ScienceDirect

# On the existence of weak solutions of anisotropic generally restrained plates 

Ricardo Oscar Grossi *, Liz Graciela Nallim<br>Research Members of CONICET, ICMASA, Facultad de Ingeniería, Universidad Nacional de Salta, Av. Bolivia 5150, 4400 Salta, Argentina

Received 1 June 2006; received in revised form 1 June 2007; accepted 12 July 2007
Available online 7 August 2007


#### Abstract

This paper presents investigations of free vibration of anisotropic plates of different geometrical shapes and generally restrained boundaries. The existence and uniqueness of weak solutions of boundary value problems and eigenvalue problems which correspond to the statical and dynamical behaviour of the mentioned plates is demonstrated. It is determined that when the plates have corner points formed by the intersection of edges free or elastically restrained against translation, the corresponding bilinear forms maintain the $V$ - ellipticity property.

Also, an analytical formulation, based on the Ritz method and polynomial expressions as approximate functions for analysing the free vibrations of laminated plates with smooth and non-smooth boundary with non-classical edge supports is presented. Numerical results are presented for circular, elliptical and trapezoidal plates for different boundary conditions and material properties.


© 2007 Elsevier Inc. All rights reserved.
Keywords: Weak solutions; Vibration analysis; Elastically restrained edges; Composite material

## 1. Introduction

A typical method of solving boundary and eigenvalue problems for elliptic partial differential equations with variable coefficients is the variational method. It can be applied under comparatively weak conditions on diverse domains and elliptic differential operators of arbitrary order. On the other hand, since the variational method involves the minimization of functionals, which describe certain types of energy, it is more natural to look for a weak solution of the problem under consideration than to find its classical solution, which does not exist for many important engineering and mathematical physics problems. Weak solutions of boundary value or eigenvalue problems are useful because, unlike the classical solutions, they can be obtained for domains and data of the problems which are less smooth [1-11]. Hence, it is necessary to find sufficient conditions for the existence and uniqueness of the weak solutions of boundary and eigenvalue problems.

[^0]
## Nomenclature

| $a, b, c, l$ plate dimensions (Fig. 3) |  |
| :--- | :--- |
| $B(w, v)$ | bilinear form |
| $c_{i j}$ | unknown coefficients in the deflection function Eqs. (42) and (44) |
| $c_{\mathrm{R}}(s)$ | spring constant of the rotational restraint |
| $c_{\mathrm{T}}(s)$ | spring constant of the translational restraint |
| $D$ | flexural rigidity of isotropic plate |
| $D_{i j}$ | bending, twisting and coupling rigidities of anisotropic plate |
| $D_{0}$ | reference rigidity of anisotropic plate $=E_{\mathrm{L}} h^{3} /\left[12\left(1-v_{\mathrm{LT}} v_{\mathrm{TL}}\right)\right]$ |
| $E_{\mathrm{L}}, E_{\mathrm{T}}$ | Young's moduli parallel and perpendicular to the fibres |
| $G_{\mathrm{LT}}$ | shear modulus of elasticity |
| $h$ | plate thickness |
| $H^{2}(\Omega)$ | Sobolev space of order two |
| $n_{1}, n_{2}$ | components of the outward unit normal vector $n$ to the boundary $\partial \Omega$ |
| $p_{i}(x), q_{j}(y)$ beam characteristic orthogonal polynomials |  |
| $q$ | transversal load |
| $R_{i}, T_{i}$ | nondimensional rotational and translational coefficients |
| $s$ | arc length along the plate boundary |
| $T_{\max }$ | maximum kinetic energy |
| $U_{\max }$ | maximum strain energy due to plate bending |
| $U_{\mathrm{R}, \text { max }}$ | maximum strain energy stored in rotational springs |
| $U_{\mathrm{T}, \text { max }}$ | maximum strain energy stored in translational springs |
| $u, w$ | deflection functions |
| $x_{1}, x_{2}$ | cartesian coordinates |
| $\alpha, \beta$ | multi-index vectors |
| $\Omega, \Omega^{*}$ | two-dimensional plate domains in Cartesian coordinates |
| $\hat{\Omega}$ | plate domain in right triangular coordinates |
| $\partial \Omega$ | plate boundary |
| $\rho$ | mass density of the plate material |
| $v, v_{\mathrm{LT}}$, | $v_{\mathrm{TL}}$ Poisson's ratios |
| $\theta_{1}, \theta_{2}$ | side angles of the trapezoidal plate (Fig. 3b) |
| $\omega$ | circular frequency of plate vibration |

Composite structures, especially laminated composite plates, have been widely used in many engineering advantages of high strength and stiffness and light weight. Laminated composite plates allow the controllability of the structural properties, through changing the fibre orientation angles, the number of plies and selecting proper composite materials. With the wide use of composite plate structures in modern industries, mechanical analysis of plates of complex geometry becomes a relevant study. It is important to understand the free vibration and the flexural behaviour of these structural elements but the solutions to these plate problems are strongly dependent on the geometrical shapes, boundary conditions and material properties. It is widely recognised that closed form solutions are possible only for a few specific cases [12,13].

The determination of classical solutions (exact and/or approximate) which correspond to the statical and dynamical behaviour of anisotropic plates of different shapes and configurations, has been studied and is well documented. The bending of anisotropic plates subjected to different normal loads and boundary conditions has been extensively studied [14-16]. On the other hand, the vibration of anisotropic plates with different boundary conditions has received considerable attention from several investigators. Bert presented complete reviews on dynamics of composite and sandwich panels [17-19]. These compilations show that the results correspond mainly to rectangular shapes and classical boundary conditions. Nevertheless, studies on general quadrilateral plates, or polygonal plates with unequal side lengths are rather limited. Liew and his co-workers
studied the behaviour of different plates using Ritz method with sets of two-dimensional plate functions, which express the entire plate domain into two implicitly related variables (see for instance [20-23]). Nallim et al. [ 24,25 ] analysed the statical and dynamical behaviour of thin fibre reinforced composite laminates plates of arbitrary quadrilateral geometry with different classical boundary conditions. Grossi and Lebedev [26] analysed the static and dynamic behaviour of anisotropic plates with corner points.

The problem of elastic edge restraints has received considerable attention, mainly in the case of isotropic and orthotropic plates. Nevertheless, analytical studies on the dynamical behaviour of composite laminated plates with edges elastically restrained are rather limited. Laura and Grossi [27] used the Ritz method with polynomial functions for the free vibration analysis of anisotropic rectangular plates of uniform thickness having all edges elastically restrained against rotation. Nallim et al. [28] presented a study of free vibration of anisotropic triangular plates with edges elastically restrained against rotation and translation. Liew et al. [29] analysed the vibration of laminated plates with edges elastically restrained. Ashour [30] analysed the buckling and vibration of cross-ply laminated plates with edges elastically restrained. Ashour [31] studied the vibration of angle-ply laminated rectangular plates with edges elastically restrained. Setoodeh and Karami [32] presented a solution for the vibration and buckling of composite laminates with edges elastically restrained.

The determination of existence and uniqueness of weak solutions for plates with elastically restrained boundaries is rather limited.

Balasundaram and Bhattacharyya [33] derived sufficient conditions for the existence and uniqueness of the solution of a general boundary value problem which includes as particular cases, the boundary value problems of the bending of elastic isotropic, orthotropic and anisotropic plates with variable thickness.

Bhattacharyya and Nataraj [34] used the weak variational formulation in the error estimates for the mixed finite element solution of four order elliptic problems with variable coefficients. Chudinovich and Constanda [35] determined the existence and uniqueness of weak solutions in the bending of plates with transverse shear deformation and with elastic boundary conditions. Grossi [36] determined the existence and uniqueness of the weak solution of boundary value problems and eigenvalue problems, which correspond, respectively, to the statical and dynamical behaviour of rectangular anisotropic plates with edges elastically restrained against rotation.

The present paper deals with the determination of sufficient conditions for the existence and uniqueness of the weak solutions of boundary value problems and eigenvalue problems, which correspond, respectively, to the statical and the free vibration analyse of anisotropic plates of different shapes and generally restrained boundaries.

In practice, the boundary conditions may not always correspond to the classical edge conditions: clamped, simply supported and free. The plate edges may experience partial resistance to rotation and translation, which may be modelled as a rotational and translational stiffness, respectively, along the edges. Also, in the study of elastic plates with edge beams, where it is difficult to find out suitable shape functions which satisfy the boundary conditions, it is possible to replace the real mechanical system with a plate supported with edges elastically restrained. For these reasons, in this paper boundaries elastically restrained against rotation and translation are considered. This includes the classical edge conditions, as simply particular cases.

This paper also presents results of the application of the Rayleigh-Ritz method used in conjunction with different sets of approximating functions, to investigate the vibrational characteristics of circular, elliptical and trapezoidal anisotropic plates having elastically restrained boundaries.

## 2. The weak solution

### 2.1. Smooth boundary

Let us consider a tapered anisotropic plate, of arbitrary shape and elastically supported along the edge by translational and rotational restraints, that in the equilibrium position covers a two-dimensional domain $\Omega$, with smooth boundary $\partial \Omega$, as it is shown in Fig. 1. Suppose that the rotational restraint is characterized by the spring constant $c_{\mathrm{R}}(s)$, and the translational restraint by the spring constant $c_{\mathrm{T}}(s)$, where $s$ is the arc length along the boundary $\partial \Omega$.


Fig. 1. Anisotropic plate with elastically restrained edges.
In order to obtain the weak formulation which corresponds to the mechanical system under study, we consider the domain $\Omega \subset \mathbb{R}^{2}$ with a smooth boundary $\partial \Omega$ such that $\bar{\Omega}=\Omega \cup \partial \Omega$. We also consider the operator $A: D_{A} \rightarrow \mathbb{R}, \quad D_{A} \subset C^{(4)}(\bar{\Omega})$, given by

$$
\begin{equation*}
A u(x, t)=\sum_{|\alpha|| ||\beta| \leqslant 2}(-1)^{|\alpha|} D^{\alpha}\left(a_{\alpha \beta}(x) D^{\beta} u(x, t)\right)=\sum_{|\alpha|,|\beta| \leq 2}(-1)^{|\alpha|} \frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2}}}\left(a_{\alpha \beta}(x) \frac{\partial^{|\beta|} u(x, t)}{\partial x_{1}^{\beta_{1}} \partial x_{2}^{\beta_{2}}}\right), \tag{1}
\end{equation*}
$$

where $x=\left(x_{1}, x_{2}\right), t$ denotes the time, $\alpha=\left(\alpha_{1}, \alpha_{2}\right), \beta=\left(\beta_{1}, \beta_{2}\right)$ are multi-index vectors whose co-ordinates are non-negative integers and $|\alpha|,|\beta|$ are the sums $|\alpha|=\alpha_{1}+\alpha_{2},|\beta|=\beta_{1}+\beta_{2}$. Let $a_{\alpha \beta}(x) \in C^{|\alpha| \mid}(\Omega)$, $u(\cdot, t) \in C^{(4)}(\Omega)$. The summation in (1) is carried over all the vectors $\alpha$ and $\beta$ for which $|\alpha|,|\beta| \leqslant 2$.

The equations which govern the statical and dynamical behaviour of arbitrary shape - isotropic, orthotropic and anisotropic - plates with complicating effects, are associated with operator $A$, as particular cases, [14,36].

The statical behaviour of the anisotropic plate when a load $q=q(x)$ is applied, is governed by the corresponding boundary conditions and the equation

$$
\begin{equation*}
A w(x)=q(x) \tag{2}
\end{equation*}
$$

with the operator $A$ given by (1) and the coefficients $a_{\alpha \beta}(x)$ as defined in Appendix, i.e.:

$$
\begin{align*}
A w(x)= & \frac{\partial^{2}}{\partial x_{1}^{2}}\left(D_{11}(x) \frac{\partial^{2} w(x)}{\partial x_{1}^{2}}+D_{12}(x) \frac{\partial^{2} w(x)}{\partial x_{2}^{2}}+2 D_{16}(x) \frac{\partial^{2} w(x)}{\partial x_{1} \partial x_{2}}\right) \\
& +\frac{\partial^{2}}{\partial x_{2}^{2}}\left(D_{12}(x) \frac{\partial^{2} w(x)}{\partial x_{1}^{2}}+D_{22}(x) \frac{\partial^{2} w(x)}{\partial x_{2}^{2}}+2 D_{26}(x) \frac{\partial^{2} w(x)}{\partial x_{1} \partial x_{2}}\right) \\
& +\frac{\partial^{2}}{\partial x_{1} \partial x_{2}}\left(2 D_{16}(x) \frac{\partial^{2} w(x)}{\partial x_{1}^{2}}+2 D_{26}(x) \frac{\partial^{2} w(x)}{\partial x_{2}^{2}}+4 D_{66}(x) \frac{\partial^{2} w(x)}{\partial x_{1} \partial x_{2}}\right), \tag{3}
\end{align*}
$$

$\forall x \in \Omega$, where $w$ denotes the deflection of the mid-surface of the plate and the coefficients $D_{i j}(x)$, are the rigidities of the anisotropic material [16], which in terms of a $x_{1}, x_{2}, x_{3}$ co-ordinate system, are given by

$$
\begin{equation*}
D_{i j}(x)=D_{i j}\left(x_{1}, x_{2}\right)=\int_{-h(x) / 2}^{h(x) / 2} \bar{Q}_{i j} x_{3}^{2} \mathrm{~d} x_{3}, \tag{4}
\end{equation*}
$$

where the $\bar{Q}_{i j}$ are the transformed reduced stiffnesses.
The mathematical model allows the consideration of a composite plate. Let us consider a symmetric laminate of uniform thickness $h$, made up of a number of layers each consisting of unidirectional fibre reinforced composite material. The coefficients $D_{i j}$, are given by

$$
\begin{equation*}
D_{i j}=\sum_{k=1}^{N_{1}} \int_{-h_{k} / 2}^{h_{k+1} / 2} \bar{Q}_{i j} x_{3}^{2} \mathrm{~d} x_{3}, \tag{5}
\end{equation*}
$$

where $h_{k}$ and $h_{k+1}$ are the distances from the mid-plane to the top and bottom surface of the $k$ th layer, and $N_{1}$ is the total number of laminated layers.

Free transverse vibrations of the described plates are governed by the following partial differential equation

$$
\begin{equation*}
A(u(x, t))=-\rho h(x) \frac{\partial^{2} u(x, t)}{\partial t^{2}}, \tag{6}
\end{equation*}
$$

where $\rho$ denotes the density of the plate material and $h(x)$ the plate thickness.
Now let us introduce, as coordinate variables, the arc length $s$ of the boundary $\partial \Omega$ and the distance $n$ measured from the boundary and along the exterior normal to $\partial \Omega$. Let us consider that $\partial \Omega$ is an smooth curve represented in the parametric form by the $C^{1}$ function $\gamma:[0, l] \rightarrow \mathbb{R}^{2} ; \gamma=\left(\gamma_{1}(s), \gamma_{2}(s)\right), s \in[0, l]$, where $l=l(\partial \Omega)$ is the length of the boundary $\partial \Omega$. If $\varphi=\varphi(s)$ denotes the angle made by the tangent to $\partial \Omega$ with the positive $x_{1}$ we have the following transformation equations [37]:

$$
\begin{equation*}
x_{1}(n, s)=\gamma_{1}(s)+n \sin \varphi(s), \quad x_{2}(n, s)=\gamma_{2}(s)-n \cos \varphi(s), \tag{7}
\end{equation*}
$$

and the well known relations

$$
\begin{align*}
& \left.\frac{\partial u(x, t)}{\partial x_{1}}\right|_{\partial \Omega}=\frac{\partial u\left(\gamma_{1}(s), \gamma_{2}(s), t\right)}{\partial n} n_{1}-\frac{\partial u\left(\gamma_{1}(s), \gamma_{2}(s), t\right)}{\partial s} n_{2},  \tag{8}\\
& \left.\frac{\partial u(x, t)}{\partial x_{2}}\right|_{\partial \Omega}=\frac{\partial u\left(\gamma_{1}(s), \gamma_{2}(s), t\right)}{\partial n} n_{2}+\frac{\partial u\left(\gamma_{1}(s), \gamma_{2}(s), t\right)}{\partial s} n_{1} . \tag{9}
\end{align*}
$$

The application of the calculus of variations allows us to obtain the boundary conditions which correspond to a vibrating anisotropic plate of arbitrary shape and smooth boundary elastically restrained against rotation and translation. These are given by (see [37])

$$
\begin{align*}
\left.c_{\mathrm{R}}(s) \frac{\partial u}{\partial n}\right|_{\partial \Omega}= & \left.\left(M_{1}(u) n_{1}^{2}(s)+M_{2}(u) n_{2}^{2}(s)+2 H_{12}(u) n_{1}(s) n_{2}(s)\right)\right|_{\partial \Omega},  \tag{10}\\
\left.c_{\mathrm{T}}(s) u\right|_{\partial \Omega}= & -\left(\frac{\partial M_{1}(u)}{\partial x_{1}}+\frac{\partial H_{12}(u)}{\partial x_{2}}\right) n_{1}(s)-\left(\frac{\partial M_{2}(u)}{\partial x_{2}}+\frac{\partial H_{12}(u)}{\partial x_{1}}\right) n_{2}(s) \\
& -\left.\frac{\partial}{\partial s}\left(\left(M_{2}(u)-M_{1}(u)\right) n_{1}(s) n_{2}(s)+H_{12}(u)\left(n_{1}^{2}(s)-n_{2}^{2}(s)\right)\right)\right|_{\partial \Omega}, \tag{11}
\end{align*}
$$

where

$$
\begin{aligned}
& u=u(x, t), \quad M_{1}(u)=-\left(D_{11} \frac{\partial^{2} u}{\partial x_{1}^{2}}+D_{12} \frac{\partial^{2} u}{\partial x_{2}^{2}}+2 D_{16} \frac{\partial^{2} u}{\partial x_{1} \partial x_{2}}\right), \\
& M_{2}(u)=-\left(D_{22} \frac{\partial^{2} u}{\partial x_{2}^{2}}+D_{12} \frac{\partial^{2} u}{\partial x_{1}^{2}}+2 D_{26} \frac{\partial^{2} u}{\partial x_{1} \partial x_{2}}\right), \\
& H_{12}(u)=-\left(D_{16} \frac{\partial^{2} u}{\partial x_{1}^{2}}+D_{26} \frac{\partial^{2} u}{\partial x_{2}^{2}}+2 D_{66} \frac{\partial^{2} u}{\partial x_{1} \partial x_{2}}\right) .
\end{aligned}
$$

In Eqs. (10) and (11) the coefficients $c_{\mathrm{R}}(s)$ and $c_{\mathrm{T}}(s)$ denote the rotational and translational stiffnesses per unit length along the boundary. It is well known that if a differential operator is of order $2 m$, boundary conditions containing derivatives of orders at most $m-1$ are called stable conditions and those containing derivatives of orders higher than $m-1$ are called unstable conditions. Consequently, when the operator in Eq. (1) is of order four and $0 \leqslant c_{\mathrm{R}}, c_{\mathrm{T}}<\infty$, Eqs. (10) and (11) correspond to unstable boundary conditions. When $c_{\mathrm{R}}$, $c_{\mathrm{T}} \rightarrow \infty$, the resulting conditions are stable.

Let $H^{2}(\Omega)$ be the Sobolev space $H^{2}(\Omega)=\left\{u \in L^{2}(\Omega) ; D^{\alpha} u \in L^{2}(\Omega), \forall \alpha, 0 \leqslant|\alpha| \leqslant 2\right\}$, equipped with the norm

$$
\|u\|_{H^{2}(\Omega)}=\left(\sum_{|\alpha| \leqslant 2} \int_{\Omega}\left(D^{\alpha} u\right)^{2} \mathrm{~d} x\right)^{\frac{1}{2}} .
$$

The stable and unstable boundary conditions are of different nature so in order to clearly distinguish them, it is useful to introduce the space $V$ of elements of the Sobolev space $H^{2}(\Omega)$, which satisfy the corresponding stable homogeneous boundary conditions.

Consider the boundary value problem given by Eq. (2) and the boundary conditions (10) and (11) when the variable $t$ is deleted. Then $u(x, t)$ is replaced by $w(x)$. Now this boundary value problem is transformed into one that leads to the concept of weak solution. If we let $c_{\mathrm{R}}, c_{\mathrm{T}} \rightarrow \infty$, in Eqs. (10) and (11), these conditions are reduced to $\left.w(x)\right|_{\partial \Omega}=\left.\frac{\partial w(x)}{\partial n}\right|_{\partial \Omega}=0$. Consequently, since a weak solution of Eq. (2), is a function from the Sobolev space $H^{2}(\Omega)$, the space $V$ is given by

$$
\begin{equation*}
V=\left\{v ; v \in H^{2}(\Omega),\left.v\right|_{\partial \Omega}=\left.\frac{\partial v}{\partial n}\right|_{\partial \Omega}=0 \text { in the sense of traces }\right\} . \tag{12}
\end{equation*}
$$

When the coefficients $c_{\mathrm{R}}$ and $c_{\mathrm{T}}$ take finite values, there are no stable boundary conditions and the space $V$ can be taken as $V=\left\{v ; v \in H^{2}(\Omega)\right\}$.

First we assume that $q(x) \in C(\bar{\Omega})$, and that $w \in C^{(4)}(\bar{\Omega})$ is the classical solution of the problem (2) and (10, 11). If we take an arbitrary function $v \in V$, and multiply Eq. (2) by this function and integrate the result over the domain $\Omega$ we get

$$
\begin{equation*}
\int_{\Omega} A(u(x)) v(x) \mathrm{d} x=\int_{\Omega} q(x) v(x) \mathrm{d} x . \tag{13}
\end{equation*}
$$

Now it is necessary to use the Green formula

$$
\int_{\Omega} w \frac{\partial v}{\partial x_{i}} \mathrm{~d} x=\int_{\partial \Omega} w v n_{i} \mathrm{~d} s-\int_{\Omega} v \frac{\partial w}{\partial x_{i}} \mathrm{~d} x, \quad i=1,2, \quad \forall w, v \in H^{(1)}(\Omega)
$$

where $n_{i}$ denotes the components of the normal exterior to the boundary of $\Omega$. If we apply this formula to the left hand side of Eq. (13) we obtain

$$
\begin{align*}
B(w, v)= & -\int_{\Omega}\left(M_{1}(w) \frac{\partial^{2} v}{\partial x_{1}^{2}}+M_{2}(w) \frac{\partial^{2} v}{\partial x_{2}^{2}}+2 H_{12}(w) \frac{\partial^{2} v}{\partial x_{1} \partial x_{2}}\right) \mathrm{d} x+\int_{\partial \Omega}\left(M_{1}(w) n_{1}+H_{12}(w) n_{2}\right) \frac{\partial v}{\partial x_{1}} \mathrm{~d} s \\
& +\int_{\partial \Omega}\left(M_{2}(w) n_{2}+H_{12}(w) n_{1}\right) \frac{\partial v}{\partial x_{2}} \mathrm{~d} s-\int_{\partial \Omega}\left(\frac{\partial M_{1}(w)}{\partial x_{1}}+\frac{\partial H_{12}(w)}{\partial x_{2}}\right) v n_{1} \mathrm{~d} s \\
& -\int_{\partial \Omega}\left(\frac{\partial M_{2}(w)}{\partial x_{2}}+\frac{\partial H_{12}(w)}{\partial x_{1}}\right) v n_{2} \mathrm{~d} s . \tag{14}
\end{align*}
$$

Since $v \in H^{2}(\Omega)$, the derivatives $\partial v / \partial x_{i} \in H^{1}(\Omega), i=1,2$ have traces, then the derivatives $\partial v(s) / \partial n, \partial v(s) / \partial s$ can be defined. Consequently, if we replace Eqs. (8) and (9) with $u=v$ in Eq. (14) it follows

$$
\begin{align*}
B(w, v)= & -\int_{\Omega}\left(M_{1}(w) \frac{\partial^{2} v}{\partial x_{1}^{2}}+M_{2}(w) \frac{\partial^{2} v}{\partial x_{2}^{2}}+2 H_{12}(w) \frac{\partial^{2} v}{\partial x_{1} \partial x_{2}}\right) \mathrm{d} x \\
& +\int_{\partial \Omega}\left[M_{1}(w) n_{1}^{2}+M_{2}(w) n_{2}^{2}+2 H_{12}(w) n_{1} n_{2}\right] \frac{\partial v}{\partial n} \mathrm{~d} s \\
& +\int_{\partial \Omega}\left[\left(M_{2}(w)-M_{1}(w)\right) n_{1} n_{2}+H_{12}(w)\left(n_{1}^{2}-n_{2}^{2}\right)\right] \frac{\partial v}{\partial s} \mathrm{~d} s \\
& +\int_{\partial \Omega}\left(-\left(\frac{\partial M_{1}(w)}{\partial x_{1}}+\frac{\partial H_{12}(w)}{\partial x_{2}}\right) n_{1}-\left(\frac{\partial M_{2}(w)}{\partial x_{2}}+\frac{\partial H_{12}(w)}{\partial x_{1}}\right) n_{2}\right) v \mathrm{~d} s . \tag{15}
\end{align*}
$$

On the other hand, if we denote $P=\left(M_{2}-M_{1}\right) n_{1} n_{2}+H_{12}\left(n_{1}^{2}-n_{2}^{2}\right)$, we have [37]

$$
\begin{equation*}
\int_{\partial \Omega} P \frac{\partial v}{\partial s} \mathrm{~d} s=-\int_{\partial \Omega} \frac{\partial P}{\partial s} v \mathrm{~d} s \tag{16}
\end{equation*}
$$

and replacing Eq. (16) in Eq. (15) it leads to

$$
\begin{align*}
B(w, v)= & -\int_{\Omega}\left(M_{1}(w) \frac{\partial^{2} v}{\partial x_{1}^{2}}+M_{2}(w) \frac{\partial^{2} v}{\partial x_{2}^{2}}+2 H_{12}(w) \frac{\partial^{2} v}{\partial x_{1} \partial x_{2}}\right) \mathrm{d} x \\
& +\int_{\partial \Omega}\left[M_{1}(w) n_{1}^{2}+M_{2}(w) n_{2}^{2}+2 H_{12}(w) n_{1} n_{2}\right] \frac{\partial v}{\partial n} \mathrm{~d} s \\
& +\int_{\partial \Omega}\left[-\left(\frac{\partial M_{1}(w)}{\partial x_{1}}+\frac{\partial H_{12}(w)}{\partial x_{2}}\right) n_{1}-\left(\frac{\partial M_{2}(w)}{\partial x_{2}}+\frac{\partial H_{12}(w)}{\partial x_{1}}\right) n_{2}\right] v \mathrm{~d} s \\
& -\int_{\partial \Omega} \frac{\partial}{\partial s}\left[\left(M_{2}(w)-M_{1}(w)\right) n_{1} n_{2}+H_{12}(w)\left(n_{1}^{2}-n_{2}^{2}\right)\right] v \mathrm{~d} s . \tag{17}
\end{align*}
$$

Finally, from Eqs. (10) and (11) we obtain

$$
\begin{equation*}
B(w, v)=-\int_{\Omega}\left(M_{1}(w) \frac{\partial^{2} v}{\partial x_{1}^{2}}+M_{2}(w) \frac{\partial^{2} v}{\partial x_{2}^{2}}+2 H_{12}(w) \frac{\partial^{2} v}{\partial x_{1} \partial x_{2}}\right) \mathrm{d} x+\int_{\partial \Omega} c_{\mathrm{R}}(s) \frac{\partial w}{\partial n} \frac{\partial v}{\partial n} \mathrm{~d} s+\int_{\partial \Omega} c_{\mathrm{T}}(s) w v \mathrm{~d} s \tag{18}
\end{equation*}
$$

The double integral in (18) constitutes the bilinear form $A(w, v)$ associated with the differential operator $A$ defined in (3) and the curvilinear integrals constitute the boundary bilinear form $a(w, v)$. The equality (13) now assumes the form

$$
B(w, v)=\int_{\Omega} q v \mathrm{~d} x=(q, v)_{L^{2}(\Omega)}
$$

Now it is possible to weaken the assumptions. Let $q(x) \in L^{2}(\Omega), D_{i j}(x), c_{\mathrm{R}}(s), c_{\mathrm{T}}(s)$ bounded measurable functions in $\Omega$, and $h \in C(\bar{\Omega})$. A function $w \in H^{2}(\Omega)$ is called a weak solution of the boundary value problem (2), (10) and (11) if
(i) $w \in H^{2}(\Omega)$,
(ii) $B(w, v)=(q, v)_{L^{2}(\Omega)}, \quad \forall v \in V$.

### 2.2. Non-smooth boundary

Now let us assume that the boundary $\partial \Omega$ consists of a finite number of smooth curves and therefore has at most a finite number of corner points. To be definite let us suppose that the four points $P_{i}, i=1, \ldots, 4$, divide the boundary in the disjoint parts $\partial \Omega_{i}, i=1, \ldots, 4$, represented parametrically by the functions $\gamma^{(i)}, i=1, \ldots, 4$ respectively, as it is shown in Fig. 2. In this case Eq. (16) is not valid. The functions $n_{1}(s), n_{2}(s)$ are not continuous, and we would get additional terms in the corner points:


Fig. 2. Anisotropic plate with corner points.

$$
\begin{align*}
\int_{\partial \Omega} P \frac{\partial v}{\partial s} \mathrm{~d} s= & \sum_{i=1}^{4} \int_{\partial \Omega_{i}} P \frac{\partial v}{\partial s} \mathrm{~d} s \\
= & -\int_{\partial \Omega} \frac{\partial P}{\partial s} v \mathrm{~d} s+\left.(P v)\left(\gamma_{1}^{(1)}(s), \gamma_{2}^{(1)}(s)\right)\right|_{l_{0}} ^{l_{1}}+\left.(P v)\left(\gamma_{1}^{(2)}(s), \gamma_{2}^{(2)}(s)\right)\right|_{l_{1}} ^{l_{2}}+\left.(P v)\left(\gamma_{1}^{(3)}(s), \gamma_{2}^{(3)}(s)\right)\right|_{l_{2}} ^{l_{3}} \\
& +\left.(P v)\left(\gamma_{1}^{(4)}(s), \gamma_{2}^{(4)}(s)\right)\right|_{l_{3}} ^{l_{4}}, \tag{21}
\end{align*}
$$

with $l_{0}=0, l_{i}=l\left(\partial \Omega_{1} \cup \ldots \cup \partial \Omega_{i}\right), i=1, \ldots, 4$. Replacing Eq. (21) in Eq. (15) and taking into account the boundary conditions (10) and (11) we get

$$
\begin{align*}
B(w, v)= & -\int_{\Omega}\left(M_{1}(w) \frac{\partial^{2} v}{\partial x_{1}^{2}}+M_{2}(w) \frac{\partial^{2} v}{\partial x_{2}^{2}}+2 H_{12}(w) \frac{\partial^{2} v}{\partial x_{1} \partial x_{2}}\right) \mathrm{d} x+\int_{\partial \Omega} c_{\mathrm{R}}(s) \frac{\partial w}{\partial n} \frac{\partial v}{\partial n} \mathrm{~d} s \\
& +\int_{\partial \Omega} c_{\mathrm{T}}(s) w v \mathrm{~d} s+\left.\sum_{i=1}^{4}(P v)\left(\gamma_{1}^{(i)}(s), \gamma_{2}^{(i)}(s)\right)\right|_{l_{i-1}} ^{l_{i}} . \tag{22}
\end{align*}
$$

## 3. The continuity and $V$ - ellipticity of the bilinear form $B$

As stated above, from Eq. (18) we have $B(w, v)=A(w, v)+a(w, v)$, where

$$
\begin{align*}
& A(w, v)=-\int_{\Omega}\left(M_{1}(w) \frac{\partial^{2} v}{\partial x_{1}^{2}}+M_{2}(w) \frac{\partial^{2} v}{\partial x_{2}^{2}}+2 H_{12}(w) \frac{\partial^{2} v}{\partial x_{1} \partial x_{2}}\right) \mathrm{d} x  \tag{23}\\
& a(w, v)=\int_{\partial \Omega} c_{\mathrm{R}}(s) \frac{\partial w}{\partial n} \frac{\partial v}{\partial n} \mathrm{~d} s+\int_{\partial \Omega} c_{\mathrm{T}}(s) w v \mathrm{~d} s \tag{24}
\end{align*}
$$

If we use the notation introduced in Eq. (1) and define the coefficients

$$
\begin{array}{ll}
K_{i j}(x)=D_{i j}(x), \quad i, j=1,2, & K_{21}=K_{12}, \quad K_{i 3}(x)=2 D_{i 6}(x), \quad i=1,2, \\
K_{3 j}(x)=2 D_{j 6}(x), \quad j=1,2, & K_{33}(x)=4 D_{66}(x),
\end{array}
$$

and the multi-index vectors $\alpha_{1}=(2,0), \alpha_{2}=(0,2), \alpha_{3}=(1,1)$, Eq. (23) is reduced to

$$
A(w, v)=\int_{\Omega}\left[\sum_{i=1}^{3}\left(\sum_{j=1}^{3} K_{i j}(x) D^{\alpha_{j}} w(x)\right) D^{\alpha_{i}} v(x)\right] \mathrm{d} x .
$$

Consequently we have

$$
\begin{aligned}
|A(w, v)| & \leqslant \int_{\Omega}\left[\sum_{i=1}^{3}\left(\sum_{j=1}^{3}\left|K_{i j}(x)\right|\left|D^{\alpha_{j}} w(x)\right|\right)\left|D^{\alpha_{i}} v(x)\right|\right] \mathrm{d} x \\
& \leqslant K \sum_{i=1}^{3} \sum_{j=1}^{3} \int_{\Omega}\left|D^{\alpha_{j}} w(x)\right|\left|D^{\alpha_{i}} v(x)\right| \mathrm{d} x \\
& \leqslant K \sum_{i=1}^{3} \sum_{j=1}^{3}\left[\left(\int_{\Omega}\left|D^{\alpha_{j}} w(x)\right|^{2} \mathrm{~d} x\right)^{1 / 2}\left(\int_{\Omega}\left|D^{\alpha_{i}} v(x)\right|^{2} \mathrm{~d} x\right)^{1 / 2}\right] \\
& \leqslant K \sum_{i=1}^{3} \sum_{j=1}^{3}\left(\|w\|_{H^{2}(\Omega)}\|v\|_{H^{2}(\Omega)}\right)
\end{aligned}
$$

where $K=\max _{1 \leqslant i, j \leqslant 3}\left(\left\|K_{i j}\right\|_{L^{\infty}(\Omega)}\right)$. From this inequality there follows the existence of a constant $C_{1}>0$, such that

$$
\begin{equation*}
|A(w, v)| \leqslant C_{1}\|w\|_{H^{2}(\Omega)}\|v\|_{H^{2}(\Omega)}, \quad \forall w, v \in H^{2}(\Omega) \tag{25}
\end{equation*}
$$

From (24) we have

$$
\begin{equation*}
|a(w, v)| \leqslant \int_{\partial \Omega}\left|c_{\mathrm{R}}(s) \frac{\partial w}{\partial n} \frac{\partial v}{\partial n}\right| \mathrm{d} s+\int_{\partial \Omega}\left|c_{\mathrm{T}}(s) w v\right| \mathrm{d} s \leqslant c_{R_{0}} \int_{\partial \Omega}\left|\frac{\partial w}{\partial n} \frac{\partial v}{\partial n}\right| \mathrm{d} s+c_{T_{0}} \int_{\partial \Omega}|w v| \mathrm{d} s, \tag{26}
\end{equation*}
$$

where $c_{R_{0}}=\left\|c_{\mathrm{R}}\right\|_{L^{\infty}(\partial \Omega)}$ and $c_{T_{0}}=\left\|c_{\mathrm{T}}\right\|_{L^{\infty}(\partial \Omega)}$.
Since $w, v \in H^{2}(\Omega)$, then $\frac{\partial w}{\partial x_{i}}, \frac{\partial v}{\partial x_{i}} \in H^{1}(\Omega), i=1,2$, and consequently these functions have traces which belong to $L^{2}(\partial \Omega)$. Moreover, from the trace theorem $[38,39]$ there exist a constant $C_{2}>0$ such that

$$
\begin{aligned}
& \left\|\frac{\partial w}{\partial n}\right\|_{L^{2}(\partial \Omega)} \leqslant C_{2}\|w\|_{H^{2}(\Omega)}, \\
& \left\|\frac{\partial v}{\partial n}\right\|_{L^{2}(\partial \Omega)} \leqslant C_{2}\|v\|_{H^{2}(\Omega)}
\end{aligned}
$$

Then we have

$$
\int_{\partial \Omega}\left|\frac{\partial w}{\partial n}\right|\left|\frac{\partial v}{\partial n}\right|^{\mathrm{d} s} \leqslant\left(\int_{\partial \Omega}\left|\frac{\partial w}{\partial n}\right|^{2} \mathrm{~d} s\right)^{1 / 2}\left(\int_{\partial \Omega}\left|\frac{\partial v}{\partial n}\right|^{2} \mathrm{~d} s\right)^{1 / 2} \leqslant C_{2}^{2}\|w\|_{H^{2}(\Omega)}\|v\|_{H^{2}(\Omega)} .
$$

Besides, there exists a constant $C_{3}$, such that

$$
\begin{aligned}
& \|w\|_{L^{2}(\partial \Omega)} \leqslant C_{3}\|w\|_{H^{1}(\Omega)} \leqslant C_{3}\|w\|_{H^{2}(\Omega)}, \\
& \|v\|_{L^{2}(\partial \Omega)} \leqslant C_{3}\|v\|_{H^{1}(\Omega)} \leqslant C_{3}\|v\|_{H^{2}(\Omega)} .
\end{aligned}
$$

In consequence, we have

$$
\int_{\partial \Omega}\left|w\left\|v \mid \mathrm{d} s \leqslant\left(\int_{\partial \Omega}|w|^{2} \mathrm{~d} s\right)^{1 / 2}\left(\int_{\partial \Omega}|v|^{2} \mathrm{~d} s\right)^{1 / 2} \leqslant C_{3}^{2}\right\| w\left\|_{H^{2}(\Omega)}\right\| v \|_{H^{2}(\Omega)} .\right.
$$

From the replacement of these estimates in Eq. (26) there follows

$$
\begin{equation*}
|a(w, v)| \leqslant C_{4}\|w\|_{H^{2}(G)}\|v\|_{H^{2}(G)}, \forall v, w \in H^{2}(\Omega), \tag{27}
\end{equation*}
$$

where $C_{4}=\max \left\{c_{R_{0}} C_{2}^{2}, c_{T_{0}} C_{3}^{2}\right\}$.
From Eqs. (25) and (27) we have

$$
\begin{equation*}
|B(w, v)| \leqslant C_{5}\|w\|_{H^{2}(\Omega)}\|v\|_{H^{2}(\Omega)}, \quad \forall v, w \in H^{2}(\Omega) \tag{28}
\end{equation*}
$$

where $C_{5}=C_{1}+C_{4}$.
The inequality (28) implies that $B(w, v)$ is continuous on the product space $H^{2}(\Omega) \times H^{2}(\Omega)$.
Now it is necessary to prove that the bilinear form $B(w, v)$ is $V$ - elliptic, in order to demonstrate that the problem under consideration has exactly one weak solution $w[38,39]$. If we replace $w=v$, in Eqs. (23) and (24) we obtain

$$
\begin{align*}
B(v, v)= & A(v, v)+a(v, v) \\
= & \int_{\Omega}\left(D_{11}\left(\frac{\partial^{2} v}{\partial x_{1}^{2}}\right)^{2}+2 D_{12} \frac{\partial^{2} v}{\partial x_{1}^{2}} \frac{\partial^{2} v}{\partial x_{2}^{2}}+D_{22}\left(\frac{\partial^{2} v}{\partial x_{2}^{2}}\right)^{2}+4 D_{16} \frac{\partial^{2} v}{\partial x_{1}^{2}} \frac{\partial^{2} v}{\partial x_{1} \partial x_{2}}\right. \\
& \left.+4 D_{26} \frac{\partial^{2} v}{\partial x_{2}^{2}} \frac{\partial^{2} v}{\partial x_{1} \partial x_{2}}+4 D_{66}\left(\frac{\partial^{2} v}{\partial x_{1} \partial x_{2}}\right)^{2}\right) \mathrm{d} x+\int_{\partial \Omega} c_{\mathrm{R}}(s)\left(\frac{\partial v}{\partial n}\right)^{2} \mathrm{~d} s+\int_{\partial \Omega} c_{\mathrm{T}}(s) v^{2} \mathrm{~d} s . \tag{29}
\end{align*}
$$

It is known from the theory of elasticity that the quadratic form which represents twice the potential energy density of an elastic body is positive definite, i.e., there exists a constant $C_{6}>0$ so that

$$
\begin{equation*}
2 W(\mathbf{u})=\sum_{i, k, l, m=1}^{3} c_{i k l m} \varepsilon_{i k}(\mathbf{u}) \varepsilon_{l m}(\mathbf{u}) \geqslant C_{6}\left(\sum_{i, k=1}^{3} \varepsilon_{i k}^{2}(\mathbf{u})\right) \tag{30}
\end{equation*}
$$

where $c_{i k l m}$ are the stiffness matrix coefficients, $\varepsilon_{i k}$ the strains and $\mathbf{u}$ is the displacement vector in terms of a $x_{1}$, $x_{2}, x_{3}$ co-ordinate system. Under the assumptions of the considered anisotropic plate theory, the rigidities are given by (4). Then, the integration in the inequality (30) with respect to $x_{1}, x_{2}$ and $x_{3}$, leads to

$$
\begin{aligned}
& \int_{\Omega}\left[\int _ { - h ( x ) / 2 } ^ { h ( x ) / 2 } \left(\bar{Q}_{11}\left(\frac{\partial^{2} w(x)}{\partial x_{1}^{2}}\right)^{2}+2 \bar{Q}_{12} \frac{\partial^{2} w(x)}{\partial x_{1}^{2}} \frac{\partial^{2} w(x)}{\partial x_{2}^{2}}+4 \bar{Q}_{16} \frac{\partial^{2} w(x)}{\partial x_{1}^{2}} \frac{\partial^{2} w(x)}{\partial x_{1} \partial x_{2}}+\bar{Q}_{22}\left(\frac{\partial^{2} w}{\partial x_{2}^{2}}\right)^{2}\right.\right. \\
& \left.\left.\quad+4 \bar{Q}_{26} \frac{\partial^{2} w(x)}{\partial x_{2}^{2}} \frac{\partial^{2} w(x)}{\partial x_{1} \partial x_{2}}+4 \bar{Q}_{66}\left(\frac{\partial^{2} w(x)}{\partial x_{1} \partial x_{2}}\right)^{2}\right) x_{3}^{2} \mathrm{~d} x_{3}\right] \mathrm{d} x \\
& \quad \geqslant C_{6} \int_{\Omega} \frac{h^{3}(x)}{12}\left[\left(\frac{\partial^{2} w(x)}{\partial x_{1}^{2}}\right)^{2}+2\left(\frac{\partial^{2} w(x)}{\partial x_{1} \partial x_{2}}\right)^{2}+\left(\frac{\partial^{2} w(x)}{\partial x_{2}^{2}}\right)^{2}\right] \mathrm{d} x .
\end{aligned}
$$

Then

$$
\begin{align*}
& \int_{\Omega}\left[\int _ { - h ( x ) / 2 } ^ { h ( x ) / 2 } \left(\bar{Q}_{11}\left(\frac{\partial^{2} w(x)}{\partial x_{1}^{2}}\right)^{2}+2 \bar{Q}_{12} \frac{\partial^{2} w(x)}{\partial x_{1}^{2}} \frac{\partial^{2} w(x)}{\partial x_{2}^{2}}+4 \bar{Q}_{16} \frac{\partial^{2} w(x)}{\partial x_{1}^{2}} \frac{\partial^{2} w(x)}{\partial x_{1} \partial x_{2}}+\bar{Q}_{22}\left(\frac{\partial^{2} w}{\partial x_{2}^{2}}\right)^{2}\right.\right. \\
& \left.\left.\quad+4 \bar{Q}_{26} \frac{\partial^{2} w(x)}{\partial x_{2}^{2}} \frac{\partial^{2} w(x)}{\partial x_{1} \partial x_{2}}+4 \bar{Q}_{66}\left(\frac{\partial^{2} w(x)}{\partial x_{1} \partial x_{2}}\right)^{2}\right) x_{3}^{2} \mathrm{~d} x_{3}\right] \mathrm{d} x \\
& \quad \geqslant C_{7} \int_{\Omega}\left[\left(\frac{\partial^{2} w(x)}{\partial x_{1}^{2}}\right)^{2}+2\left(\frac{\partial^{2} w(x)}{\partial x_{1} \partial x_{2}}\right)^{2}+\left(\frac{\partial^{2} w(x)}{\partial x_{2}^{2}}\right)^{2}\right] \mathrm{d} x, \tag{31}
\end{align*}
$$

where $C_{7}=\frac{C_{6}}{12} \min _{x \in \bar{\Omega}}\left\{h(x)^{3}\right\}$. When $c_{\mathrm{T}}(s) \geqslant c_{\mathrm{M}}>0$, with $c_{\mathrm{M}}$ constant, from Eqs. (29) and (31) with $w=v$ we have

$$
\begin{equation*}
B(v, v) \geqslant C_{7} \int_{\Omega}\left(\left(\frac{\partial^{2} v}{\partial x_{1}^{2}}\right)^{2}+\left(\frac{\partial^{2} v}{\partial x_{1} \partial x_{2}}\right)^{2}+\left(\frac{\partial^{2} v}{\partial x_{2}^{2}}\right)^{2}\right) \mathrm{d} x+\int_{\partial \Omega} c_{\mathrm{T}}(s) v^{2} \mathrm{~d} s \geqslant C_{8}\left[\sum_{|\alpha|=2} \int_{\Omega}\left(D^{\alpha} v\right)^{2} \mathrm{~d} x+\int_{\partial \Omega} v^{2} \mathrm{~d} s\right], \tag{32}
\end{equation*}
$$

where $C_{8}=\min \left\{C_{7}, c_{\mathrm{M}}\right\}$.
By applying Friedrichs inequality in the case of a domain $\Omega \subset \mathbb{R}^{2}$ with piecewise smooth boundary $\partial \Omega$ [38,39]

$$
\|u\|_{H^{2}(\Omega)}^{2} \leqslant C_{9}\left(\sum_{|\alpha|=2} \int_{\Omega}\left(D^{\alpha} u\right)^{2} \mathrm{~d} x+\int_{\partial \Omega} u^{2}(s) \mathrm{d} s\right), \quad C_{9}>0, \quad \forall u \in H^{2}(\Omega),
$$

we obtain

$$
\begin{equation*}
B(v, v) \geqslant \frac{C_{8}}{C_{9}}\|v\|_{H^{2}(\Omega)}^{2}, \quad \forall v \in V \tag{33}
\end{equation*}
$$

The inequality (33) implies that $B(w, v)$ is $V$ - elliptic. Since it has been demonstrated that $B(w, v)$ is continuous on the product space $H^{2}(\Omega) \times H^{2}(\Omega)$ and it is $V$ - elliptic, the boundary value problem under consideration has exactly one weak solution. In the case of symmetrically laminated plates the coefficients $D_{i j}$ are given by Eq. (5) and the demonstration of the continuity and $V$ - ellipticity of $B(w, v)$ is totally analogue.

In the case of non-smooth boundary, Eq. (22) of the bilinear form includes the terms $\left.\sum_{i=1}^{4}(P v)\left(\gamma_{1}^{(i)}(s), \gamma_{2}^{(i)}(s)\right)\right|_{l_{i-1}} ^{l_{i}}$, which do not allow to use the above demonstration to prove the $V$ - ellipticity of the $B(w, v)$ form. Nevertheless, the application of the techniques of the variational calculus leads to the conclusion that when the boundary is simply supported (with or without rotational restraints) the function $w$ equals zero along the boundary. In consequence $v$ also equals zero and

$$
\begin{equation*}
\left.\sum_{i=1}^{4}(P v)\left(\gamma_{1}^{(i)}(s), \gamma_{2}^{(i)}(s)\right)\right|_{l_{i-1}} ^{l_{i}}=0 \tag{34}
\end{equation*}
$$

When the boundary is free or elastically restrained against translation in the neighbourhood of the corner points it is $v \neq 0$ and additional boundary conditions exist [37]. These are given by

$$
\begin{align*}
& P\left(\gamma_{1}^{(1)}\left(l_{1}\right), \gamma_{2}^{(1)}\left(l_{1}\right)\right)-P\left(\gamma_{1}^{(2)}\left(l_{1}\right), \gamma_{2}^{(2)}\left(l_{1}\right)\right)=0, \\
& P\left(\gamma_{1}^{(2)}\left(l_{2}\right), \gamma_{2}^{(2)}\left(l_{2}\right)\right)-P\left(\gamma_{1}^{(3)}\left(l_{2}\right), \gamma_{2}^{(3)}\left(l_{2}\right)\right)=0, \\
& P\left(\gamma_{1}^{(3)}\left(l_{3}\right), \gamma_{2}^{(3)}\left(l_{3}\right)\right)-P\left(\gamma_{1}^{(4)}\left(l_{3}\right), \gamma_{2}^{(4)}\left(l_{3}\right)\right)=0,  \tag{35}\\
& P\left(\gamma_{1}^{(1)}\left(l_{0}\right), \gamma_{2}^{(1)}\left(l_{0}\right)\right)-P\left(\gamma_{1}^{(4)}\left(l_{4}\right), \gamma_{2}^{(4)}\left(l_{4}\right)\right)=0 .
\end{align*}
$$

The use of Eq. (35) leads again to Eq. (34).
As a consequence of Eq. (34) the proof of the $V$ - ellipticity of $B(w, v)$ is the same as in the case of smooth boundary.

## 4. The boundary and eigenvalue problem

Free transverse vibrations of the anisotropic plate described above are governed by the corresponding boundary conditions and Eq. (6). In the case of normal modes of vibrations we take $u(x, t)=w(x) \cos \omega t$, consequently Eq. (6) is reduced to

$$
\begin{equation*}
A(w(x))-\rho h(x) \omega^{2} w(x)=0, \tag{36}
\end{equation*}
$$

where $\omega$ is the radian natural frequency.
Let us consider the eigenvalue problem given by Eq. (36) and the boundary conditions (10) and (11) with $u(x, t)$ replaced by $w(x)$. We rewrite it as the problem of finding a number $\lambda$ and a function $w$ such that
(i) $w \in H^{2}(\Omega), w \neq 0$,
(ii) $B(w, v)-\lambda(w, v)=0, \forall v \in V$,
where $V$ is the space of functions which satisfy the corresponding homogeneous stable boundary conditions, $\lambda=\rho h_{0} \omega^{2},(w, v)=\int_{\Omega} f(x) w(x) v(x) \mathrm{d} x$ and the thickness of the plate is given by $h(x)=h_{0} f(x)$, where $V$ is the space of elements which satisfy the corresponding stable homogeneous boundary conditions, previously defined. Since the bilinear form $B(w, v)$ is symmetric (as it can be seen from Eqs. (23) and (24)), continuous and $V$ - elliptic, it has a countable set of eigenvalues which are given by $[38,39]$

$$
\begin{aligned}
& \lambda_{1}=\min \left\{\frac{B(v, v)}{(v, v)}, v \in V, v \neq 0\right\}, \\
& \lambda_{n}=\min \left\{\frac{B(v, v)}{(v, v)} v \in V, v \neq 0,\left(v, v_{1}\right)=0, \ldots,\left(v, v_{n-1}\right)=0\right\}, \quad n=2,3, \ldots
\end{aligned}
$$

Let us introduce a new inner product $((\cdot, \cdot))$ in space $V$, given by $((w, v))=B(w, v), \forall w, v \in V$. If the sequence $\left\{v_{i}(x)\right\}$ is a base in the space $(V,((\cdot, \cdot)))$, the Ritz method leads to the equation

$$
\left|\begin{array}{lll}
\left(\left(v_{1}, v_{1}\right)\right)-\lambda\left(v_{1}, v_{1}\right) & \ldots & \left(\left(v_{1}, v_{n}\right)\right)-\lambda\left(v_{1}, v_{n}\right)  \tag{37}\\
\left(\left(v_{n}, v_{1}\right)\right)-\lambda\left(v_{n}, v_{1}\right) & \ldots & \left(\left(v_{n}, v_{n}\right)\right)-\lambda\left(v_{n}, v_{n}\right)
\end{array}\right|=0 .
$$

Approximate eigenvalues can be obtained from this equation using adequate functions $v_{i}(x)$.

## 5. Analytical approximate solution

### 5.1. Strain and kinetic energies

The maximum strain energy of the anisotropic plate described above, can be expressed in rectangular coordinates as

$$
\begin{equation*}
U_{\max }=\frac{1}{2} \int_{\Omega}\left[D_{11}\left(\frac{\partial^{2} w}{\partial x_{1}^{2}}\right)^{2}+2 D_{12} \frac{\partial^{2} w}{\partial x_{1}^{2}} \frac{\partial^{2} w}{\partial x_{2}^{2}}+D_{22}\left(\frac{\partial^{2} w}{\partial x_{2}^{2}}\right)^{2}+4 D_{16} \frac{\partial^{2} w}{\partial x_{1}^{2}} \frac{\partial^{2} w}{\partial x_{1} \partial x_{2}}+4 D_{26} \frac{\partial^{2} w}{\partial x_{2}^{2}} \frac{\partial^{2} w}{\partial x_{1} \partial x_{2}}+4 D_{66}\left(\frac{\partial^{2} w}{\partial x_{1} \partial x_{2}}\right)^{2}\right] \mathrm{d} x \tag{38}
\end{equation*}
$$

where the integration is carried out over the entire plate domain $\Omega$ and the coefficients $D_{i j}$ are given by Eq. (4) and/or Eq. (5).

The maximum kinetic energy for free transverse vibrations of the plate is given by

$$
\begin{equation*}
T_{\max }=\frac{\rho \omega^{2}}{2} \int_{\Omega} h w^{2} \mathrm{~d} x \tag{39}
\end{equation*}
$$

Finally, the maximum potential energy due to the rotational and translational restraints on the boundary are respectively given by

$$
\begin{align*}
& U_{R, \max }=\frac{1}{2} \int_{\partial \Omega} c_{\mathrm{R}}\left(\frac{\partial w}{\partial n}\right)^{2} \mathrm{~d} s=\frac{1}{2} \int_{\partial \Omega} c_{\mathrm{R}}\left(\frac{\partial w}{\partial x_{1}} n_{1}+\frac{\partial w}{\partial x_{2}} n_{2}\right)^{2} \mathrm{~d} s,  \tag{40}\\
& U_{T, \max }=\frac{1}{2} \int_{\partial \Omega} c_{\mathrm{T}} w^{2} \mathrm{~d} s . \tag{41}
\end{align*}
$$

### 5.2. Smooth boundary

Let us consider an elliptical anisotropic plate as shown in Fig. 3a. In the case of composite material, the fibre angle is indicated by $\beta$ measured from the $x_{1}$ axis to the fibre orientation. The considered laminate is of uniform thickness $h$ and, in general, it is made up of a number of layers each consisting of unidirectional fibre reinforced composite material, and all laminae having equal thicknesses.

Let us introduce the following co-ordinates $x=x_{1} / a, y=x_{2} / b$, where $a$ and $b$ are the semi-major and minor axes of the ellipse (Fig. 3a). After this co-ordinate transformation the two dimensional plate domain $\Omega$ is transformed in

$$
\Omega^{*}=\left\{(x, y),-1 \leqslant x \leqslant 1,-\sqrt{1-x^{2}} \leqslant y \leqslant \sqrt{1-x^{2}}\right\} .
$$



Fig. 3. General description of the plate geometries (a) elliptical plate (b) trapezoidal plate.

The plate deflection is represented by the following approximate function

$$
\begin{equation*}
w(x, y)=\sum_{i=1}^{M} \sum_{j=1}^{N} c_{i j} x^{i-1} y^{j-1}\left(x^{2}+y^{2}-1\right)^{p} \tag{42}
\end{equation*}
$$

Table 1
Convergence of frequency parameters $\omega a^{2} \sqrt{\rho h / D_{0}}$, for symmetrically laminated graphite-epoxy elliptical plates with aspect ratio $a / b=2$ and stacking sequence $(-\beta, \beta, \beta,-\beta)$

| $\beta$ |  | Mode sequence number |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 5 | 6 |
| Clamped |  |  |  |  |  |  |  |
| $30^{\circ}$ | Present ( $4 \times 4$ ) | 11.6408 | 17.9079 | 28.6163 | 29.0343 | 39.2058 | 43.9370 |
|  | Present ( $5 \times 5$ ) | 11.6379 | 17.9022 | 27.4212 | 29.0330 | 37.0721 | 41.9376 |
|  | Present ( $6 \times 6$ ) | 11.6379 | 17.8889 | 27.3915 | 28.9727 | 37.0478 | 39.7933 |
|  | Present ( $7 \times 7$ ) | 11.6379 | 17.8888 | 27.3371 | 28.9726 | 36.9160 | 39.6787 |
|  | Present ( $8 \times 8$ ) | 11.6379 | 17.8886 | 27.3366 | 28.9711 | 36.9153 | 39.4991 |
|  | Present ( $9 \times 9$ ) | 11.6379 | 17.8885 | 27.3349 | 28.9711 | 36.9111 | 39.4955 |
|  | Present ( $10 \times 10$ ) | 11.6379 | 17.8884 | 27.3348 | 28.9710 | 36.9110 | 39.4869 |
| $60^{\circ}$ | Present ( $4 \times 4$ ) | 19.9234 | 24.8471 | 35.8877 | 47.2497 | 53.0701 | 62.3723 |
|  | Present ( $5 \times 5$ ) | 19.8474 | 24.8390 | 31.1138 | 46.8896 | 52.7422 | 60.7105 |
|  | Present ( $6 \times 6$ ) | 19.8473 | 24.5531 | 31.0905 | 38.8169 | 52.7105 | 60.5350 |
|  | Present ( $7 \times 7$ ) | 19.8435 | 24.5523 | 30.38099 | 38.7610 | 48.1139 | 52.6762 |
|  | Present ( $8 \times 8$ ) | 19.8435 | 24.5330 | 30.3781 | 37.3171 | 48.0017 | 52.6754 |
|  | Present ( $9 \times 9$ ) | 19.8434 | 24.5330 | 30.3141 | 37.3090 | 45.4093 | 52.6729 |
|  | Present ( $10 \times 10$ ) | 19.8434 | 24.5324 | 30.3139 | 37.1388 | 45.3900 | 52.6710 |
| Simply supported |  |  |  |  |  |  |  |
| $30^{\circ}$ | Present ( $4 \times 4$ ) | 5.6325 | 10.9589 | 19.3809 | 23.2373 | 34.3465 | 45.3799 |
|  | Present ( $5 \times 5$ ) | 5.6289 | 10.9344 | 19.3749 | 19.5843 | 26.9199 | 35.4697 |
|  | Present ( $6 \times 6$ ) | 5.6289 | 10.9056 | 19.1467 | 19.4887 | 26.7986 | 31.1930 |
|  | Present ( $7 \times 7$ ) | 5.6288 | 10.9052 | 19.1463 | 19.3198 | 26.3396 | 30.8435 |
|  | Present ( $8 \times 8$ ) | 5.6288 | 10.9047 | 19.1414 | 19.3171 | 26.3364 | 30.2541 |
|  | Present ( $9 \times 9$ ) | 5.6288 | 10.9047 | 19.1414 | 19.3128 | 26.3230 | 30.2370 |
|  | Present ( $10 \times 10$ ) | 5.6288 | 10.9047 | 19.1413 | 19.3128 | 26.3229 | 30.2114 |
| $60^{\circ}$ | Present ( $4 \times 4$ ) | 9.5079 | 13.9353 | 26.6385 | 35.2172 | 41.3175 | 45.9420 |
|  | Present ( $5 \times 5$ ) | 9.4355 | 13.8964 | 19.8031 | 34.8089 | 39.9247 | 43.9391 |
|  | Present ( $6 \times 6$ ) | 9.4354 | 13.6009 | 19.7100 | 27.3221 | 34.6310 | 42.2869 |
|  | Present ( $7 \times 7$ ) | 9.4335 | 13.6004 | 18.8879 | 27.1380 | 34.5677 | 36.6845 |
|  | Present ( $8 \times 8$ ) | 9.4334 | 13.5860 | 18.8846 | 25.3029 | 34.5628 | 36.4022 |
|  | Present ( $9 \times 9$ ) | 9.4334 | 13.5859 | 18.8230 | 25.2908 | 32.9025 | 34.5592 |
|  | Present ( $10 \times 10$ ) | 9.4334 | 13.5857 | 18.8226 | 25.0970 | 32.8717 | 34.5575 |
| Free |  |  |  |  |  |  |  |
| $30^{\circ}$ | Present ( $4 \times 4$ ) | 2.4484 | 5.3011 | 8.7558 | 13.5754 | 13.9454 | 24.5528 |
|  | Present ( $5 \times 5$ ) | 2.3696 | 5.1668 | 8.5328 | 11.2504 | 11.9576 | 19.2085 |
|  | Present ( $6 \times 6$ ) | 2.3695 | 5.1498 | 7.7936 | 11.2128 | 11.8892 | 17.5239 |
|  | Present ( $7 \times 7$ ) | 2.3661 | 5.1359 | 7.7804 | 11.0296 | 11.7478 | 16.0857 |
|  | Present ( $8 \times 8$ ) | 2.3661 | 5.1359 | 7.7212 | 11.0294 | 11.7422 | 15.9459 |
|  | Present ( $9 \times 9$ ) | 2.3661 | 5.1359 | 7.7211 | 11.0230 | 11.7413 | 15.7152 |
|  | Present ( $10 \times 10$ ) | 2.3661 | 5.1359 | 7.7209 | 11.0230 | 11.7413 | 15.7127 |
| $60^{\circ}$ | Present ( $4 \times 4$ ) | 1.2903 | 4.1599 | 5.3008 | 13.4718 | 24.1362 | 25.1998 |
|  | Present ( $5 \times 5$ ) | 1.2044 | 4.1576 | 5.2822 | 9.4773 | 10.7532 | 20.6047 |
|  | Present ( $6 \times 6$ ) | 1.2044 | 3.5005 | 5.2538 | 9.4734 | 10.7038 | 17.1869 |
|  | Present ( $7 \times 7$ ) | 1.2015 | 3.5003 | 5.2461 | 7.1511 | 10.4751 | 17.0922 |
|  | Present ( $8 \times 8$ ) | 1.2015 | 3.4609 | 5.2459 | 7.1506 | 10.4448 | 12.3206 |
|  | Present ( $9 \times 9$ ) | 1.2015 | 3.4609 | 5.2454 | 6.9443 | 10.4384 | 12.3199 |
|  | Present ( $10 \times 10$ ) | 1.2015 | 3.4607 | 5.2454 | 6.9442 | 10.4267 | 11.6581 |

where $c_{i j}$ are unknown coefficients and the parameter $p$ depends on the boundary conditions; $p=2$ is adopted when it is rigidly clamped, $p=1$ when the plate is simply supported and $p=0$ when it is free or elastically restrained along the boundary.

The corresponding boundary conditions are given by Eqs. (10) and (11). In this study the spring coefficients $c_{\mathrm{R}}(s)$ and $c_{\mathrm{T}}(s)$ have been considered constant along the boundary, and the following non dimensional parameters have been defined $R=c_{\mathrm{R}} a / D_{11}$ and $T=c_{\mathrm{T}} a^{3} / D_{11}$.

The Ritz method is used to generate the following non dimensional frequency coefficients $\omega a^{2} \sqrt{\rho h / D_{11}}$ and $\omega a^{2} \sqrt{\rho h / D_{0}}$ where $D_{0}$ is the reference flexural rigidity $D_{0}=E_{\mathrm{L}} h^{3} / 12\left(1-v_{\mathrm{LT}} v_{\mathrm{TL}}\right)$. The subscript L and T represent the directions parallel with and perpendicular to the fibre direction.

### 5.3. Non-smooth boundary

Let us consider a composite plate with a general trapezoidal planform as shown in Fig. 3b. The angles of the plate sides $\theta_{1}$ and $\theta_{2}$ are measured from the $x_{1}$ axis to sides $\mathbf{3}$ and $\mathbf{1}$ respectively and are defined negative when measured clock-wise.

Let us introduce non-orthogonal right triangular co-ordinates $x, y$. They are related to the $x_{1}, x_{2}$ co-ordinates by

$$
\begin{equation*}
x=\frac{x_{1}}{l}, \quad y=\frac{x_{2}}{x_{1}} \cot \theta_{1} . \tag{43}
\end{equation*}
$$

After this co-ordinate transformation the two-dimensional plate domain $\Omega$ is transformed in $\hat{\Omega}=\left\{(x, y), c / l \leqslant x \leqslant 1, \tan \theta_{2} \cot \theta_{1} \leqslant y \leqslant 1\right\}$ (see Fig. 3b). The plate deflection is represented by a set of beam characteristic orthogonal polynomials $p_{i}(x)$ and $q_{j}(y)$ as

Table 2
Frequency parameters $\omega a^{2} \sqrt{\rho h / D_{11}}$, for circular plates of generalized anisotropy with edges elastically restrained against rotation and translation

| Material properties | $R=c_{\mathrm{R}} a / D_{11}$ | $T=c_{\mathrm{T}} a^{3} / D_{11}$ |  | Mode sequence number |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 1 | 2 | 3 | 4 |
| $D_{22} / D_{11}=1 / 2$ | 0 | 0 | Present | 3.1925 | 4.8126 | 8.1380 | 9.2047 |
| $D_{12} / D_{11}=3 / 10$ |  | 10 |  | 3.0585 | 5.2729 | 5.9155 | 7.6486 |
| $D_{66} / D_{11}=1 / 2$ |  | 100 |  | 4.2034 | 8.3781 | 12.3652 | 13.8972 |
| $D_{16} / D_{11}=1 / 3$ |  | 1000 |  | 4.3978 | 9.0524 | 14.5745 | 15.7685 |
| $D_{26} / D_{11}=1 / 3$ |  | 10000 |  | 4.4187 | 9.1279 | 14.8294 | 15.9881 |
|  |  | $\infty$ |  | 4.4562 | 9.3034 | 15.4392 | 16.4853 |
|  |  |  | Bambill et al. [42] | 4.4802 | - | - | - |
|  | 10 | $\infty$ |  | 7.4263 | 12.9062 | 18.8495 | 20.5157 |
|  | 100 |  |  | 8.2738 | 13.8357 | 20.5600 | 21.5190 |
|  | 1000 |  |  | 8.4004 | 13.9645 | 20.8714 | 21.6852 |
|  | 10000 |  |  | 8.4224 | 13.9784 | 20.9408 | 21.7432 |
|  | $\infty$ |  |  | 9.5694 | 15.3527 | 23.5055 | 23.5190 |
|  |  |  | Bambill et al. [42] | 9.6242 | - | - | - |
| $D_{22} / D_{11}=1 / 4$ | 0 | 0 | Present | 3.3147 | 5.1520 | 6.2605 | 9.4616 |
| $D_{12} / D_{11}=1 / 3$ |  | 10 |  | 2.8657 | 4.3388 | 5.8933 | 6.2788 |
| $D_{66} / D_{11}=1 / 2$ |  | 100 |  | 3.9399 | 7.0160 | 11.1083 | 11.8202 |
| $D_{16} / D_{11}=1 / 5$ |  | 1000 |  | 4.1343 | 7.7675 | 12.7208 | 13.5073 |
| $D_{26} / D_{11}=1 / 3$ |  | 10000 |  | 4.1559 | 7.8645 | 12.9906 | 13.7210 |
|  |  | $\infty$ |  | 4.2344 | 8.7664 | 14.1852 | 14.6733 |
|  |  |  | Bambill et al. [42] | 4.2759 | - | - | - |
|  | 10 | $\infty$ |  | 7.0787 | 11.9949 | 17.6236 | 18.0361 |
|  | 100 |  |  | 7.8327 | 12.8896 | 18.5891 | 19.4631 |
|  | 1000 |  |  | 7.9409 | 13.0213 | 18.7475 | 19.7206 |
|  | 10000 |  |  | 7.9580 | 13.0400 | 18.7846 | 19.7906 |
|  | $\infty$ |  |  | 9.0877 | 14.3947 | 20.6129 | 22.3705 |
|  |  |  | Bambill et al. [42] | 9.1466 | - | - | - |

Table 3
Convergence of frequency parameters $\omega l^{2} / h \sqrt{\rho / E_{\mathrm{L}}}$, for symmetrically laminated E-glass-epoxy trapezoidal plates, with $\theta_{1}=36.87^{\circ}$, $\theta_{2}=0^{\circ}, c / l=0.25$ and stacking sequence $(-\beta, \beta, \beta,-\beta)$

| $\beta$ |  | Mode sequence number |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 5 | 6 |
| CCCC |  |  |  |  |  |  |  |
| $30^{\circ}$ | $4 \times 4$ | 30.4161 | 49.7905 | 65.2323 | 80.2623 | 97.2895 | 119.008 |
|  | $5 \times 5$ | 30.3851 | 49.1289 | 64.0410 | 76.2810 | 90.9063 | 114.779 |
|  | $6 \times 6$ | 30.3762 | 49.0148 | 63.6996 | 75.7062 | 88.2658 | 108.291 |
|  | $7 \times 7$ | 30.3760 | 48.9845 | 63.5738 | 75.3793 | 87.6232 | 107.478 |
|  | $8 \times 8$ | 30.3759 | 48.9838 | 63.5673 | 75.3684 | 87.5624 | 107.399 |
|  | $9 \times 9$ | 30.3759 | 48.9811 | 63.5198 | 75.3175 | 87.4093 | 107.001 |
|  | $10 \times 10$ | 30.3759 | 48.9748 | 63.5198 | 75.3069 | 87.3340 | 106.709 |
| $60^{\circ}$ | $4 \times 4$ | 31.6269 | 50.7935 | 68.8166 | 78.7007 | 100.278 | 118.689 |
|  | $5 \times 5$ | 31.5819 | 49.6738 | 67.3430 | 76.5984 | 95.0772 | 112.321 |
|  | $6 \times 6$ | 31.5720 | 49.6118 | 66.4925 | 75.2268 | 91.7392 | 105.703 |
|  | $7 \times 7$ | 31.5707 | 49.5554 | 66.3866 | 75.0494 | 90.4129 | 103.744 |
|  | $8 \times 8$ | 31.5707 | 49.5554 | 66.3866 | 75.0495 | 90.4129 | 103.744 |
|  | $9 \times 9$ | 31.5706 | 49.5489 | 66.3697 | 75.0487 | 89.4123 | 102.060 |
|  | $10 \times 10$ | 31.5705 | 49.5461 | 66.3632 | 75.0433 | 88.5436 | 100.342 |
| SSSS |  |  |  |  |  |  |  |
| $30^{\circ}$ | $4 \times 4$ | 16.1454 | 31.9497 | 45.6298 | 70.2315 | 89.5856 | 108.955 |
|  | $5 \times 5$ | 16.0608 | 31.0643 | 43.3937 | 54.4097 | 69.8263 | 88.9880 |
|  | $6 \times 6$ | 16.0434 | 30.6321 | 42.8095 | 53.6047 | 65.5206 | 83.0780 |
|  | $7 \times 7$ | 16.0406 | 30.5619 | 42.5142 | 52.3852 | 63.8513 | 81.8971 |
|  | $8 \times 8$ | 16.0377 | 30.5467 | 42.4541 | 52.2622 | 63.0467 | 79.6361 |
|  | $9 \times 9$ | 16.0345 | 30.5316 | 42.4325 | 52.2006 | 62.8474 | 79.4403 |
|  | $10 \times 10$ | 16.0345 | 30.5316 | 42.4325 | 52.2006 | 62.8474 | 79.4403 |
|  | Lim et al. [43] | 16.0416 | 30.569 | 42.469 | 52.252 | 62.889 | 79.310 |
| $60^{\circ}$ | $4 \times 4$ | 16.5852 | 32.0139 | 47.9376 | 67.6119 | 85.8515 | 11.5839 |
|  | $5 \times 5$ | 16.5391 | 30.6275 | 45.2772 | 53.1895 | 71.8791 | 94.7399 |
|  | $6 \times 6$ | 16.5167 | 30.3514 | 44.4224 | 52.0466 | 66.7259 | 79.8927 |
|  | $7 \times 7$ | 16.5155 | 30.2527 | 43.9883 | 51.1379 | 65.3315 | 78.8920 |
|  | $8 \times 8$ | 16.5145 | 30.2462 | 43.8822 | 50.9905 | 64.1001 | 76.1087 |
|  | $9 \times 9$ | 16.5138 | 30.2393 | 43.8631 | 50.9387 | 63.8823 | 75.8000 |
|  | $10 \times 10$ | 16.5138 | 30.2393 | 43.8631 | 50.9387 | 63.8823 | 75.8000 |
|  | Lim et al. [43] | 16.5145 | 30.249 | 43.876 | 50.960 | 63.844 | 75.621 |
| FFFF |  |  |  |  |  |  |  |
| $30^{\circ}$ | $4 \times 4$ | 7.1164 | 11.3566 | 17.4943 | 21.6055 | 38.2086 | 44.2072 |
|  | $5 \times 5$ | 6.5805 | 10.3906 | 16.6420 | 19.6421 | 32.8092 | 37.3277 |
|  | $6 \times 6$ | 6.5494 | 10.2870 | 16.0097 | 17.7729 | 28.1202 | 31.1221 |
|  | $7 \times 7$ | 6.5269 | 10.2354 | 15.8768 | 17.4707 | 26.8433 | 30.6100 |
|  | $8 \times 8$ | 6.5259 | 10.2260 | 15.8214 | 17.3485 | 26.3093 | 30.1226 |
|  | $9 \times 9$ | 6.5259 | 10.2256 | 15.820 | 17.3351 | 26.1262 | 30.0904 |
|  | $10 \times 10$ | 6.5259 | 10.2256 | 15.8188 | 17.3347 | 26.1141 | 30.0824 |
| $60^{\circ}$ | $4 \times 4$ | 7.0732 | 10.5800 | 17.6982 | 22.7236 | 36.8067 | 42.7418 |
|  | $5 \times 5$ | 6.4403 | 9.8293 | 16.8402 | 20.5344 | 31.7597 | 35.3489 |
|  | $6 \times 6$ | 6.4036 | 9.7556 | 15.7883 | 18.4410 | 26.6067 | 31.0657 |
|  | $7 \times 7$ | 6.3744 | 9.7184 | 15.6445 | 18.1190 | 26.1304 | 28.7599 |
|  | $8 \times 8$ | 6.3737 | 9.7117 | 15.5376 | 17.9686 | 25.7466 | 28.1767 |
|  | $9 \times 9$ | 6.3736 | 9.7115 | 15.5357 | 17.9501 | 25.6790 | 27.8622 |
|  | $10 \times 10$ | 6.3736 | 9.7115 | 15.5347 | 17.9494 | 25.6710 | 27.8487 |

$$
\begin{equation*}
w(x, y)=\sum_{i=1}^{M} \sum_{j=1}^{N} c_{i j} p_{i}(x) q_{j}(y) \tag{44}
\end{equation*}
$$

where $c_{i j}$ are the unknown coefficients. The procedure used is the construction of the orthogonal polynomials as has been developed by Bhat [40,41]. The Ritz method is used to generate the following non-dimensional frequency coefficients $\omega l^{2} / h \sqrt{\rho / E_{\mathrm{L}}}$, and $\omega l^{2} \sqrt{\rho h / D_{0}}$ $\left(1-c_{l}\right) 2 \tan \theta$.

In this case, the corresponding boundary conditions are given by Eqs. (10) and (11), with the non-dimensional spring coefficients given by $R_{i}=c_{\mathrm{R}_{i}} l / D_{0}$ and $T_{i}=c_{\mathrm{T}_{i}} l^{3} / D_{0}, \quad i=1,2,3,4$.

## 6. Verification and numerical applications

### 6.1. Circular and elliptical plates

Results of a convergence study of eigenvalues $\omega a^{2} \sqrt{\rho h / D_{0}}$, for elliptical composite plates are presented in Table 1. Four-ply graphite-epoxy laminates ( $E_{\mathrm{L}} / E_{\mathrm{T}}=40, G_{\mathrm{LT}} / E_{\mathrm{T}}=0.5, v_{\mathrm{LT}}=0.25$ ), with stacking

Table 4
Frequency parameters $\omega l^{2} \sqrt{\rho h / D_{0}}\left(1-c_{l}\right) 2 \tan \theta$, for symmetrically laminated graphite-epoxy trapezoidal plates, with $\theta_{1}=\theta_{2}=\theta=$ $20.556^{\circ}, c / l=0.25$, stacking sequence $(-\beta, \beta, \beta,-\beta)$

| $R_{2}$ | $T_{1}=T_{3}=T_{4}$ | $\beta$ |  | Mode sequence number |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 0 | $\infty$ (S-S-S-S) | $15^{\circ}$ | Present | 14.963 | 28.333 | 41.915 | 48.387 | 60.151 | 71.794 | 83.353 | 94.895 |
| 0.01 | 10000 |  |  | 14.389 | 28.201 | 41.076 | 49.191 | 59.878 | 76.470 | 83.993 | 97.535 |
| 0.1 | 1000 |  |  | 13.908 | 26.917 | 37.524 | 44.855 | 53.462 | 63.995 | 68.353 | 79.589 |
| 1 | 100 |  |  | 11.692 | 18.968 | 23.381 | 27.678 | 32.749 | 38.454 | 45.296 | 53.554 |
| 10 | 10 |  |  | 6.3840 | 10.839 | 18.079 | 22.545 | 27.489 | 35.560 | 43.095 | 53.107 |
| 100 | 1 |  |  | 4.4740 | 9.7582 | 18.923 | 24.139 | 29.096 | 38.124 | 46.170 | 57.140 |
| 1000 | 0.1 |  |  | 4.2170 | 9.6827 | 19.129 | 24.484 | 29.462 | 38.651 | 46.839 | 58.019 |
| 10000 | 0.01 |  |  | 4.1902 | 9.6758 | 19.152 | 24.522 | 29.502 | 38.709 | 46.913 | 58.116 |
| $\infty$ | 0 (F-C-F-F) |  |  | 4.1872 | 9.6748 | 19.153 | 24.524 | 29.505 | 38.623 | 46.854 | 57.849 |
| $\infty$ | 0 (F-C-F-F) |  | Liew and Lim [23] | 4.1872 | 9.6743 | 19.151 | 24.516 | 29.499 | 38.566 | 46.385 | 56.755 |
| 0 | $\infty$ (S-S-S-S) | $30^{\circ}$ | Present | 17.789 | 35.854 | 47.185 | 59.702 | 76.151 | 89.364 | 90.616 | 112.70 |
| 0.01 | 10000 |  |  | 17.342 | 35.188 | 45.830 | 59.508 | 74.761 | 86.785 | 92.070 | 115.26 |
| 0.1 | 1000 |  |  | 16.499 | 32.322 | 40.844 | 51.535 | 62.241 | 69.889 | 72.591 | 85.599 |
| 1 | 100 |  |  | 12.512 | 20.114 | 23.891 | 29.629 | 36.330 | 43.311 | 47.123 | 56.987 |
| 10 | 10 |  |  | 6.2432 | 11.803 | 16.820 | 24.687 | 32.210 | 41.211 | 46.428 | 55.921 |
| 100 | 1 |  |  | 3.6382 | 10.937 | 16.813 | 25.629 | 33.558 | 43.330 | 49.249 | 58.648 |
| 1000 | 0.1 |  |  | 3.2185 | 10.879 | 16.886 | 25.824 | 33.840 | 43.747 | 49.799 | 59.210 |
| 10000 | 0.01 |  |  | 3.1731 | 10.873 | 16.894 | 25.845 | 33.871 | 43.793 | 49.860 | 59.271 |
| $\infty$ | 0 (F-C-F-F) |  |  | 3.1677 | 10.871 | 16.892 | 25.840 | 33.868 | 43.732 | 49.775 | 59.082 |
| $\infty$ | 0 (F-C-F-F) |  | Liew and Lim [23] | 3.1672 | 10.870 | 16.878 | 25.829 | 33.862 | 43.694 | 49.692 | 58.586 |
| 0 | $\infty$ (S-S-S-S) | $45^{\circ}$ | Present | 20.5866 | 38.9951 | 55.697 | 64.683 | 83.250 | 97.647 | 108.352 | 120.266 |
| 0.01 | 10000 |  | Present | 20.2942 | 37.9614 | 54.151 | 62.587 | 80.481 | 95.844 | 103.855 | 117.885 |
| 0.1 | 1000 |  | Present | 18.8377 | 33.0843 | 44.783 | 51.147 | 61.613 | 72.120 | 74.801 | 83.313 |
| 1 | 100 |  | Present | 12.5204 | 19.3269 | 23.560 | 28.729 | 33.903 | 43.666 | 47.688 | 54.096 |
| 10 | 10 |  | Present | 5.8569 | 10.4467 | 14.571 | 22.881 | 29.383 | 41.782 | 45.229 | 53.344 |
| 100 | 1 |  | Present | 2.7454 | 8.9430 | 13.397 | 23.045 | 29.811 | 42.876 | 46.265 | 55.005 |
| 1000 | 0.1 |  | Present | 2.0942 | 8.7991 | 13.291 | 23.097 | 29.900 | 43.054 | 46.459 | 55.282 |
| 10000 | 0.01 |  | Present | 2.0164 | 8.7851 | 13.281 | 23.102 | 29.910 | 43.074 | 46.480 | 55.311 |
| $\infty$ | 0 (F-C-F-F) |  | Present | 2.0060 | 8.7812 | 13.275 | 23.099 | 29.904 | 42.983 | 46.329 | 54.785 |
| $\infty$ | 0 (F-C-F-F) |  | Liew and Lim [23] | 2.0039 | 8.7734 | 13.250 | 23.087 | 29.873 | 42.950 | 46.274 | 54.594 |

Edge 2 elastically restrained against rotation $\left(R_{1}=R_{3}=R_{4}=0\right)$, edges $\mathbf{1 , 3}$ and $\mathbf{4}$ elastically restrained against translation $\left(T_{2}=\infty\right)$.

Table 5
Frequency parameters $\omega l^{2} \sqrt{\rho h / D_{0}}$ and nodal patterns, for symmetrically laminated right graphite-epoxy trapezoidal plates, with $\theta_{1}=45^{\circ}, \theta_{2}=0^{\circ}, c / l=0.25$, stacking sequence
$\frac{\left(45^{\circ},-45^{\circ},-45^{\circ}, 45^{\circ}\right)}{T_{1}=T_{2}=\quad \text { Mode sequence number }}$
$T_{3}=T$
0.01
0.1

1




10



Edges 1-4 elastically restrained against translation.
sequence $(-\beta, \beta, \beta,-\beta)$ and aspect ratio $a / b=2$ are considered. The rate of convergence of eigenvalues is shown for clamped, simply supported and free boundaries. The convergence of the mentioned eigenvalues is studied by increasing the numbers $M, N$ in Eq. (42). It can be seen that $M, N=10$, is adequate to reach a stable convergence, specially in the case of the lower frequencies. Therefore it was decided to use $M, N=8$ to generate further results since there is no drastic change.

Table 2 depicts values of the non-dimensional frequency coefficient $\omega a^{2} \sqrt{\rho h / D_{11}}$ for circular plates of generalized anisotropy. The results are presented for two different material properties and growing values of the restraint coefficients $R=c_{\mathrm{R}} a / D_{11}$ and $T=c_{\mathrm{T}} a^{3} / D_{11}$. The comparison of results for simply supported and clamped plates with those of Bambill et al. [42] shows that the present values are lower, in consequence more accurate, since the Ritz method gives upper bounds for eigenvalues.

### 6.2. Trapezoidal plates

Results of a convergence study of eigenvalues $\omega l^{2} / h \sqrt{\rho / E_{L}}$ for trapezoidal plates are presented in Table 3. Four-ply E-glass-epoxy laminates ( $E_{\mathrm{L}}=60.7 \mathrm{GPa}, E_{\mathrm{T}}=24.8 \mathrm{GPa}, G_{\mathrm{LT}}=12 \mathrm{GPa}, v_{\mathrm{LT}}=0.23$ ), with stacking sequence $(-\beta, \beta, \beta,-\beta)$.

When treating with classical boundary conditions, the symbolism CSFF, for example, identifies a plate with edge $\mathbf{1}$ clamped, edge $\mathbf{2}$ simply supported and edges $\mathbf{3}$ and $\mathbf{4}$ free, (see Fig. 3b).

The rate of convergence of eigenvalues is shown for clamped, simply supported and free boundaries. The convergence of the mentioned eigenvalues is studied by increasing the numbers $M, N$ in Eq. (44). In this case it is also adequate to use $M, N=8$ to generate the results with sufficient accuracy from an engineering viewpoint. The results for simply supported laminates are in good agreement with those of Lim et al. [43].

Table 4 depicts values of the non-dimensional frequency coefficient $\omega l^{2} \sqrt{\frac{\rho h}{D_{0}}}\left(1-c_{l}\right) 2 \tan \theta$, for a trapezoidal plate. Four-ply graphite-epoxy laminates ( $E_{\mathrm{L}} / E_{\mathrm{T}}=40, G_{\mathrm{LT}} / E_{\mathrm{T}}=0.5, v_{\mathrm{LT}}=0.25$ ), with stacking sequence $(-\beta, \beta, \beta,-\beta)$ are considered. The results are presented for different values of $\beta$ and the restraint coefficients $R_{2}=c_{R_{2}} l / D_{0}$ and $T_{i}=c_{T_{i}} l^{3} / D_{0}, i=1,3,4$. The results for cantilever plates are compared with those of Liew and $\operatorname{Lim}[23]$ and very good agreement is obtained. Finally, Table 5 depicts the first eight non dimensional frequency parameters $\omega l^{2} \sqrt{\rho h / D_{0}}$ and the corresponding nodal patterns, for symmetrically laminated $\left(45^{\circ},-45^{\circ},-45^{\circ}, 45^{\circ}\right)$ graphite-epoxy trapezoidal plates, with $\theta_{1}=45^{\circ}, \theta_{2}=0^{\circ}, c / l=0.25$.

## 7. Concluding remarks

The existence and uniqueness of the weak solutions of boundary value problems and eigenvalue problems, which correspond to the anisotropic plates analysed has been demonstrated. Two classes of boundaries have been considered:
(i) smooth boundaries of arbitrary shape,
(ii) piecewise smooth boundaries having a finite number of corner points.

The use of the weak solution theory enables a substantial generalisation of assumptions concerning the smoothness of coefficients of the differential operator (1) and of the functions which appear respectively in Eqs. (2) and (6).

It has been determined that when the plates have corner points formed by the intersection of edges free or elastically restrained against translation, the corresponding bilinear form maintains the $V$ - ellipticity property. This property is given by Eq. (33) and it guaranties that the weak solution is unique. In practice this inequality shows that for a system involving a $V$ - elliptic bilinear form, it is possible to obtain a large displacement only by a great expenditure if energy.

It is also the purpose of the present paper to present some technical results for the natural frequencies of circular, elliptical and trapezoidal plates of generalized anisotropy or made of composite materials and resting on elastic supports. The Ritz method has been employed by using different polynomial expressions as trial functions which satisfy only the stable boundary conditions. As it was expected convergence of frequencies
is monotonic, and successively upper bounds in the values of the frequency parameters are obtained as additional terms are taken in the corresponding approximation functions, in spite of the fact that the co-ordinate functions do not satisfy the unstable boundary conditions. Since the combinations of boundary conditions, along with specific values for the stiffness constants for the restraints are prohibitively large in number, results are presented for only a few cases.

## Acknowledgement

The authors are indebted to the reviewers of the paper for their constructive comments and suggestions. The present investigation was sponsored by CONICET, Project PIP 5340.

## Appendix. Definition of coefficients $\boldsymbol{a}_{\alpha \beta}$ in Eq. (1)

| $\alpha$ | $\beta$ | $a_{\alpha \beta}$ |
| :--- | :--- | :--- |
| $(2,0)$ | $(2,0)$ | $D_{11}$ |
| $(2,0)$ | $(0,2)$ | $D_{12}$ |
| $(2,0)$ | $(1,1)$ | $2 D_{16}$ |
| $(0,2)$ | $(2,0)$ | $D_{12}$ |
| $(0,2)$ | $(0,2)$ | $D_{22}$ |
| $(0,2)$ | $(1,1)$ | $2 D_{26}$ |
| $(1,1)$ | $(2,0)$ | $2 D_{16}$ |
| $(1,1)$ | $(0,2)$ | $2 D_{26}$ |
| $(1,1)$ | $(1,1)$ | $4 D_{66}$ |

## References

[1] R.A. Adams, J.J.F. Fournier, Sobolev Spaces, Academic Press, Amsterdam, 2003.
[2] C. Baiocchi, A. Capelo, Disequazioni Variazionali e Quasivariazionali, vol. 1, Pitagora Editrice, Bologna, 1978.
[3] P. Ciarlet, The Finite Element Method for Elliptic Problems, North Holland Publ. Co., Amsterdam, 1978.
[4] L.C. Evans, Partial Differential Equations, American Mathematical Society, Providence, Rhode Island, 1998.
[5] E. Zeidler, Nonlinear Functional Analysis and its Applications, vol. II A, Springer-Verlag, New York, Inc., 1990.
[6] E. Zeidler, Applied Functional Analysis: Main Principles and their Applications, vol. 109, Springer-Verlag, New York, Inc., 1995.
[7] E. Zeidler, Applied Functional Analysis: Applications to Mathematical Physics, vol. 108, Springer-Verlag, New York, Inc., 1995.
[8] H. Brezis, Analyse Fonctionnelle, Masson, Paris, 1983.
[9] J. Reddy, Applied Functional Analysis and Variational Methods in Engineering, McGraw Hill, New York, 1986.
[10] P.A. Raviart, J.M. Thomas, Introduction à l’ analyse numérique des équations aux dériveés partielles, Dunod, Paris, 1998.
[11] J.T. Oden, L.F. Demkowicz, Applied Functional Analysis, CRC Press, Boca Ratón, 1996.
[12] S. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill, New York, 1959.
[13] A.W. Leissa, Vibration of plates (NASA SP-160). Office of Technology Utilization, NASA, Washington, DC, 1969.
[14] S.G. Lekhnitskii, Anisotropic Plates, Gordon and Breach Science Publishers, New York, 1968 (translated from the second Russian edition).
[15] J.M. Whitney, Structural Analysis of Laminated Anisotropic Plates, Technomic Publishing Co. Inc., Pennsylvania, USA, 1987.
[16] J.N. Reddy, Mechanics of Laminated Anisotropic Plates: Theory and Analysis, CRC Press, Boca Raton, Florida, 1997.
[17] C.W. Bert, Research on dynamics of composite and sandwich plates, Shock Vib. Dig. (1982) 17-34.
[18] C.W. Bert, Research on dynamics behaviour of composite and sandwich plates-V: part I, Shock Vib. Dig. 23 (1991) 3-14.
[19] C.W. Bert, Research on dynamics behaviour of composite and sandwich plates-V: part II, Shock Vib. Dig. 23 (1991) 9-21.
[20] K.M. Liew, K.Y. Lam, A Rayleigh-Ritz approach to transverse vibration of isotropic and anisotropic trapezoidal plates using orthogonal plate functions, Int. J. Solids Struct. 27 (1991) 189-203.
[21] K.M. Liew, Response of plates of arbitrary shape subject to static loading, J. Eng. Mech. 118 (1992) 1783-1794.
[22] K.M. Liew, Vibration of symmetrically laminated cantilever plates, Int. J. Mech. Sci. 34 (1992) 299-308.
[23] K.M. Liew, C.W. Lim, Vibratory characteristics of general laminates, I: symmetric trapezoids, J. Sound Vib. 183 (1995) 615-642.
[24] L.G. Nallim, R.O. Grossi, On the use of orthogonal polynomials in the study of anisotropic plates, J. Sound Vib. 264 (2003) 12011207.
[25] L.G. Nallim, S. Oller, R.O. Grossi, Statical and dynamical behaviour of thin fibre reinforced composite laminates with different shapes, Comput. Methods Appl. Mech. Eng. 194 (2005) 1797-1822.
[26] R.O. Grossi, L. Lebedev, Static and dynamic analyses of anisotropic plates with corner points, J. Sound Vib. 243 (2001) 947-958.
[27] P.A.A. Laura, R.O. Grossi, Transverse vibrations of rectangular anisotropic plates with edges elastically restrained against rotation, J. Sound Vib. 64 (1979) 257-267.
[28] L.G. Nallim, B. Luccioni, R.O. Grossi, Vibration of general triangular composite plates with elastically restrained edges, Thin-Walled Struct. 43 (2005) 1711-1745.
[29] K.M. Liew, Y. Xiang, S. Kitipornchai, Vibration of laminated plates having elastic edge flexibilities, J. Eng. Mech. 123 (1997) 10121019.
[30] A.S. Ashour, Buckling and vibration of symmetric laminated composite plates with edges elastically restrained, Steel Compos. Struct. 3 (2003) 439-450.
[31] A.S. Ashour, Vibration of angle-ply symmetric laminated composite plates with edges elastically restrained, Compos. Struct. 74 (2006) 294-302.
[32] A.R. Setoodeh, G.A. Karami, A solution for the vibration and buckling of composite laminates with elastically restrained edges, Compos. Struct. 60 (2003) 245-253.
[33] S. Balasundaram, P.K. Bhattacharyya, On the existence of solution of the Dirichlet problem of fourth order partial differential equations with variable coefficients, Quart. Appl. Math. 39 (1983) 311-317.
[34] P.K. Bhattacharyya, N. Nataraj, On the combined effect of boundary approximation and numerical integration on mixed finite element solution of 4th order elliptic problems with variable coefficients, Math. Model. Numer. Anal. 33 (1999) 807-836.
[35] I. Chudinovich, C. Constanda, Existence and uniqueness of weak solutions for a thin plate with elastic boundary conditions, Appl. Math. Lett. 13 (2000) 43-49.
[36] R.O. Grossi, On the existence of weak solutions in the study of anisotropic plates, J. Sound Vib. 242 (2001) 542-552.
[37] R.O. Grossi, L.G. Nallim, Boundary and eigenvalue problems for generally restrained anisotropic plates, J. Multi-body Dyn. 217 (2003) 241-251.
[38] K. Rektorys, Variational Methods in Mathematics, Science and Engineering, Reidel Co., Dordrecht, 1980.
[39] J. Necas, Les Méthodes Directes en Théorie des Equations Elliptiques, Academia, Prage, 1967.
[40] R.B. Bhat, Plate deflection using orthogonal polynomials, J. Eng. Mech. ASCE 101 (1985) 1301-1309.
[41] R.B. Bhat, Natural frequencies of rectangular plates using characteristic orthogonal polynomials in Rayleigh-Ritz method, J. Sound Vib. 102 (1985) 493-499.
[42] D.V. Bambill, P.A.A. Laura, C.A. Rossit, Transverse vibrations of circular solid and annular plates of generalized anisotropy, J. Sound Vib. 254 (2002) 613-619.
[43] C.W. Lim, K.M. Liew, S. Kitipornchai, Vibration of arbitrarily laminated plates of general trapezoidal planform, J. Acoust. Soc. Am. 100 (6) (1996) 3674-3685.


[^0]:    * Corresponding author. Fax: +54 03874255351.

    E-mail address: grossiro@unsa.edu.ar (R.O. Grossi).

