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Abstract

This paper presents investigations of free vibration of anisotropic plates of different geometrical shapes and generally
restrained boundaries. The existence and uniqueness of weak solutions of boundary value problems and eigenvalue prob-
lems which correspond to the statical and dynamical behaviour of the mentioned plates is demonstrated. It is determined
that when the plates have corner points formed by the intersection of edges free or elastically restrained against translation,
the corresponding bilinear forms maintain the V – ellipticity property.

Also, an analytical formulation, based on the Ritz method and polynomial expressions as approximate functions for
analysing the free vibrations of laminated plates with smooth and non-smooth boundary with non-classical edge supports
is presented. Numerical results are presented for circular, elliptical and trapezoidal plates for different boundary conditions
and material properties.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

A typical method of solving boundary and eigenvalue problems for elliptic partial differential equations
with variable coefficients is the variational method. It can be applied under comparatively weak conditions
on diverse domains and elliptic differential operators of arbitrary order. On the other hand, since the varia-
tional method involves the minimization of functionals, which describe certain types of energy, it is more nat-
ural to look for a weak solution of the problem under consideration than to find its classical solution, which
does not exist for many important engineering and mathematical physics problems. Weak solutions of bound-
ary value or eigenvalue problems are useful because, unlike the classical solutions, they can be obtained for
domains and data of the problems which are less smooth [1–11]. Hence, it is necessary to find sufficient con-
ditions for the existence and uniqueness of the weak solutions of boundary and eigenvalue problems.
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Nomenclature

a, b, c, l plate dimensions (Fig. 3)
B(w,v) bilinear form
cij unknown coefficients in the deflection function Eqs. (42) and (44)
cR(s) spring constant of the rotational restraint
cT(s) spring constant of the translational restraint
D flexural rigidity of isotropic plate
Dij bending, twisting and coupling rigidities of anisotropic plate
D0 reference rigidity of anisotropic plate = ELh3/[12(1 � mLTmTL)]
EL, ET Young’s moduli parallel and perpendicular to the fibres
GLT shear modulus of elasticity
h plate thickness
H2(X) Sobolev space of order two
n1, n2 components of the outward unit normal vector n to the boundary oX
pi(x), qj(y) beam characteristic orthogonal polynomials
q transversal load
Ri, Ti nondimensional rotational and translational coefficients
s arc length along the plate boundary
Tmax maximum kinetic energy
Umax maximum strain energy due to plate bending
UR,max maximum strain energy stored in rotational springs
UT,max maximum strain energy stored in translational springs
u, w deflection functions
x1, x2 cartesian coordinates
a, b multi-index vectors
X, X* two-dimensional plate domains in Cartesian coordinates
X̂ plate domain in right triangular coordinates
oX plate boundary
q mass density of the plate material
m, mLT, mTL Poisson’s ratios
h1, h2 side angles of the trapezoidal plate (Fig. 3b)
x circular frequency of plate vibration
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Composite structures, especially laminated composite plates, have been widely used in many engineering
advantages of high strength and stiffness and light weight. Laminated composite plates allow the controllabil-
ity of the structural properties, through changing the fibre orientation angles, the number of plies and selecting
proper composite materials. With the wide use of composite plate structures in modern industries, mechanical
analysis of plates of complex geometry becomes a relevant study. It is important to understand the free vibra-
tion and the flexural behaviour of these structural elements but the solutions to these plate problems are
strongly dependent on the geometrical shapes, boundary conditions and material properties. It is widely recog-
nised that closed form solutions are possible only for a few specific cases [12,13].

The determination of classical solutions (exact and/or approximate) which correspond to the statical and
dynamical behaviour of anisotropic plates of different shapes and configurations, has been studied and is well
documented. The bending of anisotropic plates subjected to different normal loads and boundary conditions
has been extensively studied [14–16]. On the other hand, the vibration of anisotropic plates with different
boundary conditions has received considerable attention from several investigators. Bert presented complete
reviews on dynamics of composite and sandwich panels [17–19]. These compilations show that the results cor-
respond mainly to rectangular shapes and classical boundary conditions. Nevertheless, studies on general
quadrilateral plates, or polygonal plates with unequal side lengths are rather limited. Liew and his co-workers
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studied the behaviour of different plates using Ritz method with sets of two-dimensional plate functions, which
express the entire plate domain into two implicitly related variables (see for instance [20–23]). Nallim et al.
[24,25] analysed the statical and dynamical behaviour of thin fibre reinforced composite laminates plates of
arbitrary quadrilateral geometry with different classical boundary conditions. Grossi and Lebedev [26] ana-
lysed the static and dynamic behaviour of anisotropic plates with corner points.

The problem of elastic edge restraints has received considerable attention, mainly in the case of isotropic
and orthotropic plates. Nevertheless, analytical studies on the dynamical behaviour of composite laminated
plates with edges elastically restrained are rather limited. Laura and Grossi [27] used the Ritz method with
polynomial functions for the free vibration analysis of anisotropic rectangular plates of uniform thickness hav-
ing all edges elastically restrained against rotation. Nallim et al. [28] presented a study of free vibration of
anisotropic triangular plates with edges elastically restrained against rotation and translation. Liew et al.
[29] analysed the vibration of laminated plates with edges elastically restrained. Ashour [30] analysed the
buckling and vibration of cross-ply laminated plates with edges elastically restrained. Ashour [31] studied
the vibration of angle-ply laminated rectangular plates with edges elastically restrained. Setoodeh and Karami
[32] presented a solution for the vibration and buckling of composite laminates with edges elastically
restrained.

The determination of existence and uniqueness of weak solutions for plates with elastically restrained
boundaries is rather limited.

Balasundaram and Bhattacharyya [33] derived sufficient conditions for the existence and uniqueness of the
solution of a general boundary value problem which includes as particular cases, the boundary value problems
of the bending of elastic isotropic, orthotropic and anisotropic plates with variable thickness.

Bhattacharyya and Nataraj [34] used the weak variational formulation in the error estimates for the mixed
finite element solution of four order elliptic problems with variable coefficients. Chudinovich and Constanda
[35] determined the existence and uniqueness of weak solutions in the bending of plates with transverse shear
deformation and with elastic boundary conditions. Grossi [36] determined the existence and uniqueness of the
weak solution of boundary value problems and eigenvalue problems, which correspond, respectively, to the
statical and dynamical behaviour of rectangular anisotropic plates with edges elastically restrained against
rotation.

The present paper deals with the determination of sufficient conditions for the existence and uniqueness of
the weak solutions of boundary value problems and eigenvalue problems, which correspond, respectively, to
the statical and the free vibration analyse of anisotropic plates of different shapes and generally restrained
boundaries.

In practice, the boundary conditions may not always correspond to the classical edge conditions: clamped,
simply supported and free. The plate edges may experience partial resistance to rotation and translation,
which may be modelled as a rotational and translational stiffness, respectively, along the edges. Also, in the
study of elastic plates with edge beams, where it is difficult to find out suitable shape functions which satisfy
the boundary conditions, it is possible to replace the real mechanical system with a plate supported with edges
elastically restrained. For these reasons, in this paper boundaries elastically restrained against rotation and
translation are considered. This includes the classical edge conditions, as simply particular cases.

This paper also presents results of the application of the Rayleigh–Ritz method used in conjunction with
different sets of approximating functions, to investigate the vibrational characteristics of circular, elliptical
and trapezoidal anisotropic plates having elastically restrained boundaries.

2. The weak solution

2.1. Smooth boundary

Let us consider a tapered anisotropic plate, of arbitrary shape and elastically supported along the edge by
translational and rotational restraints, that in the equilibrium position covers a two-dimensional domain X,
with smooth boundary oX, as it is shown in Fig. 1. Suppose that the rotational restraint is characterized
by the spring constant cR(s), and the translational restraint by the spring constant cT(s), where s is the arc
length along the boundary oX.



Fig. 1. Anisotropic plate with elastically restrained edges.
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In order to obtain the weak formulation which corresponds to the mechanical system under study, we con-
sider the domain X � R2 with a smooth boundary oX such that X ¼ X [ oX. We also consider the operator
A : DA ! R; DA � Cð4ÞðXÞ; given by
Auðx; tÞ ¼
X
jaj;jbj62

ð�1ÞjajDaðaabðxÞDbuðx; tÞÞ ¼
X
jaj;jbj62

ð�1Þjaj ojaj

oxa1
1 oxa2

2

aabðxÞ
ojbjuðx; tÞ
oxb1

1 oxb2
2

 !
; ð1Þ
where x = (x1,x2), t denotes the time, a = (a1,a2), b = (b1,b2) are multi-index vectors whose co-ordinates are
non-negative integers and jaj, jbj are the sums jaj = a1 + a2, jbj = b1 + b2. Let aab(x) 2 C(jaj)(X),
u(Æ, t) 2 C(4)(X). The summation in (1) is carried over all the vectors a and b for which jaj, jbj 6 2.

The equations which govern the statical and dynamical behaviour of arbitrary shape – isotropic, orthotro-
pic and anisotropic – plates with complicating effects, are associated with operator A, as particular cases,
[14,36].

The statical behaviour of the anisotropic plate when a load q = q(x) is applied, is governed by the corre-
sponding boundary conditions and the equation
AwðxÞ ¼ qðxÞ; ð2Þ

with the operator A given by (1) and the coefficients aab(x) as defined in Appendix, i.e.:
AwðxÞ ¼ o2

ox2
1

D11ðxÞ
o2wðxÞ

ox2
1

þ D12ðxÞ
o2wðxÞ

ox2
2

þ 2D16ðxÞ
o2wðxÞ
ox1ox2

� �

þ o
2

ox2
2

D12ðxÞ
o

2wðxÞ
ox2

1

þ D22ðxÞ
o

2wðxÞ
ox2

2

þ 2D26ðxÞ
o

2wðxÞ
ox1ox2

� �

þ o2

ox1ox2

2D16ðxÞ
o2wðxÞ

ox2
1

þ 2D26ðxÞ
o2wðxÞ

ox2
2

þ 4D66ðxÞ
o2wðxÞ
ox1ox2

� �
; ð3Þ
"x 2 X, where w denotes the deflection of the mid-surface of the plate and the coefficients Dij(x), are the rigid-
ities of the anisotropic material [16], which in terms of a x1, x2, x3 co-ordinate system, are given by
DijðxÞ ¼ Dijðx1; x2Þ ¼
Z hðxÞ=2

�hðxÞ=2

Qijx2
3 dx3; ð4Þ
where the Qij are the transformed reduced stiffnesses.
The mathematical model allows the consideration of a composite plate. Let us consider a symmetric lam-

inate of uniform thickness h, made up of a number of layers each consisting of unidirectional fibre reinforced
composite material. The coefficients Dij, are given by
Dij ¼
XN l

k¼1

Z hkþ1=2

�hk=2

Qijx2
3 dx3; ð5Þ
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where hk and hk+1 are the distances from the mid-plane to the top and bottom surface of the kth layer, and Nl

is the total number of laminated layers.
Free transverse vibrations of the described plates are governed by the following partial differential equation
Aðuðx; tÞÞ ¼ �qhðxÞ o
2uðx; tÞ
ot2

; ð6Þ
where q denotes the density of the plate material and h(x) the plate thickness.
Now let us introduce, as coordinate variables, the arc length s of the boundary oX and the distance n mea-

sured from the boundary and along the exterior normal to oX. Let us consider that oX is an smooth curve
represented in the parametric form by the C1 function c : ½0; l� ! R2; c ¼ ðc1ðsÞ; c2ðsÞÞ; s 2 ½0; l�, where
l = l(oX) is the length of the boundary oX. If u = u(s) denotes the angle made by the tangent to oX with
the positive x1 we have the following transformation equations [37]:
x1ðn; sÞ ¼ c1ðsÞ þ n sin uðsÞ; x2ðn; sÞ ¼ c2ðsÞ � n cos uðsÞ; ð7Þ

and the well known relations
ouðx; tÞ
ox1

����
oX

¼ ouðc1ðsÞ; c2ðsÞ; tÞ
on

n1 �
ouðc1ðsÞ; c2ðsÞ; tÞ

os
n2; ð8Þ

ouðx; tÞ
ox2

����
oX

¼ ouðc1ðsÞ; c2ðsÞ; tÞ
on

n2 þ
ouðc1ðsÞ; c2ðsÞ; tÞ

os
n1: ð9Þ
The application of the calculus of variations allows us to obtain the boundary conditions which correspond to
a vibrating anisotropic plate of arbitrary shape and smooth boundary elastically restrained against rotation
and translation. These are given by (see [37])
cRðsÞ
ou
on

����
oX

¼ M1ðuÞn2
1ðsÞ þM2ðuÞn2

2ðsÞ þ 2H 12ðuÞn1ðsÞn2ðsÞ
�� ��

oX
; ð10Þ

cTðsÞujoX ¼ �
oM1ðuÞ

ox1

þ oH 12ðuÞ
ox2

� �
n1ðsÞ �

oM2ðuÞ
ox2

þ oH 12ðuÞ
ox1

� �
n2ðsÞ

� o

os
ðM2ðuÞ �M1ðuÞÞn1ðsÞn2ðsÞ þ H 12ðuÞðn2

1ðsÞ � n2
2ðsÞÞ

� ���
oX
; ð11Þ
where
u ¼ uðx; tÞ; M1ðuÞ ¼ � D11

o2u
ox2

1

þ D12

o2u
ox2

2

þ 2D16

o2u
ox1ox2

� �
;

M2ðuÞ ¼ � D22

o2u
ox2

2

þ D12

o2u
ox2

1

þ 2D26

o2u
ox1ox2

� �
;

H 12ðuÞ ¼ � D16

o2u
ox2

1

þ D26

o2u
ox2

2

þ 2D66

o2u
ox1ox2

� �
:

In Eqs. (10) and (11) the coefficients cR(s) and cT(s) denote the rotational and translational stiffnesses per
unit length along the boundary. It is well known that if a differential operator is of order 2m, boundary con-
ditions containing derivatives of orders at most m � 1 are called stable conditions and those containing deriv-
atives of orders higher than m � 1 are called unstable conditions. Consequently, when the operator in Eq. (1)
is of order four and 0 6 cR, cT <1, Eqs. (10) and (11) correspond to unstable boundary conditions. When cR,
cT!1, the resulting conditions are stable.

Let H2(X) be the Sobolev space H 2ðXÞ ¼ u 2 L2ðXÞ; Dau 2 L2ðXÞ;8a; 0 6 jaj 6 2
� �

, equipped with the norm
kukH2ðXÞ ¼
X
jaj62

Z
X
ðDauÞ2 dx

 !1
2

:

The stable and unstable boundary conditions are of different nature so in order to clearly distinguish them, it is
useful to introduce the space V of elements of the Sobolev space H2(X), which satisfy the corresponding stable
homogeneous boundary conditions.
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Consider the boundary value problem given by Eq. (2) and the boundary conditions (10) and (11) when the
variable t is deleted. Then u(x, t) is replaced by w(x). Now this boundary value problem is transformed into
one that leads to the concept of weak solution. If we let cR, cT!1, in Eqs. (10) and (11), these conditions

are reduced to wðxÞjoX¼
owðxÞ

on

���
oX
¼ 0: Consequently, since a weak solution of Eq. (2), is a function from the

Sobolev space H2(X), the space V is given by
V ¼ v; v 2 H 2ðXÞ; v
��
oX
¼ ov

on

����
oX

¼ 0 in the sense of traces

	 

: ð12Þ
When the coefficients cR and cT take finite values, there are no stable boundary conditions and the space V
can be taken as V = {v; v 2 H2(X)}.

First we assume that qðxÞ 2 CðXÞ, and that w 2 Cð4ÞðXÞ is the classical solution of the problem (2) and (10,
11). If we take an arbitrary function v 2 V, and multiply Eq. (2) by this function and integrate the result over
the domain X we get
Z

X
AðuðxÞÞvðxÞdx ¼

Z
X

qðxÞvðxÞdx: ð13Þ
Now it is necessary to use the Green formula
Z
X

w
ov
oxi

dx ¼
Z

oX
wvni ds�

Z
X

v
ow
oxi

dx; i ¼ 1; 2; 8w; v 2 H ð1ÞðXÞ;
where ni denotes the components of the normal exterior to the boundary of X. If we apply this formula to the
left hand side of Eq. (13) we obtain
Bðw; vÞ ¼ �
Z

X
M1ðwÞ

o2v
ox2

1

þM2ðwÞ
o2v
ox2

2

þ 2H 12ðwÞ
o2v

ox1ox2

� �
dxþ

Z
oX

M1ðwÞn1 þ H 12ðwÞn2ð Þ ov
ox1

ds

þ
Z

oX
M2ðwÞn2 þ H 12ðwÞn1ð Þ ov

ox2

ds�
Z

oX

oM1ðwÞ
ox1

þ oH 12ðwÞ
ox2

� �
vn1 ds

�
Z

oX

oM2ðwÞ
ox2

þ oH 12ðwÞ
ox1

� �
vn2 ds: ð14Þ
Since v 2 H2(X), the derivatives ov/oxi 2 H1(X), i = 1,2 have traces, then the derivatives ov(s)/on, ov(s)/os can
be defined. Consequently, if we replace Eqs. (8) and (9) with u = v in Eq. (14) it follows
Bðw; vÞ ¼ �
Z

X
M1ðwÞ

o2v
ox2

1

þM2ðwÞ
o2v
ox2

2

þ 2H 12ðwÞ
o2v

ox1ox2

� �
dx

þ
Z

oX
M1ðwÞn2

1 þM2ðwÞn2
2 þ 2H 12ðwÞn1n2

� � ov
on

ds

þ
Z

oX
ðM2ðwÞ �M1ðwÞÞn1n2 þ H 12ðwÞðn2

1 � n2
2Þ

� � ov
os

ds

þ
Z

oX
� oM1ðwÞ

ox1

þ oH 12ðwÞ
ox2

� �
n1 �

oM2ðwÞ
ox2

þ oH 12ðwÞ
ox1

� �
n2

� �
vds: ð15Þ
On the other hand, if we denote P ¼ ðM2 �M1Þn1n2 þ H 12ðn2
1 � n2

2Þ, we have [37]
Z
oX

P
ov
os

ds ¼ �
Z

oX

oP
os

vds; ð16Þ
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and replacing Eq. (16) in Eq. (15) it leads to
Bðw; vÞ ¼ �
Z

X
M1ðwÞ

o2v
ox2

1

þM2ðwÞ
o2v
ox2

2

þ 2H 12ðwÞ
o2v

ox1ox2

� �
dx

þ
Z

oX
M1ðwÞn2

1 þM2ðwÞn2
2 þ 2H 12ðwÞn1n2

� � ov
on

ds

þ
Z

oX
� oM1ðwÞ

ox1

þ oH 12ðwÞ
ox2

� �
n1 �

oM2ðwÞ
ox2

þ oH 12ðwÞ
ox1

� �
n2


 �
vds

�
Z

oX

o

os
M2ðwÞ �M1ðwÞð Þn1n2 þ H 12ðwÞ n2

1 � n2
2

� �� �
vds: ð17Þ
Finally, from Eqs. (10) and (11) we obtain
Bðw; vÞ ¼ �
Z

X
M1ðwÞ

o2v
ox2

1

þM2ðwÞ
o2v
ox2

2

þ 2H 12ðwÞ
o2v

ox1ox2

� �
dxþ

Z
oX

cRðsÞ
ow
on

ov
on

dsþ
Z

oX
cTðsÞwvds:

ð18Þ
The double integral in (18) constitutes the bilinear form A(w,v) associated with the differential operator A de-
fined in (3) and the curvilinear integrals constitute the boundary bilinear form a(w,v). The equality (13) now
assumes the form
Bðw; vÞ ¼
Z

X
qvdx ¼ ðq; vÞL2ðXÞ:
Now it is possible to weaken the assumptions. Let q(x) 2 L2(X), Dij(x), cR(s), cT(s) bounded measurable func-
tions in X, and h 2 CðXÞ. A function w 2 H2(X) is called a weak solution of the boundary value problem (2),
(10) and (11) if
ðiÞ w 2 H 2ðXÞ; ð19Þ
ðiiÞ Bðw; vÞ ¼ ðq; vÞL2ðXÞ; 8v 2 V : ð20Þ
2.2. Non-smooth boundary

Now let us assume that the boundary oX consists of a finite number of smooth curves and therefore has at
most a finite number of corner points. To be definite let us suppose that the four points Pi, i = 1, . . . , 4, divide
the boundary in the disjoint parts oXi, i = 1, . . . , 4, represented parametrically by the functions c(i), i = 1, . . . , 4
respectively, as it is shown in Fig. 2. In this case Eq. (16) is not valid. The functions n1(s), n2(s) are not con-
tinuous, and we would get additional terms in the corner points:
Fig. 2. Anisotropic plate with corner points.
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Z
oX

P
ov
os

ds ¼
X4

i¼1

Z
oXi

P
ov
os

ds

¼ �
Z

oX

oP
os

vdsþ ðPvÞðcð1Þ1 ðsÞ; c
ð1Þ
2 ðsÞÞ

���l1

l0

þ ðPvÞðcð2Þ1 ðsÞ; c
ð2Þ
2 ðsÞÞ

���l2

l1

þ ðPvÞðcð3Þ1 ðsÞ; c
ð3Þ
2 ðsÞÞ

���l3

l2

þ ðPvÞðcð4Þ1 ðsÞ; c
ð4Þ
2 ðsÞÞ

���l4

l3

; ð21Þ
with l0 = 0, li = l(oX1 [ . . . [ o Xi), i = 1, . . . , 4. Replacing Eq. (21) in Eq. (15) and taking into account the
boundary conditions (10) and (11) we get
Bðw; vÞ ¼ �
Z

X
M1ðwÞ

o2v
ox2

1

þM2ðwÞ
o2v
ox2

2

þ 2H 12ðwÞ
o2v

ox1ox2

� �
dxþ

Z
oX

cRðsÞ
ow
on

ov
on

ds

þ
Z

oX
cTðsÞwv dsþ

X4

i¼1

ðPvÞðcðiÞ1 ðsÞ; c
ðiÞ
2 ðsÞÞ

���li

li�1

: ð22Þ
3. The continuity and V – ellipticity of the bilinear form B

As stated above, from Eq. (18) we have B(w,v) = A(w,v) + a(w,v), where
Aðw; vÞ ¼ �
Z

X
M1ðwÞ

o2v
ox2

1

þM2ðwÞ
o2v
ox2

2

þ 2H 12ðwÞ
o2v

ox1ox2

� �
dx; ð23Þ

aðw; vÞ ¼
Z

oX
cRðsÞ

ow
on

ov
on

dsþ
Z

oX
cTðsÞwv ds: ð24Þ
If we use the notation introduced in Eq. (1) and define the coefficients
KijðxÞ ¼ DijðxÞ; i; j ¼ 1; 2; K21 ¼ K12; Ki3ðxÞ ¼ 2Di6ðxÞ; i ¼ 1; 2;

K3jðxÞ ¼ 2Dj6ðxÞ; j ¼ 1; 2; K33ðxÞ ¼ 4D66ðxÞ;
and the multi-index vectors a1 = (2,0), a2 = (0,2), a3 = (1, 1), Eq. (23) is reduced to
Aðw; vÞ ¼
Z

X

X3

i¼1

X3

j¼1

KijðxÞDaj wðxÞ
 !

Dai vðxÞ
" #

dx:
Consequently we have
jAðw; vÞj 6
Z

X

X3

i¼1

X3

j¼1

jKijðxÞjjDaj wðxÞj
 !

jDai vðxÞj
" #

dx

6 K
X3

i¼1

X3

j¼1

Z
X
jDaj wðxÞjjDai vðxÞjdx

6 K
X3

i¼1

X3

j¼1

Z
X
jDaj wðxÞj2dx

� �1=2 Z
X
jDai vðxÞj2dx

� �1=2
" #

6 K
X3

i¼1

X3

j¼1

kwkH2ðXÞkvkH2ðXÞ

� �
;

where K ¼ max16i;j63ðkKijkL1ðXÞÞ. From this inequality there follows the existence of a constant C1 > 0, such
that
jAðw; vÞj 6 C1kwkH2ðXÞkvkH2ðXÞ; 8w; v 2 H 2ðXÞ: ð25Þ
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From (24) we have
jaðw; vÞj 6
Z

oX
cRðsÞ

ow
on

ov
on

����
����dsþ

Z
oX
jcTðsÞwvjds 6 cR0

Z
oX

ow
on

ov
on

����
����dsþ cT 0

Z
oX
jwvjds; ð26Þ
where cR0
¼ kcRkL1ðoXÞ and cT 0

¼ kcTkL1ðoXÞ.

Since w, v 2 H2(X), then ow
oxi
; ov

oxi
2 H 1ðXÞ; i ¼ 1; 2, and consequently these functions have traces which belong

to L2(oX). Moreover, from the trace theorem [38,39] there exist a constant C2 > 0 such that
ow
on

����
����

L2ðoXÞ
6 C2kwkH2ðXÞ;

ov
on

����
����

L2ðoXÞ
6 C2kvkH2ðXÞ:
Then we have
Z
oX

ow
on

����
���� ov
on

����
����ds 6

Z
oX

ow
on

����
����
2

ds

 !1=2 Z
oX

ov
on

����
����
2

ds

 !1=2

6 C2
2kwkH2ðXÞkvkH2ðXÞ:
Besides, there exists a constant C3, such that
kwkL2ðoXÞ 6 C3kwkH1ðXÞ 6 C3kwkH2ðXÞ;

kvkL2ðoXÞ 6 C3kvkH1ðXÞ 6 C3kvkH2ðXÞ:
In consequence, we have
Z
oX
jwjjvjds 6

Z
oX
jwj2ds

� �1=2 Z
oX
jvj2ds

� �1=2

6 C2
3kwkH2ðXÞkvkH2ðXÞ:
From the replacement of these estimates in Eq. (26) there follows
jaðw; vÞj 6 C4kwkH2ðGÞkvkH2ðGÞ; 8v;w 2 H 2ðXÞ; ð27Þ
where C4 ¼ maxfcR0
C2

2; cT 0
C2

3g:
From Eqs. (25) and (27) we have
jBðw; vÞj 6 C5kwkH2ðXÞkvkH2ðXÞ; 8v;w 2 H 2ðXÞ; ð28Þ
where C5 = C1 + C4.
The inequality (28) implies that B(w,v) is continuous on the product space H2(X) · H2(X).
Now it is necessary to prove that the bilinear form B(w,v) is V – elliptic, in order to demonstrate that the

problem under consideration has exactly one weak solution w [38,39]. If we replace w = v, in Eqs. (23) and (24)
we obtain
Bðv; vÞ ¼ Aðv; vÞ þ aðv; vÞ

¼
Z

X
D11

o2v
ox2

1

� �2

þ 2D12

o2v
ox2

1

o2v
ox2

2

þ D22

o2v
ox2

2

� �2
 

þ 4D16

o2v
ox2

1

o2v
ox1ox2

þ 4D26

o
2v

ox2
2

o
2v

ox1ox2

þ 4D66

o
2v

ox1ox2

� �2
!

dxþ
Z

oX
cRðsÞ

ov
on

� �2

dsþ
Z

oX
cTðsÞv2ds: ð29Þ
It is known from the theory of elasticity that the quadratic form which represents twice the potential energy
density of an elastic body is positive definite, i.e., there exists a constant C6 > 0 so that
2W ðuÞ ¼
X3

i;k;l;m¼1

ciklmeikðuÞelmðuÞP C6

X3

i;k¼1

e2
ikðuÞ

 !
; ð30Þ
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where ciklm are the stiffness matrix coefficients, eik the strains and u is the displacement vector in terms of a x1,
x2, x3 co-ordinate system. Under the assumptions of the considered anisotropic plate theory, the rigidities are
given by (4). Then, the integration in the inequality (30) with respect to x1, x2 and x3, leads to
Z

X

Z hðxÞ=2

�hðxÞ=2

Q11

o2wðxÞ
ox2

1

� �2

þ 2Q12

 "
o2wðxÞ

ox2
1

o2wðxÞ
ox2

2

þ 4Q16

o2wðxÞ
ox2

1

o2wðxÞ
ox1ox2

þ Q22

o2w
ox2

2

� �2

þ 4Q26

o2wðxÞ
ox2

2

o2wðxÞ
ox1ox2

þ 4Q66

o2wðxÞ
ox1ox2

� �2
!

x2
3dx3

#
dx

P C6

Z
X

h3ðxÞ
12

o2wðxÞ
ox2

1

� �2

þ 2
o2wðxÞ
ox1ox2

� �2

þ o2wðxÞ
ox2

2

� �2
" #

dx:
Then
Z
X

Z hðxÞ=2

�hðxÞ=2

Q11
o

2wðxÞ
ox2

1

� �2

þ 2Q12

 "
o

2wðxÞ
ox2

1

o
2wðxÞ
ox2

2

þ 4Q16
o

2wðxÞ
ox2

1

o
2wðxÞ

ox1ox2

þ Q22
o

2w
ox2

2

� �2

þ 4Q26
o

2wðxÞ
ox2

2

o
2wðxÞ

ox1ox2

þ 4Q66
o

2wðxÞ
ox1ox2

� �2
!

x2
3dx3

#
dx

P C7

Z
X

o
2wðxÞ
ox2

1

� �2

þ 2
o

2wðxÞ
ox1ox2

� �2

þ o
2wðxÞ
ox2

2

� �2
" #

dx; ð31Þ
where C7 ¼ C6

12
minx2XfhðxÞ

3g. When cT(s) P cM > 0, with cM constant, from Eqs. (29) and (31) with w = v we
have
Bðv; vÞP C7

Z
X

o2v
ox2

1

� �2

þ o2v
ox1ox2

� �2

þ o2v
ox2

2

� �2
 !

dxþ
Z

oX
cTðsÞv2ds P C8

X
jaj¼2

Z
X
ðDavÞ2dxþ

Z
oX

v2ds

" #
;

ð32Þ
where C8 = min{C7,cM}.
By applying Friedrichs inequality in the case of a domain X � R2 with piecewise smooth boundary oX

[38,39]
kuk2
H2ðXÞ 6 C9

X
jaj¼2

Z
X
ðDauÞ2dxþ

Z
oX

u2ðsÞds

 !
; C9 > 0; 8u 2 H 2ðXÞ;
we obtain
Bðv; vÞP C8

C9

kvk2
H2ðXÞ; 8v 2 V : ð33Þ
The inequality (33) implies that B(w,v) is V – elliptic. Since it has been demonstrated that B(w,v) is continuous
on the product space H2(X) · H2(X) and it is V – elliptic, the boundary value problem under consideration has
exactly one weak solution. In the case of symmetrically laminated plates the coefficients Dij are given by Eq. (5)
and the demonstration of the continuity and V – ellipticity of B(w,v) is totally analogue.

In the case of non-smooth boundary, Eq. (22) of the bilinear form includes the termsP4
i¼1ðPvÞðcðiÞ1 ðsÞ; c

ðiÞ
2 ðsÞÞ

���li

li�1

, which do not allow to use the above demonstration to prove the V – ellipticity

of the B(w,v) form. Nevertheless, the application of the techniques of the variational calculus leads to the con-
clusion that when the boundary is simply supported (with or without rotational restraints) the function w
equals zero along the boundary. In consequence v also equals zero and
X4

i¼1

ðPvÞ cðiÞ1 ðsÞ; c
ðiÞ
2 ðsÞ

� ����li

li�1

¼ 0: ð34Þ
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When the boundary is free or elastically restrained against translation in the neighbourhood of the corner
points it is v 5 0 and additional boundary conditions exist [37]. These are given by
Pðcð1Þ1 ðl1Þ; cð1Þ2 ðl1ÞÞ � P ðcð2Þ1 ðl1Þ; cð2Þ2 ðl1ÞÞ ¼ 0;

Pðcð2Þ1 ðl2Þ; cð2Þ2 ðl2ÞÞ � P ðcð3Þ1 ðl2Þ; cð3Þ2 ðl2ÞÞ ¼ 0;

Pðcð3Þ1 ðl3Þ; cð3Þ2 ðl3ÞÞ � P ðcð4Þ1 ðl3Þ; cð4Þ2 ðl3ÞÞ ¼ 0;

Pðcð1Þ1 ðl0Þ; cð1Þ2 ðl0ÞÞ � P ðcð4Þ1 ðl4Þ; cð4Þ2 ðl4ÞÞ ¼ 0:

ð35Þ
The use of Eq. (35) leads again to Eq. (34).
As a consequence of Eq. (34) the proof of the V – ellipticity of B(w,v) is the same as in the case of smooth

boundary.

4. The boundary and eigenvalue problem

Free transverse vibrations of the anisotropic plate described above are governed by the corresponding
boundary conditions and Eq. (6). In the case of normal modes of vibrations we take u(x, t) = w(x)cosxt, con-
sequently Eq. (6) is reduced to
AðwðxÞÞ � qhðxÞx2wðxÞ ¼ 0; ð36Þ

where x is the radian natural frequency.

Let us consider the eigenvalue problem given by Eq. (36) and the boundary conditions (10) and (11) with
u(x, t) replaced by w(x). We rewrite it as the problem of finding a number k and a function w such that

(i) w 2 H 2ðXÞ;w 6¼ 0,
(ii) Bðw; vÞ � kðw; vÞ ¼ 0; 8v 2 V ,

where V is the space of functions which satisfy the corresponding homogeneous stable boundary conditions,
k ¼ qh0x2; ðw; vÞ ¼

R
X f ðxÞwðxÞvðxÞdx and the thickness of the plate is given by h(x) = h0f(x), where V is the

space of elements which satisfy the corresponding stable homogeneous boundary conditions, previously
defined. Since the bilinear form B(w,v) is symmetric (as it can be seen from Eqs. (23) and (24)), continuous
and V – elliptic, it has a countable set of eigenvalues which are given by [38,39]
k1 ¼ min
Bðv; vÞ
ðv; vÞ ; v 2 V ; v 6¼ 0

	 

;

kn ¼ min
Bðv; vÞ
ðv; vÞ v 2 V ; v 6¼ 0; ðv; v1Þ ¼ 0; . . . ; ðv; vn�1Þ ¼ 0

	 

; n ¼ 2; 3; . . .
Let us introduce a new inner product ((Æ, Æ)) in space V, given by ((w,v)) = B(w,v), "w,v 2 V. If the sequence
{vi(x)} is a base in the space (V,((Æ, Æ))), the Ritz method leads to the equation
ððv1; v1ÞÞ � kðv1; v1Þ . . . ððv1; vnÞÞ � kðv1; vnÞ
ððvn; v1ÞÞ � kðvn; v1Þ . . . ððvn; vnÞÞ � kðvn; vnÞ

����
���� ¼ 0: ð37Þ
Approximate eigenvalues can be obtained from this equation using adequate functions vi(x).

5. Analytical approximate solution

5.1. Strain and kinetic energies

The maximum strain energy of the anisotropic plate described above, can be expressed in rectangular co-
ordinates as
Umax¼
1

2

Z
X

D11

o2w
ox2

1

� �2

þ2D12

o2w
ox2

1

o2w
ox2

2

þ
"

D22

o2w
ox2

2

� �2

þ4D16

o2w
ox2

1

o2w
ox1ox2

þ4D26

o2w
ox2

2

o2w
ox1ox2

þ4D66

o2w
ox1ox2

� �2
#

dx;

ð38Þ
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where the integration is carried out over the entire plate domain X and the coefficients Dij are given by Eq. (4)
and/or Eq. (5).

The maximum kinetic energy for free transverse vibrations of the plate is given by
T max ¼
qx2

2

Z
X

hw2 dx: ð39Þ
Finally, the maximum potential energy due to the rotational and translational restraints on the boundary are
respectively given by
UR;max ¼
1

2

Z
oX

cR

ow
on

� �2

ds ¼ 1

2

Z
oX

cR

ow
ox1

n1 þ
ow
ox2

n2

� �2

ds; ð40Þ

UT ;max ¼
1

2

Z
oX

cTw2 ds: ð41Þ
5.2. Smooth boundary

Let us consider an elliptical anisotropic plate as shown in Fig. 3a. In the case of composite material, the
fibre angle is indicated by b measured from the x1 axis to the fibre orientation. The considered laminate is
of uniform thickness h and, in general, it is made up of a number of layers each consisting of unidirectional
fibre reinforced composite material, and all laminae having equal thicknesses.

Let us introduce the following co-ordinates x = x1/a, y = x2/b, where a and b are the semi-major and minor
axes of the ellipse (Fig. 3a). After this co-ordinate transformation the two dimensional plate domain X is
transformed in
X� ¼ ðx; yÞ;�1 6 x 6 1;�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

6 y 6
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
pn o

:

Fig. 3. General description of the plate geometries (a) elliptical plate (b) trapezoidal plate.
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The plate deflection is represented by the following approximate function
Table
Conve
and st

b

Clamp

30�

60�

Simply

30�

60�

Free

30�

60�
wðx; yÞ ¼
XM

i¼1

XN

j¼1

cijxi�1yj�1ðx2 þ y2 � 1Þp; ð42Þ
1
rgence of frequency parameters xa2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=D0

p
, for symmetrically laminated graphite-epoxy elliptical plates with aspect ratio a/b = 2

acking sequence (�b,b,b,�b)

Mode sequence number

1 2 3 4 5 6

ed

Present (4 · 4) 11.6408 17.9079 28.6163 29.0343 39.2058 43.9370
Present (5 · 5) 11.6379 17.9022 27.4212 29.0330 37.0721 41.9376
Present (6 · 6) 11.6379 17.8889 27.3915 28.9727 37.0478 39.7933
Present (7 · 7) 11.6379 17.8888 27.3371 28.9726 36.9160 39.6787
Present (8 · 8) 11.6379 17.8886 27.3366 28.9711 36.9153 39.4991
Present (9 · 9) 11.6379 17.8885 27.3349 28.9711 36.9111 39.4955
Present (10 · 10) 11.6379 17.8884 27.3348 28.9710 36.9110 39.4869

Present (4 · 4) 19.9234 24.8471 35.8877 47.2497 53.0701 62.3723
Present (5 · 5) 19.8474 24.8390 31.1138 46.8896 52.7422 60.7105
Present (6 · 6) 19.8473 24.5531 31.0905 38.8169 52.7105 60.5350
Present (7 · 7) 19.8435 24.5523 30.38099 38.7610 48.1139 52.6762
Present (8 · 8) 19.8435 24.5330 30.3781 37.3171 48.0017 52.6754
Present (9 · 9) 19.8434 24.5330 30.3141 37.3090 45.4093 52.6729
Present (10 · 10) 19.8434 24.5324 30.3139 37.1388 45.3900 52.6710

supported

Present (4 · 4) 5.6325 10.9589 19.3809 23.2373 34.3465 45.3799
Present (5 · 5) 5.6289 10.9344 19.3749 19.5843 26.9199 35.4697
Present (6 · 6) 5.6289 10.9056 19.1467 19.4887 26.7986 31.1930
Present (7 · 7) 5.6288 10.9052 19.1463 19.3198 26.3396 30.8435
Present (8 · 8) 5.6288 10.9047 19.1414 19.3171 26.3364 30.2541
Present (9 · 9) 5.6288 10.9047 19.1414 19.3128 26.3230 30.2370
Present (10 · 10) 5.6288 10.9047 19.1413 19.3128 26.3229 30.2114

Present (4 · 4) 9.5079 13.9353 26.6385 35.2172 41.3175 45.9420
Present (5 · 5) 9.4355 13.8964 19.8031 34.8089 39.9247 43.9391
Present (6 · 6) 9.4354 13.6009 19.7100 27.3221 34.6310 42.2869
Present (7 · 7) 9.4335 13.6004 18.8879 27.1380 34.5677 36.6845
Present (8 · 8) 9.4334 13.5860 18.8846 25.3029 34.5628 36.4022
Present (9 · 9) 9.4334 13.5859 18.8230 25.2908 32.9025 34.5592
Present (10 · 10) 9.4334 13.5857 18.8226 25.0970 32.8717 34.5575

Present (4 · 4) 2.4484 5.3011 8.7558 13.5754 13.9454 24.5528
Present (5 · 5) 2.3696 5.1668 8.5328 11.2504 11.9576 19.2085
Present (6 · 6) 2.3695 5.1498 7.7936 11.2128 11.8892 17.5239
Present (7 · 7) 2.3661 5.1359 7.7804 11.0296 11.7478 16.0857
Present (8 · 8) 2.3661 5.1359 7.7212 11.0294 11.7422 15.9459
Present (9 · 9) 2.3661 5.1359 7.7211 11.0230 11.7413 15.7152
Present (10 · 10) 2.3661 5.1359 7.7209 11.0230 11.7413 15.7127

Present (4 · 4) 1.2903 4.1599 5.3008 13.4718 24.1362 25.1998
Present (5 · 5) 1.2044 4.1576 5.2822 9.4773 10.7532 20.6047
Present (6 · 6) 1.2044 3.5005 5.2538 9.4734 10.7038 17.1869
Present (7 · 7) 1.2015 3.5003 5.2461 7.1511 10.4751 17.0922
Present (8 · 8) 1.2015 3.4609 5.2459 7.1506 10.4448 12.3206
Present (9 · 9) 1.2015 3.4609 5.2454 6.9443 10.4384 12.3199
Present (10 · 10) 1.2015 3.4607 5.2454 6.9442 10.4267 11.6581
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where cij are unknown coefficients and the parameter p depends on the boundary conditions; p = 2 is adopted
when it is rigidly clamped, p = 1 when the plate is simply supported and p = 0 when it is free or elastically
restrained along the boundary.

The corresponding boundary conditions are given by Eqs. (10) and (11). In this study the spring coefficients
cR(s) and cT(s) have been considered constant along the boundary, and the following non dimensional param-
eters have been defined R = cRa/D11 and T = cTa3/D11.

The Ritz method is used to generate the following non dimensional frequency coefficients xa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=D11

p
and

xa2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=D0

p
where D0 is the reference flexural rigidity D0 ¼ ELh3=12ð1� mLTmTLÞ. The subscript L and T rep-

resent the directions parallel with and perpendicular to the fibre direction.

5.3. Non-smooth boundary

Let us consider a composite plate with a general trapezoidal planform as shown in Fig. 3b. The angles of
the plate sides h1 and h2 are measured from the x1 axis to sides 3 and 1 respectively and are defined negative
when measured clock-wise.

Let us introduce non-orthogonal right triangular co-ordinates x, y. They are related to the x1, x2 co-ordi-
nates by
Table
Freque
transla

Materi

D22/D1

D12/D1

D66/D1

D16/D1

D26/D1

D22/D1

D12/D1

D66/D1

D16/D1

D26/D1
x ¼ x1

l
; y ¼ x2

x1

cot h1: ð43Þ
After this co-ordinate transformation the two-dimensional plate domain X is transformed in
X̂ ¼ ðx; yÞ; c=l 6 x 6 1; tan h2 cot h1 6 y 6 1f g (see Fig. 3b). The plate deflection is represented by a set of
beam characteristic orthogonal polynomials pi(x) and qj(y) as
2
ncy parameters xa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=D11

p
, for circular plates of generalized anisotropy with edges elastically restrained against rotation and

tion

al properties R = cRa/D11 T = cTa3/D11 Mode sequence number

1 2 3 4

1 = 1/2

1 = 3/10

1 = 1/2

1 = 1/3

1 = 1/3

0 0 Present 3.1925 4.8126 8.1380 9.2047
10 3.0585 5.2729 5.9155 7.6486
100 4.2034 8.3781 12.3652 13.8972
1000 4.3978 9.0524 14.5745 15.7685
10000 4.4187 9.1279 14.8294 15.9881
1 4.4562 9.3034 15.4392 16.4853

Bambill et al. [42] 4.4802 – – –
10 1 7.4263 12.9062 18.8495 20.5157
100 8.2738 13.8357 20.5600 21.5190
1000 8.4004 13.9645 20.8714 21.6852
10000 8.4224 13.9784 20.9408 21.7432
1 9.5694 15.3527 23.5055 23.5190

Bambill et al. [42] 9.6242 – – –

1 = 1/4

1 = 1/3

1 = 1/2

1 = 1/5

1 = 1/3

0 0 Present 3.3147 5.1520 6.2605 9.4616
10 2.8657 4.3388 5.8933 6.2788
100 3.9399 7.0160 11.1083 11.8202
1000 4.1343 7.7675 12.7208 13.5073
10000 4.1559 7.8645 12.9906 13.7210
1 4.2344 8.7664 14.1852 14.6733

Bambill et al. [42] 4.2759 – – –
10 1 7.0787 11.9949 17.6236 18.0361
100 7.8327 12.8896 18.5891 19.4631
1000 7.9409 13.0213 18.7475 19.7206
10000 7.9580 13.0400 18.7846 19.7906
1 9.0877 14.3947 20.6129 22.3705

Bambill et al. [42] 9.1466 – – –



Table 3
Convergence of frequency parameters xl2=h

ffiffiffiffiffiffiffiffiffiffiffi
q=EL

p
, for symmetrically laminated E-glass-epoxy trapezoidal plates, with h1 = 36.87�,

h2 = 0�, c/l = 0.25 and stacking sequence (�b,b,b,�b)

b Mode sequence number

1 2 3 4 5 6

CCCC

30� 4 · 4 30.4161 49.7905 65.2323 80.2623 97.2895 119.008
5 · 5 30.3851 49.1289 64.0410 76.2810 90.9063 114.779
6 · 6 30.3762 49.0148 63.6996 75.7062 88.2658 108.291
7 · 7 30.3760 48.9845 63.5738 75.3793 87.6232 107.478
8 · 8 30.3759 48.9838 63.5673 75.3684 87.5624 107.399
9 · 9 30.3759 48.9811 63.5198 75.3175 87.4093 107.001
10 · 10 30.3759 48.9748 63.5198 75.3069 87.3340 106.709

60� 4 · 4 31.6269 50.7935 68.8166 78.7007 100.278 118.689
5 · 5 31.5819 49.6738 67.3430 76.5984 95.0772 112.321
6 · 6 31.5720 49.6118 66.4925 75.2268 91.7392 105.703
7 · 7 31.5707 49.5554 66.3866 75.0494 90.4129 103.744
8 · 8 31.5707 49.5554 66.3866 75.0495 90.4129 103.744
9 · 9 31.5706 49.5489 66.3697 75.0487 89.4123 102.060
10 · 10 31.5705 49.5461 66.3632 75.0433 88.5436 100.342

SSSS

30� 4 · 4 16.1454 31.9497 45.6298 70.2315 89.5856 108.955
5 · 5 16.0608 31.0643 43.3937 54.4097 69.8263 88.9880
6 · 6 16.0434 30.6321 42.8095 53.6047 65.5206 83.0780
7 · 7 16.0406 30.5619 42.5142 52.3852 63.8513 81.8971
8 · 8 16.0377 30.5467 42.4541 52.2622 63.0467 79.6361
9 · 9 16.0345 30.5316 42.4325 52.2006 62.8474 79.4403
10 · 10 16.0345 30.5316 42.4325 52.2006 62.8474 79.4403
Lim et al. [43] 16.0416 30.569 42.469 52.252 62.889 79.310

60� 4 · 4 16.5852 32.0139 47.9376 67.6119 85.8515 11.5839
5 · 5 16.5391 30.6275 45.2772 53.1895 71.8791 94.7399
6 · 6 16.5167 30.3514 44.4224 52.0466 66.7259 79.8927
7 · 7 16.5155 30.2527 43.9883 51.1379 65.3315 78.8920
8 · 8 16.5145 30.2462 43.8822 50.9905 64.1001 76.1087
9 · 9 16.5138 30.2393 43.8631 50.9387 63.8823 75.8000
10 · 10 16.5138 30.2393 43.8631 50.9387 63.8823 75.8000
Lim et al. [43] 16.5145 30.249 43.876 50.960 63.844 75.621

FFFF

30� 4 · 4 7.1164 11.3566 17.4943 21.6055 38.2086 44.2072
5 · 5 6.5805 10.3906 16.6420 19.6421 32.8092 37.3277
6 · 6 6.5494 10.2870 16.0097 17.7729 28.1202 31.1221
7 · 7 6.5269 10.2354 15.8768 17.4707 26.8433 30.6100
8 · 8 6.5259 10.2260 15.8214 17.3485 26.3093 30.1226
9 · 9 6.5259 10.2256 15.820 17.3351 26.1262 30.0904
10 · 10 6.5259 10.2256 15.8188 17.3347 26.1141 30.0824

60� 4 · 4 7.0732 10.5800 17.6982 22.7236 36.8067 42.7418
5 · 5 6.4403 9.8293 16.8402 20.5344 31.7597 35.3489
6 · 6 6.4036 9.7556 15.7883 18.4410 26.6067 31.0657
7 · 7 6.3744 9.7184 15.6445 18.1190 26.1304 28.7599
8 · 8 6.3737 9.7117 15.5376 17.9686 25.7466 28.1767
9 · 9 6.3736 9.7115 15.5357 17.9501 25.6790 27.8622
10 · 10 6.3736 9.7115 15.5347 17.9494 25.6710 27.8487
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wðx; yÞ ¼
XM

i¼1

XN

j¼1

cijpiðxÞqjðyÞ; ð44Þ
where cij are the unknown coefficients. The procedure used is the construction of the orthogonal
polynomials as has been developed by Bhat [40,41]. The Ritz method is used to
generate the following non-dimensional frequency coefficients xl2=h

ffiffiffiffiffiffiffiffiffiffiffi
q=EL

p
, and xl2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=D0

p
ð1� clÞ2 tan h.

In this case, the corresponding boundary conditions are given by Eqs. (10) and (11), with the non-dimen-
sional spring coefficients given by Ri ¼ cRi l=D0 and T i ¼ cTi l

3=D0; i ¼ 1; 2; 3; 4.
6. Verification and numerical applications

6.1. Circular and elliptical plates

Results of a convergence study of eigenvalues xa2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=D0

p
, for elliptical composite plates are presented

in Table 1. Four-ply graphite-epoxy laminates (EL/ET = 40, GLT/ET = 0.5, mLT = 0.25), with stacking
4
ncy parameters xl2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=D0

p
ð1� clÞ2 tan h, for symmetrically laminated graphite-epoxy trapezoidal plates, with h1 = h2 = h =

�, c/l = 0.25, stacking sequence (�b,b,b,�b)

T1 = T3 = T4 b Mode sequence number

1 2 3 4 5 6 7 8

1 (S-S-S-S) 15� Present 14.963 28.333 41.915 48.387 60.151 71.794 83.353 94.895
10000 14.389 28.201 41.076 49.191 59.878 76.470 83.993 97.535
1000 13.908 26.917 37.524 44.855 53.462 63.995 68.353 79.589
100 11.692 18.968 23.381 27.678 32.749 38.454 45.296 53.554
10 6.3840 10.839 18.079 22.545 27.489 35.560 43.095 53.107
1 4.4740 9.7582 18.923 24.139 29.096 38.124 46.170 57.140
0.1 4.2170 9.6827 19.129 24.484 29.462 38.651 46.839 58.019
0.01 4.1902 9.6758 19.152 24.522 29.502 38.709 46.913 58.116
0 (F-C-F-F) 4.1872 9.6748 19.153 24.524 29.505 38.623 46.854 57.849
0 (F-C-F-F) Liew and Lim [23] 4.1872 9.6743 19.151 24.516 29.499 38.566 46.385 56.755

1 (S-S-S-S) 30� Present 17.789 35.854 47.185 59.702 76.151 89.364 90.616 112.70
10000 17.342 35.188 45.830 59.508 74.761 86.785 92.070 115.26
1000 16.499 32.322 40.844 51.535 62.241 69.889 72.591 85.599
100 12.512 20.114 23.891 29.629 36.330 43.311 47.123 56.987
10 6.2432 11.803 16.820 24.687 32.210 41.211 46.428 55.921
1 3.6382 10.937 16.813 25.629 33.558 43.330 49.249 58.648
0.1 3.2185 10.879 16.886 25.824 33.840 43.747 49.799 59.210
0.01 3.1731 10.873 16.894 25.845 33.871 43.793 49.860 59.271
0 (F-C-F-F) 3.1677 10.871 16.892 25.840 33.868 43.732 49.775 59.082
0 (F-C-F-F) Liew and Lim [23] 3.1672 10.870 16.878 25.829 33.862 43.694 49.692 58.586

1 (S-S-S-S) 45� Present 20.5866 38.9951 55.697 64.683 83.250 97.647 108.352 120.266
10000 Present 20.2942 37.9614 54.151 62.587 80.481 95.844 103.855 117.885
1000 Present 18.8377 33.0843 44.783 51.147 61.613 72.120 74.801 83.313
100 Present 12.5204 19.3269 23.560 28.729 33.903 43.666 47.688 54.096
10 Present 5.8569 10.4467 14.571 22.881 29.383 41.782 45.229 53.344
1 Present 2.7454 8.9430 13.397 23.045 29.811 42.876 46.265 55.005
0.1 Present 2.0942 8.7991 13.291 23.097 29.900 43.054 46.459 55.282
0.01 Present 2.0164 8.7851 13.281 23.102 29.910 43.074 46.480 55.311
0 (F-C-F-F) Present 2.0060 8.7812 13.275 23.099 29.904 42.983 46.329 54.785
0 (F-C-F-F) Liew and Lim [23] 2.0039 8.7734 13.250 23.087 29.873 42.950 46.274 54.594

elastically restrained against rotation (R1 = R3 = R4 = 0), edges 1, 3 and 4 elastically restrained against translation (T2 =1).



Table 5
Frequency parameters xl2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=D0

p
and nodal patterns, for symmetrically laminated right graphite-epoxy trapezoidal plates, with h1 = 45�, h2 = 0�, c/l = 0.25, stacking sequence

(45�,�45�,�45�, 45�)

T1 = T2 =
T3 = T4

Mode sequence number

1 2 3 4 5 6 7 8

0.01 0.251878 0.349767 0.370891 6.96855 18.50615 22.2894 31.5337 38.9943

0.1 0.795649 1.10550 1.17162 7.09288 18.55363 22.32470 31.56243 39.01926

1 2.49031 3.47835 3.67092 8.24218 19.02233 22.67522 31.85023 39.26820

10 7.27497 10.57559 11.15468 15.55778 23.15863 25.91945 34.72386 41.67411

100 16.06498 28.27007 29.97741 39.84647 43.27316 45.58573 56.35957 60.10431

1000 22.64374 47.90213 51.59762 79.11992 85.54646 87.49987 111.9065 121.9051

Edges 1–4 elastically restrained against translation.

2270
R

.O
.

G
ro

ssi,
L

.G
.

N
a

llim
/

A
p

p
lied

M
a

th
em

a
tica

l
M

o
d

ellin
g

3
2

(
2

0
0

8
)

2
2

5
4

–
2

2
7

3



R.O. Grossi, L.G. Nallim / Applied Mathematical Modelling 32 (2008) 2254–2273 2271
sequence (�b,b,b,�b) and aspect ratio a/b = 2 are considered. The rate of convergence of eigenvalues
is shown for clamped, simply supported and free boundaries. The convergence of the mentioned eigenvalues
is studied by increasing the numbers M, N in Eq. (42). It can be seen that M, N = 10, is adequate to reach a
stable convergence, specially in the case of the lower frequencies. Therefore it was decided to use M, N = 8 to
generate further results since there is no drastic change.

Table 2 depicts values of the non-dimensional frequency coefficient xa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=D11

p
for circular plates of gen-

eralized anisotropy. The results are presented for two different material properties and growing values of the
restraint coefficients R = cR a/D11 and T = cTa3/D11. The comparison of results for simply supported and
clamped plates with those of Bambill et al. [42] shows that the present values are lower, in consequence more
accurate, since the Ritz method gives upper bounds for eigenvalues.

6.2. Trapezoidal plates

Results of a convergence study of eigenvalues xl2=h
ffiffiffiffiffiffiffiffiffiffiffi
q=EL

p
for trapezoidal plates are presented in Table 3.

Four-ply E-glass-epoxy laminates (EL = 60.7 GPa, ET = 24.8 GPa, GLT = 12 GPa, mLT = 0.23), with stacking
sequence (�b,b,b,�b).

When treating with classical boundary conditions, the symbolism CSFF, for example, identifies a plate with
edge 1 clamped, edge 2 simply supported and edges 3 and 4 free, (see Fig. 3b).

The rate of convergence of eigenvalues is shown for clamped, simply supported and free boundaries.
The convergence of the mentioned eigenvalues is studied by increasing the numbers M, N in Eq. (44). In
this case it is also adequate to use M, N = 8 to generate the results with sufficient accuracy from an
engineering viewpoint. The results for simply supported laminates are in good agreement with those of Lim
et al. [43].

Table 4 depicts values of the non-dimensional frequency coefficient xl2
ffiffiffiffi
qh
D0

q
ð1� clÞ2 tan h, for a trapezoidal

plate. Four-ply graphite-epoxy laminates (EL/ET = 40, GLT/ET = 0.5, mLT = 0.25), with stacking sequence
(�b,b,b,�b) are considered. The results are presented for different values of b and the restraint coefficients
R2 ¼ cR2

l=D0 and T i ¼ cT i l
3=D0; i ¼ 1; 3; 4. The results for cantilever plates are compared with those of Liew

and Lim [23] and very good agreement is obtained. Finally, Table 5 depicts the first eight non dimensional
frequency parameters xl2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=D0

p
and the corresponding nodal patterns, for symmetrically laminated

(45�,�45�,�45�, 45�) graphite-epoxy trapezoidal plates, with h1 = 45�, h2 = 0�, c/l = 0.25.

7. Concluding remarks

The existence and uniqueness of the weak solutions of boundary value problems and eigenvalue problems,
which correspond to the anisotropic plates analysed has been demonstrated. Two classes of boundaries have
been considered:

(i) smooth boundaries of arbitrary shape,
(ii) piecewise smooth boundaries having a finite number of corner points.

The use of the weak solution theory enables a substantial generalisation of assumptions concerning the
smoothness of coefficients of the differential operator (1) and of the functions which appear respectively in
Eqs. (2) and (6).

It has been determined that when the plates have corner points formed by the intersection of edges free or
elastically restrained against translation, the corresponding bilinear form maintains the V – ellipticity prop-
erty. This property is given by Eq. (33) and it guaranties that the weak solution is unique. In practice this
inequality shows that for a system involving a V – elliptic bilinear form, it is possible to obtain a large displace-
ment only by a great expenditure if energy.

It is also the purpose of the present paper to present some technical results for the natural frequencies of
circular, elliptical and trapezoidal plates of generalized anisotropy or made of composite materials and resting
on elastic supports. The Ritz method has been employed by using different polynomial expressions as trial
functions which satisfy only the stable boundary conditions. As it was expected convergence of frequencies



2272 R.O. Grossi, L.G. Nallim / Applied Mathematical Modelling 32 (2008) 2254–2273
is monotonic, and successively upper bounds in the values of the frequency parameters are obtained as addi-
tional terms are taken in the corresponding approximation functions, in spite of the fact that the co-ordinate
functions do not satisfy the unstable boundary conditions. Since the combinations of boundary conditions,
along with specific values for the stiffness constants for the restraints are prohibitively large in number, results
are presented for only a few cases.
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Appendix. Definition of coefficients aab in Eq. (1)

a b a
ab
(2,0)
 (2,0)
 D11
(2,0)
 (0,2)
 D12
(2,0)
 (1,1)
 2D16
(0,2)
 (2,0)
 D12
(0,2)
 (0,2)
 D22
(0,2)
 (1,1)
 2D26
(1,1)
 (2,0)
 2D16
(1,1)
 (0,2)
 2D26
(1,1)
 (1,1)
 4D66
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