that if an elastic
homogeneous ellipsoidal inclusion in an infinite linear

1.08
1.06
] \
= 1.04
2 1.02 ——— ——
SO B A B SRR PO
g ! AT = = h
Z 098 ——==
= 096 15 :
= 0.94 /
< .
Q
3 /
0.92 7/
0.9
0 500 1000 1500 2000 2500 3000
n (number of elements)
- ) (n=2576) @) (n=2576) @ (n=2576) Py m) (n=2576) A @) (n=2576)
E1 /El Ez /Ez Vlz /v12 G|2 /GIZ G12 /GU

Fig. 4. Variation of scaled elastic properties with different mesh sizes.
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elastic matrix is subjected to a eigenstrain &', uniform
strain states &° is induced and it is related to the eigen-
strain by the expression

£ =S¢ (20)

where SE is the Eshelby tensor, which depends on the rein-
forcement dimensions and the Poisson ratio of the matrix
vm. The components of this tensor for a circular, cylindrical
inclusion with an infinite length-to-diameter ratio parallel
to the 1-axis, are obtained in this paper

S1111 = S1133 = S1122 = 0, S3333 = Spom :85(%4::)’

S33220 = Sap33 = %

S3311 = Saom1 :ﬁ’ Siy3 :ﬁ7

S1313 = S1212 :% 21)

Eshelby (1957) introduced the concept of the equivalent
homogeneous inclusion for inhomogeneous inclusions.
This concept as well as the effects of the interaction among
the inclusions defined by Mori and Tanaka (1973), allow to
obtain the transformation strains in order to equal the total
stresses in the inhomogeneities and their equivalent inclu-
sions, as described in the following equation

Cr: (e +™ +69) = Cn: (& +6™ + 65— o) (22)

where C; and C,,, are the stiffness tensors of fiber and ma-
trix, respectively; & is the uniform far field strain applied
to the domain at infinity, &™ is the average elastic strain
defined by Mori and Tanaka (1973) which is given by

&= ke (e€ — &) (23)

Finally, the stiffness tensor C for different unidirectional
laminae can be obtained from energy considerations.
Many authors gave different but essentially equivalent
Mori-Tanaka expressions for the effective elastic tensor
of inhomogeneous materials. Alternatively, the method

70

above described can be used (Tandon and Weng, 1984)
to directly evaluate the overall elasticity tensor as

1 -1
czcm{l—kf [(cf —C)(SF—ke(SE—T) +cm)] (€ —cm)}
(24)

where I is the fourth order identity tensor.

3.2.3. Comparison of results

Taken into account the results obtained with the finite
element analysis described in Section 3.2.1, the lamina is
considered as a composite formed by two subcomposites
named a and b, which in turn, are formed by fiber and ma-
trix. Each subcomposite a and b uses a combination tensor
a7 and a combination tensor af, respectively. Then, these
subcomposites are combined between them by means of
the tensor «°.

Comparisons of the results obtained using the finite ele-
ment model, the Mori-Tanaka method and the methodol-
ogy presented in this paper were carried out. The
objective of these comparisons was to determine the com-
ponents of tensors «°,aj and af, that produce the best
approximation to the behavior of an unidirectional fiber
reinforced lamina. Although several combinations of sub-
composites were analyzed, only the cases for which the
best agreement with the results of the other described
methods was achieved, are presented. Comparisons with
experimental results were also performed for those cases
in which this information was available. Additionally, com-
parisons with results obtained using the expressions pro-
posed by Huang (2001) are included in some cases.

In all cases the best prediction of the elastic properties
corresponds to the following combination: Diag a® =
[100000], Diag «Z = [111000], Diag « = [100011], ~ where
Diag af = [®1111, ®2222,03333,02323, X1313,%1212] and the vol-
ume fraction of each subcomposite are k, = k;, = 0.5, the ac-
tual fiber-volume ratio is used inside each subcomponent.

Figs. 6-17 show the variation of the effective elastic
properties of unidirectional laminae with respect to the
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Fig. 6. Variation of E; with fiber-volume fraction (isotropic fiber).
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fiber-volume fraction (k). Figs. 6-11 also show the results
corresponding to the lamina with isotropic fiber identified
as Lamina 1 in Table 1. The comparison with the experi-
mental results by Tsai and Hahn (1980) is also included
in Fig. 7. On the other hand, results obtained for the lamina

with orthotropic fiber identified as Lamina 2 in Table 1 are
presented in Figs. 12-17 and compared with the experi-
mental results by Kriz and Stinchcomb (1979).
Additionally, the variation of the scaled longitudinal
shear modulus G;2/Gy, (composite shear modulus/matrix
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shear modulus) with the fiber-volume fraction is presented
in Fig. 17. These results correspond to a composite made
up with resin epoxy (Jiang and Cheung, 1998) and glass fi-
bers with different shapes of section identified with num-
ber 7 in Table 1. Fig. 17 presents the results obtained with
the proposed model considering different behaviors, i.e.
series, parallel and a series combination of two subcom-
posites, one in series and the other one in parallel, in cor-
respondence with the shear component 1-2. Results
obtained by Jiang and Cheung (1998) using a model of
elliptical elastic inclusions for various fiber section aspect
ratio (the ratio of the semiminor axis to semimajor axis),

I, are also presented in this figure. It is observed that the
consideration of parallel behavior gives similar results to
those of low aspect ratio (I=0.000001), while a parallel/
series combination produces a better approximation to
the case of fibers with circular section (I = 1). This example
shows that the particular combination used strongly de-
pends on fibers cross section shape.

Taken into account that the experimental data pro-
vided by Soden et al. (1998a) in the failure exercise consti-
tutes a very important reference point, a final comparison
of this information with the elastic properties was carried
out.
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Table 2
Comparison of elastic properties of laminae obtained by different methods

Elastic properties Lamina 3 (k¢=0.6)

Lamina 4 (k¢=0.60)

(1] [2] (3] (4] [1] (2] [3] [4]
E; (GPa) 126 136.7 135.8 136.7 138 139.66 138.7 139.6
E, (GPa) 11 9.37 9.51 8.75 11 9.21 9.39 8.57
G2 (GPa) 6.6 5.01 4.66 4.14 5.50 4.83 4.47 3.98
Vi2 0.280 0.248 0.257 0.253 0.280 0.252 0.261 0.257
Va3 0.4 0.284 0.261 0.319 04 0.299 0.272 0.336
Lamina 5 (k¢=0.62) Lamina 6(k¢= 0.60)
Eq (GPa) 53.5 50.94 50.6 50.89 45.6 45.81 45.5 45.76
E, (GPa) 17.7 15.64 16.1 11.7 16.2 14.73 14.8 11.02
G2 (GPa) 5.83 5.37 49 4.61 5.83 5.07 4.53 4.32
Vi2 0.278 0.232 0.255 0.249 0.278 0.234 0.257 0.252
Va3 04 0.455 0.252 0.440 0.4 0.453 0.265 0.440

[1] Exper. (Soden et al., 1998a) [2] Calibrated model [3] FEM (micro-mechanic) [4] Mori-Tanaka method.

Using the same combinations of the above mentioned
cases, the elastic properties of the laminae identified as 3,
4,5 and 6 in Table 1 were determined with the mentioned
methods and compared with the experimental ones in
Table 2.

In general, a good agreement between the model results
and the experimental ones (Soden et al.,, 1998a) is ob-
served. The main differences appear transversally to the fi-
bers direction and, specially, in the Poisson ratio vjs.
However, it is important to note that the results obtained
by means of the other methods, i.e. finite elements and
Mori-Tanaka cannot reproduce these experimental values
either. The observed differences can be partly attributed to
the lack of precision in the mechanical properties of the
components, fundamentally of the fibers used as departure
data. Since the fibers have very small diameters and they
are difficult to handle, the determination of the mechanical
properties of the fibers is not always direct. Generally, tests
are carried out on unidirectional laminae, and micro-
mechanical relationships are used to extract the properties
of the fibers starting from the results of laminae. In conse-
quence, it is feasible to find variability and inaccuracy in
the results.

3.3. Composite laminates

3.3.1. Introduction

To apply the constitutive model described in Section 2
to a laminate, the behavior of laminae must be firstly ob-
tained and then the behavior of laminates can be simu-
lated, considering how the stresses and strains are
transmitted among plies. For this reason, the finite element
analysis carried out in this section considers two scales: a
micro-mechanical scale meshing fibers and matrix of each
lamina of the laminate and a meso-mechanical scale con-
sidering each lamina as homogeneous and orthotropic,
with the elastic properties obtained in previous sections.
As in the case of an unidirectional lamina, the micro-
mechanical elastic analysis does not include the interface.
The behavior of interfaces is strongly non-linear and their
elastic deformations can be neglected. Similarly, when a
meso-mechanical study composing laminae is carried
out, the laminae interfaces are not explicitly considered.
These simplifications are only made in this first calibration

stage of the model in elastic regimen. Later, inelastic ef-
fects of interfaces can be included considering additional
inelastic deformations in the constitutive equations of fi-
bers and laminae (Luccioni and Lopez, 2002) to simulate fi-
bers debonding and delamination.

3.3.2. Finite elements model

The finite element analysis was performed with SAP
2000 Advanced 9.0.3, and three-dimensional solids ele-
ments were used (CSI Analysis Reference Manual, 2004).

Fig. 18 shows the models corresponding to the micro-
mechanical scale and to the meso-mechanical scale of a
composite laminate. x and y directions are contained in
the laminate plane and z is normal to this plane. Each lam-
ina can exhibit a different fiber orientation and it is defined
by the angle 0 formed between the principal direction 1 of
the lamina and x axis.

The laminates studied in this section are the following
(Soden et al., 1998a):

1. (0°/90°); Laminate (Silenka E-glass 1200 tex, matrix
MY750/HY917/DY063). The total thickness of the lami-
nate is 1.04 mm and each play has a thickness of
0.26 mm.

2. (¢45°); Laminate (Silenka E-Glass 1200 tex MY750/
HY917/DY063 epoxy). The total thickness of the lami-
nate is 1 mm and each play has a thickness of 0.25 mm.

3. (£55°); Laminate (Silenka E-Glass 1200 tex MY750/
HY917/DY063 epoxy). The total thickness of the lami-
nate is 1mm and all the laminae have the same
thickness.

4. (90°/ £30°); Laminate (E-Glass/LY556/HT907/DY063).
The total thickness of the laminate is 2 mm, the thick-
ness of the +30° plies represent 82.8% of the total thick-
ness and laminae at 90° represent the remaining 17.2%.

5. (90°/ £ 45°/0°)s Laminate (AS4/3501-6). The total thick-
ness of the laminate is 1.1 mm and all the laminae have
the same thickness.

3.3.3. Results and model calibration

The results obtained by the micro-mechanical and the
meso-mechanical analysis previously described and their
comparison with the results obtained with the calibrated
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y

Fig. 18. Finite element mesh for: (a) micro-mechanical scale; (b) meso-
mechanical scale.

model are presented in this section. In the meso-mechan-
ical analysis, the laminae were modeled using two differ-
ent approaches. On one hand, experimental data of fiber
and matrix (Tables 3,4 rows (2), (3), (5); Tables 5-7, rows
(2), (4) were used as input, and on the other hand, the
mechanical properties of the laminae obtained from exper-

imental tests (Tables 3, 4, rows (1) and (4); Tables 5-7,
rows (1) and (2) were used.

This analysis showed that the model described in Sec-
tion 2 can be used with a double combination to produce
a close approximation to the experimental observed
behavior. The combination is characterized by two sub-
laminates obtained with Diag ag = [111000], Diag «f =
[100011] and kq=k,=0.5. In turn, each lamina of the
laminate is composed using the fiber-matrix combinations
previously suggested. Tables 3-7 show the elastic proper-
ties obtained using these combinations for various lami-
nates. It can be observed that the use of the calibrated
model leads to similar results to those obtained with the
other approaches.

4. Application examples and comparison with
experimental results

4.1. Introduction

The model described in Section 2 was implemented in a
3D non-linear finite element code and orthotropic elasto-
plastic models for the components were adopted. Applica-
tion examples and comparison with experimental results
obtained with this code are presented in this section.
Two groups of application examples are presented. The
first one corresponds to the failure exercise previously
mentioned (Soden et al., 1998a, 2002). The second group
includes application examples concerning the tension test
of an open hole coupon and comparison with experimental
results by Sihn et al. (2007).

4.2. Failure exercise (Soden et al., 1998a, 2002)

All the laminates studied are formed by laminae com-
posed of a soft matrix with continuous unidirectional fi-
bers. The mechanical properties of the four types of
epoxy resins and the four types of glass and carbon fibers
are presented in Tables 8 and 9 respectively. Mohr Cou-
lomb yield criterion was used for the matrix and an in-
verted Durcker Prager criterion, with less yielding
threshold in compression than in tension, was used for
the fibers to approximately take into account the reduction
of compression strength due to fiber buckling. As there was
no experimental data available defining hardening or soft-
ening behavior of matrix and fibers, the corresponding
parameters were calibrated in order to properly reproduce

Table 3
Comparison of elastic properties of (0°/90°)s Laminate (Silenka E-glass 1200 tex, matrix MY750/HY917/DY063)
Model Starting Ex Vxy Vxz E, Vyx Vyz E, Wz Vay Gy, Gxz Gy
data (GPa) (Gpa) (GPa) (GPa) (GPa) (GPa)
FEM model (meso- Laminae 31.1 015 036 31.1 015 036 17.2 0.2 0.2 5.8 5.8 5.83
mech.) Fiber and 303 013 027 303 013 027 151 0.14 014 491 491 4.53
matrix
FEM model (micro- Fiber and 29.2 012 028 292 012 028 147 0.13 013 4.27 4.27 441
mech.) matrix
Calibrated model Laminae 31.1 015 036 31.1 015 036 17.2 0.2 0.2 5.81 5.81 5.83
(meso-mech.)
Calibrated model Fiber and 303 0.13 027 303 013 027 151 0.14 014 5.19 5.19 4.53
(micro-mech.) matrix
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Table 4
Comparison of elastic properties of (+45°)s Laminate (Silenka E-Glass 1200 tex MY750/HY917/DY063 epoxy)
Model Starting Ex Vay Vxz E, Vyx Vyz E, Vox Vay Gy, Gz Gy
data (GPa) (Gpa) (GPa) (GPa) (GPa) (GPa)
FEM model (meso- Laminae 17.6 0.51 0.21 17.6 0.51 0.21 17.9 0.21 0.21 5.6 5.6 113
mech.) Fiber and 143 058 013 143 058 013 157 014 014 4.72 5.16 10.8
matrix
FEM model (micro- Fiber and 17.0 044 0.21 17.1 0.41 0.23 143 0.13 0.13  4.26 4.85 10.6
mech.) matrix
Calibrated model Laminae 17.7 0.51 0.2 17.7 052 02 17.2 0.2 0.2 5.81 5.81 12.0
(meso-mech.)
Calibrated model Fiber and 14.4 059 0.13 14.4 059 013 15.1 0.14 014 5.19 5.19 11.7
(micro-mech.) matrix

Table 5
Comparison of elastic properties of (+55°)s Laminate (Silenka E-Glass 1200 tex MY750/HY917/DY063 epoxy)
Model Starting Ex Vay W E, Vyx Vyz Iz, Vox Vay Gy, Gz Gy
data (GPa) (Gpa) (GPa) (GPa) (GPa) (GPa)
FEM model (meso- Laminae 15.4 038 027 233 057 017 177 0.31 013 56 5.58 12.5
mech.) Fiber and 12.7 042 017 20.2 066 012 15.6 0.21 0.09 472 5.16 12.2
matrix
FEM model (micro- Laminae 15.4 038 027 235 058 017 17.0 0.3 012  5.81 5.80 111
mech.)
Calibrated model Fiber and 12.7 042 017 204 0.67  0.11 15.1 0.21 0.08 496 5.42 10.6
(micro-mech.) matrix

Table 6
Comparison of elastic properties of (90°/ £ 30°)s Laminate (E-Glass/LY556/HT907/DY063)
Model Starting Ey Wiy Vxz Ey W Vyz 12 Vox Wy Gy, Gxz Gyy
data (GPa) (Gpa) (GPa) (GPa) (GPa) (GPa)
FEM model (meso- Laminae 29.5 040 023 223 032 031 18.7 0.15 024 6.15 6.03 10.9
mech.) Fiber and 26.9 041 0.18 202 033 02 16.4 0.11 016 5.79 5.42 10.0
matrix
Calibrated model Laminae 29.9 043 023 223 032 029 188 0.15 024 6.14 6.02 10.2
(meso-mech.)
Calibrated model Fiber and 274 042 018 20.2 033 02 16.4 0.11 016 5.85 5.48 9.29
(micro-mech.) matrix
Table 7
Comparison of elastic properties of (90°/ £ 45°/0°)s Laminate (AS4/3501-6)
Model Starting Ex Vay W E, Vyx Vyz E, Vaox Vay Gy, Gxz Gy
data (GPa) (Gpa) (GPa) (GPa) (GPa) (GPa)
FEM model (meso- Laminae 49.6 025 03 49.6 025 03 12.5 0.08 0.08 494 4.94 171
mech.) Fiber and 50.4 026 022 504 026 022 100 0.04 004 4.15 4.15 16.5
matrix
Calibrated model Laminae 51.1 029 028 51.1 029 029 126 0.07 007 526 5.26 13.8
(meso-mech.)
Calibrated model Fiber and 52.2 0.31 0.21 52.2 0.31 0.21 10.1 0.04 004 422 4.22 13.0
(micro-mech.) matrix

the behavior of the lamina and were also included in
Tables 8 and 9. Then, the same parameters were used to
combine laminae in a laminate.

Almost all experimental results used were derived from
tests on tube specimens. Numerical results were all ob-
tained for a 100 mm x 100 mm model with the lamina or
laminate thickness and a three-dimensional analysis was
performed. The use of these models is justified by the fact

that in tube specimens a global plane stress state for the
lamina or the laminate is obtained. Tetrahedral elements
with 4 nodes and 3 degrees of freedom for node were used.
Fig. 19 shows the finite element mesh used in all cases.

4.2.1. Laminae
In general, structures are not designed with all the
fibers aligned in a unique direction if the structure is
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Table 8
Matrices mechanical properties (Soden et al., 1998a)

Matrix 3501-6 epoxy BSL914C epoxy LY556/HT907/DY063 epoxy MY750/HY917/DY063 epoxy
Tension strength, Yy, (MPa) 69 75 80 80

Compres. strength, X, (MPa) 250 150 120 120

Shear strength, S, (MPa) 50 70 - -

Ultimate tension strain, &m (%) 1.7 4 5 5

Compression hardening function (*) Exponential with
peak non-linear limit
180 MPa peak position

Tension hardening function Exponential decay

Exponential with

peak non-linear limit
100 MPa peak position
0.25 of total plastic work 0.15 of total plastic work of total plastic work
Exponential decay

Exponential with peak
non-linear limit 100 MPa
peak position 0.2

Exponential with peak
non-linear limit 100 MPa
peak position 0.20

of total plastic work

Exponential decay Exponential decay

2 Data obtained from calibration.

Table 9
Fibers mechanical properties (Soden et al., 1998a)
Fiber AS4 T300 E-Glass Silenka E-
21 x 43 Glass 1200
Gevetex tex
Long. tensile strength, X, 3350 2500 2150 2150
(MPa)
Long. compres. strength, 2500 2000 1450 1450
Xic (MPa)
Ultimate tensile strain, ¢ 1.488 1.086 2.687 2.905
(%)
Ultimate compres. strain, 1.111 0.869 1.813 1.959
&f1c (%)
Slope of linear 0.0 20 5 5

compression hardening
function (MPa)(?)

Slope of tension hardening 0.0 20 5 5
function (MPa) (?)

¢ Data obtained from calibration.

A,

Fig. 19. Finite element mesh.

expected to be exposed to stresses in the orthogonal direc-
tion. However, unidirectional laminae constitute the basic
elements of the laminate and, inside it, they can be sub-
jected to stresses normal to the fiber direction and shear
stresses. So, it is important to know first of all, if the mod-
els are able to reproduce the behavior of an individual
lamina.

4.2.1.1. Lamina 3 (AS4/3501-6). The non-linear in plane
behavior of a lamina reinforced with carbon fiber (AS4)
and epoxy matrix 3501-6 (Soden et al., 1998a) is studied
in this section. Fig. 20 shows the stress—axial strain and
the stress-transversal strain curves in tension test in fibers
direction. The behavior is almost linear up to the brittle
failure of the fibers in tension. A good agreement between
numerical and experimental results can be observed. There
are more pronounced differences in transversal strains,
which are defined by the Poisson ratio.

The behavior of the lamina under compression normal
to the fiber orientation is shown in Fig. 21. The curves rep-
resent the stress-strain response in the load direction and
in the transverse direction. A reasonable agreement of the
numerical results with the experimental ones is obtained.
A non-linear behavior from lower stresses due to matrix
crushing is observed in this case.

Finally, the shear stress-shear strain curve for a pure
shear test is presented in Fig. 22. In this case the numerical
model also reproduces the experimental results properly.
The non-linearity in the behavior is first due to the shear
failure of the matrix followed by the fibers shear failure.

4.2.1.2. Lamina 4 (T300/BSL914C epoxy). The non-linear in
plane behavior of a lamina reinforced with carbon fibers
T300 and epoxy matrix BSL914C is analyzed in this point.
The shear stress-angular strain curve for a pure shear test
is plotted in Fig. 23. A good agreement with experimental
results is also achieved in this case.

4.2.1.3. Lamina 5 (E-Glass/LY556 epoxy). The non-linear in
plane behavior of a lamina reinforced with glass fibers
and epoxy matrix LY556 is studied in this point. Fig. 24
shows the shear stress—angular strain for a pure shear test.
A good agreement between numerical and experimental
results (Soden et al., 1998a) is obtained. The non-linear
behavior is analogous to that observed in Lamina No. 4.

4.2.1.4. Lamina 6 (Silenka E-Glass 1200 tex MY750/HY917/
DY063 epoxy). The non-linear in plane behavior of a lamina
reinforced with glass fibers Silenka E-Glass 1200 tex and
epoxy matrix 3501-6 MY750/HY917/DY063 is studied in
this point. The stress-strain curve in the load direction
and the stress—strain in the transverse direction when
the lamina is subjected to compression perpendicular to
the fiber direction is presented in Fig. 25. A reasonable
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Fig. 23. In-plane shear stress/strain curve for Lamina 4 (T300/BSL914C epoxy).
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Fig. 24. In-plane shear stress/strain curve for Lamina 5 (E-Glass/LY556 epoxy).
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Fig. 25. Transverse compressive stress/strain curve for Lamina 6 (Silenka E-Glass 1200 tex MY750/HY917/DY063 epoxy).

agreement with experimental results (Soden et al., 1998a)
can be observed. A non-linear behavior from lower stresses
is obtained due to the matrix crushing.

The shear stress—angular strain curve in a pure shear
test is plotted in Fig. 26. A reasonable agreement with
the experimental results is observed. The non-linear
behavior is first due to the matrix shear failure soon fol-
lowed by the fibers shear failure.

4.2.2. Laminates
In this section the non-linear response of the laminates
described in Section 3 is analyzed.

4.2.2.1. (0°/90°); Laminate (Silenka E-glass 1200 tex, matrix
MY750/HY917/DY063). The typical stress-strain experi-
mental curves obtained in uniaxial tension tests (Soden

et al,, 2002) are shown in Fig. 27. The onset of the first
crack was recorded at a strain of g, = 0.375%, which corre-
sponds to a load per unit area 117.5 MP on the coupon. The
onset of longitudinal splitting was observed at a strain of
g, = 1.3%. The coupons finally failed by fiber fracture.

The stress—strain curves obtained with the calibrated
model under uniaxial tension ay:6,=1:0 are plotted in
Fig. 27 together with the experimental results described
above. Numerical results properly reproduce the experi-
mentally observed behavior.

4.2.2.2. (#45°); Laminate (Silenka E-Glass 1200 tex MY750/
HY917/DY063 epoxy). The specimens used for the tests
(Soden et al., 2002) were in the form of (+45°) tubes. They
were 100 mm inner diameter, 310 mm overall length,
60 mm gauge length and typically 1 mm thick. The tubes
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Fig. 26. In-plane shear stress/strain curve for Lamina 6 (Silenka E-Glass 1200 tex MY750/HY917/DY063 epoxy).
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Fig. 27. Stress-strain curves for (0°/90°); Laminate (Silenka E-glass 1200 tex, matrix MY750/HY917/DY063) under uniaxial tensile loading with 6,:6, = 1:0.

were reinforced at the ends and tested under internal pres-
sure and axial load, obtaining equal biaxial tension states
(6y:0,=1:1).

One of the peculiar features of these experimental re-
sults is that the hoop strains are larger than the axial
strains, although ideally they should be equal to each
other. Reasons for such divergence are not clear (Soden
et al., 2002).

The specimens failed by extensive cracking parallel to
the fibers, presumably due to transverse tension and by
fiber tension fracture in the gauge length (Soden et al.,
2002).

The stress—strain curves under biaxial tension obtained
with the calibrated numerical model and the comparison
with the experimental curves are shown in Fig. 28. A gen-
eral coincident trend is observed, but the difference be-
tween numerical results and experimental ones is greater
than in previous examples. Differences between axial and
hoop strains also appear in the numerical solution. In this
case, they are probably caused by numerical errors.

4.2.2.3. (#55°); Laminate (Silenka E-Glass 1200 tex MY750/
HY917/DY063 epoxy). The stress—stain curves under uniax-

500

ial tension a:0, = 1:0 are obtained in this section. Experi-
mental results used for comparison purpose correspond to
tests on specimens in the form of (+55°) E-glass/epoxy
tubes (Soden et al., 2002). The tubes were 100 mm inner
diameter, 310 mm overall length, 60 mm gauge length
and typically 1 mm thick.

Fig. 29 shows the 6, — &, and o, — & curves obtained
with the calibrated numerical model and the comparison
with experimental results (Soden et al., 2002). A good
agreement between numerical and experimental results
is observed.

4.2.2.4. (90°/ + 45°/0°)s Laminate (AS4/3501-6). The experi-
mental results used in this point correspond to tests on
tubes of 96.5 mm inside diameter, approximately, 1 mm
thick and 419 mm total length, (Soden et al., 2002). The
tubes were tested under uniaxial tension @,:6,=1:0. The
circumferential failure stress was 718 MPa and the hoop
failure was &, = 1.45% and the axial strain was &, = —0.36%.

The stress-strain curves obtained with the calibrated
numerical model and the comparison with the experimen-
tal ones are presented in Fig. 30. The curves obtained
with the numerical model, starting with the mechanical
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Fig. 28. Stress-strain curves for (+45°); Laminate (Silenka E-Glass 1200 tex MY750/HY917/DY063 epoxy) under biaxial tensile loading with 6,:6,=1:1.
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Fig. 30. Stress-strain curves for (90°/ + 45°/0°); Laminate (AS4/3501-6) under uniaxial tensile loading with 6,:6,=1:0.

properties of fiber and matrix (micro-mechanical ap-
proach), and starting with those of the laminae (meso-
mechanical approach) are included in Fig. 30. A good
agreement with the experimental results can be observed
in both cases. On the other hand, for a stress nearby to
400 MPa, the experimental curve presents a slope decrease
that indicates a form of initial failure in the laminate. This
effect is also reproduced by numerical results.

The stress-strain curves under biaxial tension
(6y:0x=2:1) and the comparison with the experimental re-
sults of the failure exercise (Soden et al., 2002) are shown
in Fig. 31. The response is linear at low strain levels but
shows a significant softening at higher strains. The non-lin-
ear behavior starts at a strain between g,=0.6% and
g,=0.8% that corresponds to a change in the slope of
stress—strain curves around o, =450MPa hoop stress.
The final hoop strengths of the two tubes tested were

857 and 847 MPa. The numerical results follow the trend
observed in the tests with reasonable accuracy in calcu-
lated strain values.

4.3. Tension test of an open hole coupon

Composites test specimens are made with Toray’s car-
bon fibers (T800SC-24K) and Bryte’s epoxy film resin
(BT250E-1) as the fiber and matrix material in the compos-
ites, respectively (Sihn et al., 2007). The performance of
two types of thin laminates was analyzed: the quasi-iso-
tropic laminate (25/50/25) and the hard laminate (50/40/
10), where three numbers in parentheses represent the
percentage of the [0], [+45] and [90] plies, respectively.
The mechanical properties used for the unidirectional lam-
inae are presented in Table 10. Tresca criterion was used to
model unidirectional lamina strength.



904 M.W.E. Toledo et al./ Mechanics of Materials 40 (2008) 885-906
900
800 4 o A
/ oA
l"’
700 ] AR
el A
P
° - (o
600 I !
r"’
= / 1 v
g 500 A o £
= o h  / 0°
= D) e N 4 P
- il § / -45°
B 400 T -
Ry h i »
” & q >
300 = p.
- o, s
//
200 - <A
/ .- [
ea
100 —
s N Gy
Re v
0k
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
g (%)
° Soden et. al 2002 (Strain x) A Soden et. al 2002 (Strain y)
Calibrated Model (Strainx)  ....... Calibrated Model (Strain y)
Fig. 31. Stress-strain curves for (90°/ + 45°/0°)s Laminate (AS4/3501-6) under biaxial tensile loading with @, :6,=2:1.
Table 10 |[>
Mechanical properties of laminae used in open hole tests (Sihn et al., 2007)
, > —>
Fiber Toray’s carbon
—>
Matrix Bryte’s epoxy film >
Long. stiffness E; (GPa) 168.0 E —>
Long. stiffness E, (GPa) 8.4 >
; ; —>
Poisson ratio vi, 0.33 >4
Long. tensile strength, X (MPa) 2740.0 y B 5
Transverse tensile strength, Y (MPa) 66.0
Tension hardening function Exponential decay X MNNANN N N N N DN N N N LN

The laminae are combined to form the laminate using
Diag «% =[111011]. This combination was shown to bet-
ter reproduce the mechanical behavior of thin laminates.

The test considered was the open-hole tension (OHT).
The width of the specimen is 38.1 mm and the diameter
of the hole is 6.35 mm. Fig. 32 shows the finite element
model used to simulate the tests. It represents a quarter
of the central part (76.2 mm) of actual specimens. Tetrahe-
dral elements with 4 nodes and 3 degrees of freedom for
node were used.

The stress—strain curves obtained away from the hole
(far field) and at a point located 1.27 mm away from the
hole edge (edge) are presented in Figs. 33 and 34 for the
quasi isotropic and the hard laminate respectively. Applied
stress (far field) versus longitudinal strains is represented
in both figures. Experimental results are also included in
Figs. 33 and 34. A reasonable agreement between numeri-
cal and experimental results is obtained for both lami-
nates. As observed in the tests, there is a stress
concentration near the hole but there is no damage and
stresses are not relaxed, they increased until a sudden

Eséf..iﬁv.ﬁijjjkkkdj

NYNMAAANAN A

Fig. 32. Finite element mesh for the specimen under open hole tension
test.

failure occurs. This observation also justifies the nearly lin-
ear strain-stress curves obtained for both laminates. As
stated by Sihn et al. (2007) this behavior is due to the re-
duced thickness of the laminae and it can be taken into ac-
count in the numerical model with the proper definition of
tensor a©.

A similar model was used to reproduce the open hole
tension tests by Tay-Earn et al. (2006). Who presented
the analysis of open-hole composite laminates under uni-
form remote tension loading. Damage progression for a
carbon-epoxy cross-ply laminate with a stacking sequence
[03/904]s was studied. The dimension of the specimens
tested by Sihn et al. (2007) is just twice those tested by
Tay-Earn et al. (2006).

The same properties in Table 10 were used for the uni-
directional lamina.
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800
— 600
[
=™
=
® 400
]
@
-]
% 200 .
<« e) >
|,
0 l
0 0.005 0.01 0.015
Strain

Numer. (Edge strain) Numer. (Far field strain)

------- Exper. (Edge strain) — - - Exper. (Far field strain)

Fig. 34. Stress—strain curves for the open hole test of a hard laminate.
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Fig. 35. Stress-strain curves for the open hole test of a [03/904]s laminate.

Far field stress—strain curves obtained for 0° ply, 90° ply
and the laminate are presented in Fig. 35. Stress corre-
sponds to the actual tensile stress in each ply or the com-
posite. Fig. 35 shows that 90° plies damage first due to
transverse matrix cracking. Damage in the 0° plies appears
much later than damage in the 90° plies, since the latter
are weaker. Damage in 0° ply is apparently retarded by
the combination of stress generated in the lamina. These
results are coincident with those presented by Tay-Earn
et al. (2006).

5. Conclusions

The constitutive model presented in this paper is able to
reproduce the behavior of laminated composite formed by
unidirectional fiber reinforced laminae with different ori-
entations under small strains satisfactorily.

The model was calibrated performing a detailed elastic
finite element analysis and an analytical study using the
Mori-Tanaka method particularized for infinite inhomoge-
neous cylindrical inclusions of circular section. The kine-
matics and equilibrium hypotheses for the calibration of
the scheme model were deduced from the previously de-
scribed analysis and comparisons with experimental re-
sults. The suggested hypotheses are the simplest that can
be applied to isotropic fibers so as to orthotropic fibers.

A good agreement is observed among numerical and
experimental results, with smaller differences in the trans-
versal strains that are defined by the Poisson ratio; this can
be due basically to the lack of precision in the mechanical
properties of the components, fundamentally of the fibers,
used as input data.

In general, application examples and comparison with
experimental results show that the model is able to
properly reproduce the mechanical behavior of laminae
reinforced with unidirectional fibers and composite lami-
nates. Better predictions were obtained in shear dominant
cases. The model also describes the failure of the compos-
ite, taking into account what happens in each component.
It also allows identifying the failure mode of the compos-
ite, produced by the failure of one or more of its compo-
nents. It is able to reproduce complex failure modes that
change from the matrix to the fibers, depending on the
type of stress state. Although fiber debonding and delami-
nation were taken into account in a simplified way, intro-
ducing a fictitious orthotropy in the components, these
problems can be treated more rigorously. The inelastic
deformations of the fiber-matrix and interlaminar inter-
faces can be introduced in the matrix and laminae consti-
tutive models using an approach similar to that one used
by Luccioni and Lépez (2002) and Luccioni et al. (2005).

The model works better for some types of laminates and
for particular load conditions The practically bi - linear
curves obtained for some cases are mainly attributed to the
simple curves used to define fibers and matrix hardening
and show the need of further analysis and model calibration.

Two extreme cases were covered in the paper: fibers
with circular cross section and elliptic fibers with very
low aspect ratio. The framework presented is potentially
valid for other fiber shapes but the calibration for these
cases would require further development.
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