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A B S T R A C T

Quorum sensing (QS) systems are an important form of cellular communication in bacteria. QS systems
are based on the synthesis and secretion of a chemical signal (autoinducer) that accumulates as a
function of population growth until reaching a threshold concentration that permits coordinated
expression of certain genes that regulate bacterial physiology and behavior. A wide variety of soil bacteria
(rhizobia) capable of establishing symbiotic associations with plants produces small chemical signaling
molecules to communicate among themselves for physiological adaptation to environmental changes.
Most species of rhizobia associated with legume plants have QS systems that regulate their behavior in a
variety of soil microhabitats, including the establishment of symbiosis with the host plant. Species of the
large, complex genus Bradyrhizobium are ecologically and agriculturally important, but present
knowledge is limited and fragmentary regarding their QS communication systems, types of autoinducer
produced, and biological processes regulated by QS. Therefore, the objective was to review findings to
date on QS mechanisms in Bradyrhizobium, and the role of these mechanisms in symbiosis development
and bacterial survival strategies. Bacteria of genus Bradyrhizobium produce a variety of QS signaling
molecules, some of which are not found in any other bacterial genus. Of particular interest are the
synthesis of bradyoxetin by Bradyrhizobium japonicum and its role in symbiosis regulation, and the
synthesis of various branched homoserine lactones (HSLs) by other Bradyrhizobium species. In peanut-
nodulating strains, these HSLs are associated with the processes of biofilm formation, motility, and
autoaggregation. A proposed model is presented of QS mechanisms in Bradyrhizobium strains and the
physiological processes regulated. The findings reviewed here provide a basis for future studies of QS
communication systems in rhizobia and of regulatory mechanisms in bacterial behavior and
ecophysiology.

ã 2015 Elsevier B.V. All rights reserved.
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1. Introduction

The high level of organization achieved by many bacterial
species is reflected by their ability to synthesize molecules that
play important roles in cell signaling mechanisms or regulate the
expression of specific genes in response to changes in population
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density. Such processes, termed quorum sensing (QS) (Fuqua and
Greenberg, 2002), allow bacteria to coordinate their behavior in
response to dynamic changes in the environment (Dong et al.,
2008; Bernard et al., 2007). Through QS, bacterial populations are
capable of regulating a variety of physiological processes, including
bioluminescence, motility, symbiosis, plasmid transfer, antibiotic
production, virulence factors, and biofilm formation (González and
Marketon, 2003; Sanchez-Contreras et al., 2007; Pierson and
Pierson, 2007). The common characteristic is that each of these
processes are performed only if the bacterial cell population
density is sufficiently high to ensure the success of the
communication (Winzer et al., 2002; Atkinson et al., 2007).

QS mechanisms are common in soil bacteria that form
associations with plants, and help regulate various aspects of
the mechanisms whereby the bacteria–plant interaction is
established (Bernard et al., 2007; Parsek and Greenberg, 2005;
Whitehead et al., 2001; Dong et al., 2007; White and Winans,
2007). Communication within bacterial populations or communi-
ties that are in direct contact with the roots of plants is crucial in
determining the physiological status of rhizosphere communities.
Thus, QS mechanisms are important for bacterial survival, diversity
maintenance, and interactions with plants.

Most rhizobial species have been found to produce one or more
molecules associated with a QS system that regulates some aspect
of the rhizobia–legume symbiosis (González and Marketon, 2003;
Zheng et al., 2006; Sanchez-Contreras et al., 2007). QS mechanisms
are involved in numerous symbiosis-related rhizobial functions,
including exopolysaccharide (EPS) production, motility, nitrogen
fixation, and nodulation (Rinaudi and Giordano, 2010). Despite the
clear connection between QS and symbiosis, various rhizobial
species with QS gene mutations are capable of establishing
effective symbioses with their legume hosts, suggesting that the
primary role of the QS system is to promote full development of
symbiosis through enhancement of rhizobia–legume interactions.
Better understanding of linkages between QS and symbiosis is
therefore a valuable tool for improvement of rhizobia–legume
interactions at the agroproductive level. Some studies indicate that
QS regulatory systems mediated by N-acyl-homoserine lactones
(acyl-HSLs) are present in rhizobia and regulate various aspects of
symbiotic interactions (Sanchez-Contreras et al., 2007). Such acyl-
HSLs may serve as signaling molecules between rhizobia and
legume hosts. In some cases, the host produces acyl-HSL-
mimicking compounds that activate or disrupt rhizobial commu-
nication and thereby affect the symbiosis (Sanchez-Contreras et al.,
2007; Gao et al., 2003). Acyl-HSL production by the plant-
associated genera Bradyrhizobium, Sinorhizobium, Rhizobium, and
Mesorhizobium is of particular interest in terms of its effect on
rhizobia–legume symbiotic interactions.

Various species of Bradyrhizobium have great agroecological
importance; however, our knowledge of QS communication
mechanisms in this group remains fragmentary and ambiguous.
One problem in this regard is the complexity of the genus and the
mechanisms whereby different species establish symbiosis with
different legume hosts. In the soybean symbiont B. japonicum, QS
mechanisms have been shown to be involved in symbiosis
regulation through synthesis of bradyoxetin. Other novel mole-
cules such as acyl branched-HSLs and aryl-HSLs have been isolated
from B. japonicum and other Bradyrhizobium species, but their
biological functions have not been studied. Production of acyl-HSLs
(well-known signaling molecules) has been reported for peanut-
nodulating Bradyrhizobium strains and shown to be associated
with bacterial survival mechanisms such as biofilm formation,
motility, and autoaggregation. QS mechanisms clearly play
important agroecological roles in Bradyrhizobium species, but
the connections between these mechanisms and the physiology of
the bacteria are not well understood. In this review article, we
summarize current knowledge of QS mechanisms in Bradyrhi-
zobium, the biological processes affected by these mechanisms,
and the production of novel QS signals. Theoretical models are
presented that take into account the available data and provide a
basis for future studies.

2. QS and symbiosis

Rhizobia–legume symbiosis is a very specific interaction
between the bacteria and the plant that leads to the formation
of nitrogen-fixing nodules in plant roots. The development of a
successful symbiotic program involves several steps whereby the
two partners exchange chemical signals (plant flavonoids/bacterial
Nod factors) and various genes are differentially expressed. These
processes result in activation of a nodulation program in the plant
and coordination of bacterial invasion of the root with initial
division of root cortical cells (Oldroyd and Downie, 2004). The
symbiotic association is established when differentiated rhizobia
inside the nodules (bacteroids) reduce atmospheric nitrogen to
ammonium ions that the plant can utilize, and these compounds
are exchanged for energy sources from the plant (Gage, 2004; Jones
et al., 2007). Biological nitrogen fixation is a crucial process in
agricultural food production and long-term productivity of crops
under sustainable and environmentally sound programs. Improved
understanding of the factors that control this process will help
enhance the effectiveness of symbiotic development as a strategy
in sustainable agriculture. The simple two-signal model (flavo-
noids/Nod factors) can be extended to more complex signaling
systems that involve both plant and bacterial compounds to direct
the course of root colonization (infection) (Cooper, 2007). A variety
of physiological mechanisms are controlled by QS in various
rhizobial species; these include surface polysaccharide production,
growth inhibition, adaptation to stationary phase, nodulation
efficiency, symbiosome development, and nitrogen fixation
(Sanchez-Contreras et al., 2007). HSL molecules produced by
rhizobia that communicate through QS can therefore be regarded
as signals involved in the symbiotic programs of the rhizobia.

Bacterial invasion of the plant root in rhizobia–legume
symbiosis may occur in two different ways. Plants provide to
rhizobia a specific mechanism whereby the bacteria reach the
nodule primordium. In most cases, the mechanism involves root-
hair curling and the development of “infection threads” (Gage and
Margolin, 2000). Another infection mechanism, termed “crack
entry”, observed in subtropical legumes such as Arachis and
Aeschynomene sp., involves entry of bacteria into the root through
epidermal injuries caused by the emergence of lateral roots
(Boogerd and van Rossum, 1997). After entry, the rhizobia colonize
intercellular spaces in root subepidermal tissue as small pop-
ulations termed “infection pockets”. The invasion process then
continues through intercellular bacterial dissemination and entry
from the infection pocket to cells of the nodule primordium for
direct capture (Boogerd and van Rossum, 1997). Depending on the
invasion mechanism, groups of bacteria accumulated in either
root-hair curling or infection pockets are the last external
populations prior to entry into plant tissues. Such groups may
act as signaling centers from which the bacteria produce the
amounts of chemical signals (e.g., Nod factors, EPSs, HSLs)
necessary to initiate plant responses (Goormachtig et al., 2004).
The involvement of QS mechanisms at this stage of the invasion
program presumably leads to physiological processes that deter-
mine subsequent infection and development of the rhizobia–
legume symbiosis.

QS mechanisms have been identified and defined in many
rhizobial species of agroecological importance, including Sinorhi-
zobium meliloti, Rhizobium leguminosarum, Rhizobium etli, Meso-
rhizobium spp., and Bradyrhizobium spp. These rhizobial QS



Table 1
QS systems in members of the Rhizobiaceae family.

Bacterium Legume host QS
system

Signaling
molecule

Biological function regulated Reference

Sinorhizobium
meliloti

Rm1021 Medicago sativa SinR/SinI C12-HSL; 3-O-
C14-HSL
3-O-C16-HSL
3-O-C16:1-HSL
C18-HSL

Swarming motility, EPS production Marketon and Gonzalez (2002),
Marketon et al. (2003),Teplitski et al.
(2003), Gao et al. (2005)

ExpR C16:1-HSL Swarming motility, EPS production,
biofilm formation

Pellock et al. (2002), Gao et al. (2005),
Rinaudi and González (2009)

mel C8-HSL, short
chain HSLs

Unknown Marketon et al. (2002)

Rm41 Medicago trunactula TraR/TraI 3-O-C8-HSL Plasmid transfer He et al. (2003)
RU10/406 Medicago sativa VisR/

VisN
Unknown
effector

Motility, chemotaxis Sourjik et al. (2000)

Rhizobium sp.
NGR234

Vigna unguiculata TraR/TraI 3-O-C8-HSL Plasmid transfer He et al. (2003)

Rhizobium
leguminosarum
bv. viciae

Vicia sativa CinR/CinI 3-OH-C14:1-HSL Growth inhibition, swarming motility Lithgow et al. (2000)

RhiR/RhiI C6-HSL; C7-HSL
C8-HSL

Nodulation efficiency Rodelas et al. (1999)

TraR/TraI,
BisR

C8-HSL
3-O-C8-HSL

Plasmid transfer Danino et al. (2003)

RaiR/RaiI 3-OH-C8-HSL
C8-HSL

Unknown Wisniewski-Dye et al. (2002)

ExpR,
CinS

Regulation of CinR/CinI–RaiR/RaiI
systems

Edwards et al. (2009)

Rhizobium etli
CNPAF512 Phaseolus vulgaris CinR/CinI 3-OH-(slc)-HSL Nitrogen fixation, symbiosome

development, growth inhibition,
swarming motility

Daniels et al. (2002, 2004),)

RaiR/RaiI Short chain HSL Nitrogen fixation, growth inhibition Daniels et al. (2002)
CFN42 TraR/TraI 3-O-C8-HSL

3-OH-C8-HSL
Plasmid transfer Tun-Garrido et al. 2003

Agrobacterium
tumefaciens

TraR/TraI 3-O-C8-HSL Plasmid transfer Piper et al. (1993); Fuqua et al. (1994);
Hwang et al. (1995)

TraR2/
TraI2

3-O-C8HSL Unknown Wang et al. (2014)

Mesorhizobium
M. tianshanense Glycyrrhiza uralensis, various

legume plant species
MrtR/
MrtI

C8-HSL
3-O-C8-HSL
3-O-C12-HSL

Growth rate, nodulation Zheng et al. (2006), Cao et al. (2009)

M. loti Lotus corniculata, various
legume plant species

TraR/traI 3-O-C6-HSL Plasmid transfer Ramsay et al. (2009)

Bradyrhizobium
B. japonicum
USDA110

Glycine max Unknown Bradyoxetin nod gene regulation Loh et al. (2001, 2002b),)

B. japonicum
USDA110

Glycine max BjaR/BjaI Isovaleryl-HSL Unknown Lindemann et al. (2011)

B. japonicum
native strains
B. elkanii
native strains

Glycine max Unknown Acyl-HSLs Unknown Pongslip et al. (2005)

B. sp. native
strains.

Arachis hypogaea Unknown 3-O-C10-HSL
3-O-C12-HSL
3-O-C14-HSL

Biofilm formation, autoaggregation,
swimming motility

Nievas et al. (2012b)

B. sp. ORS278
B. sp. BTai1

Aeschynomene genus BraR/BraI Cinnamoyl-HSL Unknown Ahlgren et al. (2011)
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systems are involved in regulation of many important symbiosis-
related phenotypes. Characteristics of QS systems for members of
the family Rhizobiaceae are summarized in Table 1. No complete QS
system has been identified in the genome of Azorhizobium
caulinodans, the symbiont of Sesbania rostrata, although LuxR-
type response regulators are present (Lee et al., 2008). One
possibility is that A. caulinodans responds to HSL signals
(mimicking compounds) originating from other microorganisms
or plants in its microenvironment.

It has been difficult to identify QS elements such as signaling
molecules and proteins homologous to LuxR–LuxI in certain plant-
associated bacteria, particularly Bradyrhizobium species. Genes
homologous to those in LuxR–LuxI QS systems have been found in
the deciphered genomes of a few Bradyrhizobium species (Table 2).
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Bradyrhizobium is a complex genus whose members form
symbioses with many different legume species, including soybean,
cowpea, and peanut. Numerous strains and even species of
Bradyrhizobium have not yet been named (Willems et al., 2001;
Vinuesa et al., 2005; Zhang et al., 2007), and little or no information
is available on QS communication mechanisms in such species.

Studies to date on QS mechanisms in Bradyrhizobium have
focused primarily on the species B. japonicum and the role of QS in
its symbiotic relationship with soybean (Glycine max). The roles of
various QS signaling molecules in other biological processes in B.
japonicum are unclear. No information is available regarding QS
systems in peanut (Arachis)-nodulating Bradyrhizobium species
(Brelles-Marino and Bedmar, 2001; Pongslip et al., 2005).

3. QS in B. japonicum

The nodulation genes nod, nol, and noe in rhizobia are essential
for nodule formation in legume roots. These genes encode a series
of proteins that form a diffusible lipochitooligosaccharide (Nod
factor) that acts as a signaling molecule for nodulation (Spaink,
2000).

nod gene expression in the soybean symbiont B. japonicum is a
complex mechanism regulated by a cell density-dependent QS
mechanism (Loh et al., 2001, 2002a) involving the expression of
several regulatory pathways, including nodD1, nodVW, nwsAB, and
nolA–nodD2 (Fig. 1A). Expression of regulatory nod genes is
induced as a response to either plant isoflavonoids or changes in
population density (quorum mechanism) (Jitacksorn and Sadow-
sky, 2008). nod genes are expressed in response to production of
the isoflavonoid genistein by the soybean plant. The induction of
genistein is mediated by NodD1, an LysR family regulatory protein
found in all rhizobia (Göttfert et al., 1992).

The proteins NolA and NodD2 are part of a regulatory feedback
mechanism that suppress nod gene expression in response to
increased levels of Nod factors, particularly chitin tetrameric
byproducts or intermediates. The increase in tetrameric Nod
signals in response to soybean isoflavonoids as a result of nodYABC
operon expression also induces NolA gene expression. The NolA
regulator activates expression of the NodD2 regulator that
suppresses the nodYABC operon (Loh and Stacey, 2001)
(Fig. 1A). NolA and NodD2 also modulate nod gene expression in
a cell density-dependent manner (Loh et al., 2001). nod gene
induction was maximal in low-density cultures and much lower in
high-density cultures. In agreement with this finding, soybean
nodulation was reduced when plants were inoculated with high-
density B. japonicum cultures (Jitacksorn and Sadowsky, 2008).
NolA and NodD2 mediate this QS-regulated phenotype, which is
expressed at high cell density when the ability to induce nod genes
is reduced (Fig. 1B). An nolA gene mutant did not display such
Table 2
Number of homologous luxR–luxI genes in various Bradyrhizobium genomes.
http://genome.microbedb.jp/rhizobase/.

Genome luxR gene 

Putative N-acyl-HSL transcriptional
regulator

Transcriptional regulato
protein

B. japonicum USDA
110

1 (blr1062) 15 

B. japonicum USDA
6

1 (BJ6T_10880) 9 

B. sp. BTAi1 1 (BBta_7112) 10 

B. sp. ORS278 1 (BRADO0942) 6 
dependence on cell density; nodYABC genes were not suppressed
even at high cell densities.

The establishment of symbiosis in B. japonicum is further
regulated by two-component systems. The two-component
system NodVW activates expression of nod genes by isoflavonoids
and is essential for nodulation in cowpea (Vigna unguiculata),
mung bean (Vigna radiata), and siratro (Macroptilium atropurpur-
eum), but not in soybean (Göttfert et al., 1990; Loh et al., 1997). The
host specificity of B. japonicum is apparently due to the fact that
NodD1-mediated Nod factor production is sufficient for soybean
nodulation; in contrast, coordinated activity of NodD1 and NodVW
is required for nodulation of cowpea, mung bean, and siratro
(Loh et al., 2002a).

NwsAB is another two-component system for nod gene
regulation in B. japonicum. NwsB (encoded by nwsB) is a regulatory
protein required for full expression of nod genes in the presence of
genistein. NwsB activity complements the effect of NodW, and
cross-talk may occur between the NodVW and NwsAB systems
(Grob et al.,1993). At high cell population density, NwsB is required
to regulate the expression of genes nolA and nodD2, which
suppress nod gene expression. A nwsB mutant was able to
synthesize the quorum signal even though it was incapable of
responding to this signal because nolA and nodD2 expression was
not induced (Loh et al., 2001). These findings suggest that NwsB
determines the ability of soybean isoflavonoids to induce nod gene
expression in B. japonicum, through nod gene activation at low cell
density and nod gene suppression at high cell density (Loh et al.,
2002a; Loh and Stacey, 2001) (Fig. 1A, B).

As in other QS systems, such dependence on population density
is mediated through production of an extracellular signal (cell
density factor; CDF) that accumulates as a function of culture
density (Loh et al., 2001). Isolation and purification of CDF from B.
japonicum USDA110 (recently renamed B. diazoefficiens; Delamuta
et al., 2013) revealed that it is a novel autoinducer molecule
different from other QS signals. CDF is composed of two aromatic
rings linked by an imino group; each ring contains an amino
oxetane group in position p. This molecule, termed bradyoxetin,
has the proposed structure 2-{4-[[4-(3-aminooxetan-2-yl)phe-
nyl]-(imino)methyl]phenyl}oxetan-3-ylamine (Loh et al., 2002b).
Bradyoxetin acts as an NolA inducer leading to nod gene
suppression.

Bradyoxetin production is downregulated by Fe3+, and is
maximal under iron starvation conditions, reflecting an apparent
link between nutrient limitation and QS, as described for other
bacteria (Bollinger et al., 2001). Bradyoxetin has been suggested to
function as a siderophore in addition to its autoinducer activity. Its
molecular structure is very similar to that of the siderophore
mugineic acid (Drechsel and Jung, 1998). However, bradyoxetin is
not a high-affinity siderophore in free-living bacteria. One
luxI gene

ry Two-component transcriptional
regulator

– 1 (blr1063)
putative autoinducer synthase

4 1 (BJ6T_10890)
putative autoinducer synthase

8 1 (BBta_7113)
putative autoinducer (acyl-HSL)
synthase

7 1 (BRADO0941)
putative autoinducer (acyl-HSL)
synthase

http://genome.microbedb.jp/rhizobase/


Fig.1. Proposed models of relationships among bacterial population density, QS, symbiosis, and other biological processes in Bradyrhizobium japonicum. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
Green arrows: gene expression or process development. Red arrows: gene suppression or process inhibition. Dashed purple arrows: putative gene expression or suppression,
or putative process development.
(A) Control of symbiosis at low bacterial density. Plant isoflavonoids are crucial for induction of nod gene expression (nodYABC operon) and Nod factor synthesis through
activation of regulatory protein NodD1 and the two-component systems NodVW and NwsAB. NodD1-mediated Nod factor production is sufficient for establishment of
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Fig. 2. Structures of QS signaling molecules produced by Bradyrhizobium.
The structure of bradyoxetin is quite different from those of four homoserine lactones (HSLs). For acyl-HSL, R represents a variable substituent (hydrogen, hydroxyl, or oxo).
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possibility is that bradyoxetin is a nodule-specific siderophore and
becomes active under iron-limiting conditions in the symbiosome,
suppressing nod gene expression in the plant (Loh et al., 2002b).
Iron is an essential element sequestered by the plant for nodule
development, nodulation regulation, and proper functioning of
nitrogen assimilation enzymes (nitrogenase, nitrate reductase,
nitrite reductase) and cytochromes (Johnston et al., 2001). In this
regard, iron is presumably a limiting nutrient for symbiotic
bacteria; i.e., low iron level in combination with high bacterial
population density in the small symbiosome compartment leads to
increased bradyoxetin content, consequent nolA and nodD2 gene
expression, and suppression of nod genes, thereby avoiding the
energetic cost of synthesizing Nod factor molecules.

The presence of two oxetane rings in the bradyoxetin molecule
may confer antibiotic properties, in view of the structural
similarity to oxetin, an antibiotic molecule produced by the
actinomycete Streptomyces sp. OM2317 (Omura et al., 1984). MerR
family proteins such as NolA are activated in the presence of toxic
compounds; along this line, synthesis of bradyoxetin as an
symbiosis with soybean (1). Coordinated activities of the proteins NwsAB–NodVW–Nod
mung bean, and siratro (2). Synthesis of Nod factor is regulated through a feedback mecha
to synthesis of NodD2 regulator which inhibits expression of the nodYABC operon. (B
development. B. japonicum is able to produce various QS signals. Regulation of symbiosis
symbiosis through activation of the NolA–NodD2 regulatory system and suppression of 

possible interaction with bradyoxetin. The QS signaling molecule IV-HSL upregulates 

Production of acyl-HSL has been observed for native soybean-nodulating Bradyrhizobiu
clarified.
antibiotic may enhance protection against stress and confer a
significant competitive advantage over other rhizobia during the
nodulation process (Thorne and Williams, 1999).

The production of acyl-HSL-like signaling molecules has been
demonstrated in native strains of soybean-nodulating Bradyrhi-
zobium strains (Pongslip et al., 2005). Of 142 strains analyzed, only
22% were capable of producing acyl-HSL molecules when Agro-
bacterium tumefaciens NT1 (pZLR4) (Cha et al., 1998) was used as a
biosensor to detect autoinducer production. All strains positive for
autoinducer activity belonged to the species B. japonicum or
Bradyrhizobium elkanii. Neither LuxR–LuxI type QS systems nor
biological functions regulated by the acyl-HSL molecules have
been identified in these native strains.

B. japonicum strain USDA110 has genes homologous to luxI–
luxR, termed bjaI–bjaR (Kaneko et al., 2002). Lindemann et al.
(2011) reported the synthesis in B. japonicum USDA110 of a novel
signaling molecule catalyzed by BjaI synthase. The novel molecule
consisted of a branched chain acyl group attached to HSL,
identified as isovaleryl HSL (IV-HSL). IV-HSL was produced and
D1 are required for full expression of nod genes leading to nodulation of cowpea,
nism: increased levels of Nod factor activate expression of nolA-nodD2 genes, leading
) Control of symbiosis at high bacterial density, and proposed mechanism of QS

 establishment is associated with the QS molecule bradyoxetin. Bradyoxetin inhibits
nod gene. This mechanism also requires participation of NwsB protein, suggesting a
its own synthesis through binding to BjaR regulator and activation of bjaI gene.
m strains. The biological processes regulated by IV-HSL and acyl-HSL remain to be
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displayed activity at concentrations (�5 nM) much lower than
those of acyl-HSLs (0.1–10 mM) produced by most bacteria (Thiel
et al., 2009). The BjaR1 regulator, a LuxR homolog, showed high
affinity for IV-HSL. In analogy to other acyl-HSL QS systems, bjaI
expression was upregulated in response to IV-HSL addition.
B. japonicum USDA110 is able to respond to acyl-HSLs but not to
synthesize them. The high sensitivity of the BjaR1 regulator to
IV-HSL and the low specificity to acyl-HSLs may reflect a strategy of
B. japonicum to both avoid detection of IV-HSL by other bacterial
strains and detect QS signals from other microorganisms, in order
to acquire a competitive advantage in the rhizospheric microniche
(Lindemann et al., 2011). This QS system has been well described
for B. japonicum, but the biological functions of IV-HSL remain
unclear (Fig. 1B). Expression of a new LuxR family member
(encoded by blr1880) was highly upregulated in bacteroids of
B. japonicum, suggesting a link between symbiosis development
and QS (Pessi et al., 2007).

The observed production of bradyoxetin and IV-HSL by
B. japonicum and of acyl-HSLs by native Bradyrhizobium strains
indicate that nodulation and other biological processes are
modulated by different autoinducers and different global regulator
families to coordinate the cellular physiology of soybean-
nodulating Bradyrhizobium (Fig. 1B).

4. QS in strains of Bradyrhizobium sp.

In contrast to well-studied models of rhizobia–legume interac-
tion such as S. meliloti—alfalfa, R. leguminosarum—bean, and B.
japonicum—soybean, the symbiotic Bradyrhizobium sp.-peanut
(Arachis hypogaea L.) interaction is less well understood. The latter
interaction has great agroecological importance, particularly in
countries where peanut is a major crop (e.g., China, India, USA,
Argentina). There is a clear positional effect during inoculation on
the symbiotic ability of Bradyrhizobium strains. A series of studies
has shown that application of the inoculant bacterial strain directly
to the soil (“in-furrow” inoculation) prior to sowing increases the
efficiency of biological nitrogen fixation and competitiveness for
nodulation in comparison with “on-seed” inoculation (Bogino
et al., 2006, 2008, 2011). The mechanisms whereby position affects
competitiveness for nodule occupancy vary depending on the
strain and probably include chemotaxis, adhesion, and motility.
These same mechanisms are also involved in biofilm formation and
are presumably subject to QS regulation (Parsek and Greenberg,
2005; Rinaudi and Giordano, 2010). Our limited knowledge of QS
mechanisms in Bradyrhizobium strains is summarized in the
following subsections.

4.1. Autoinducers produced by Bradyrhizobium sp.

The major signaling molecules in Gram-negative bacteria are
acyl-HSLs (Atkinson and Williams, 2009). Over 100 species of
Proteobacteria use acyl-HSLs as diffusible molecules that act as QS
signals (Fuqua and Greenberg, 2002). However, novel HSL
signaling molecules have been detected and identified as aryl-
HSLs and IV-HSLs (Lindemann et al., 2011; Ahlgren et al., 2011)
only recently in Bradyrhizobium strains phylogenetically related to
peanut-nodulating strains. Structures of various signaling mole-
cules produced by Bradyrhizobium strains are shown in Fig. 2.
Schaefer et al. (2008) identified a new HSL derivative,
N-(p-coumaroyl)-HSL (pC-HSL, an aryl-HSL) in the photosynthetic
bacterium Rhodopseudomonas palustris. Other variants with the
chemical structures cinnamoyl-HSL (another aryl-HSL) and IV-HSL
(a branched-chain HSL) have been found in Bradyrhizobium strains
(Lindemann et al., 2011; Ahlgren et al., 2011).

Only a few studies have addressed QS mechanisms in peanut-
nodulating Bradyrhizobium strains. One QS system was described
in Bradyrhizobium BTAi1, an unusual strain that is photosynthetic
and capable of forming nitrogen-fixing nodules on the stems of
Aeschynomene sp. (Ahlgren et al., 2011; Molouba et al., 1999). This
symbiosis is established through a “crack entry” mechanism
similar to that in peanut-nodulating rhizobia. The QS system in
B. BTAi1 responds to cinnamoyl-HSL, which is produced by BraI in
nM-order concentrations (comparable to those of IV-HSL in
B. japonicum USDA110) and detected by the BraR regulator. The
braI gene is positively autoregulated by cinnamoyl-HSL. The high
affinity of BjaR for IV-HSL and of BraR for cinnamoyl-HSL, and the
relative specificity of these two receptors for other HSLs, may
reflect a strategy used by Bradyrhizobium strains to respond to
signals from other bacteria and avoid detecting their own signals in
various microecosystems (soil, rhizosphere, plant). The genes and
chemical structures of QS signals in these Bradyrhizobium strains
have been elucidated (Lindemann et al., 2011; Ahlgren et al., 2011),
but the effects of the signals on rhizobial symbiosis or other
physiological processes are unknown. These findings provide a
useful baseline for further studies of QS mechanisms in Bradyrhi-
zobium strains, particularly peanut-nodulating strains. Strains
isolated from peanut grown in various sites in southern Córdoba
province, Argentina (Bogino et al., 2006, 2010; Nievas et al., 2012a)
were found to produce acyl-HSL-like signaling molecules, particu-
larly long-chain (C6–C16) molecules. This was the first report of QS
molecule production by peanut-nodulating Bradyrhizobium strains
(Nievas et al., 2012b).

In studies of a collection of >50 native peanut-nodulating
rhizobial strains from various agrogeographic locations in central/
south Córdoba province in Argentina, 34% of the evaluated strains
were capable of synthesizing long-chain acyl-HSL-like molecules.
Through quantification of b-galactosidase activity induction in A.
tumefaciens NTL4 (pZLR4) (Cha et al., 1998), the rhizobial strains
were classified according to high, moderate, or low production of
acyl-HSL-like molecules (Nievas et al., 2012b). These findings were
consistent with those of Pongslip et al. (2005), who observed
production of long-chain acyl-HSL-like molecules in a geographi-
cally and genetically diverse collection of soybean-nodulating
bacteria. TLC and HPLC MS/MS analyses of peanut strain extracts
revealed various types of signaling molecules corresponding to C6

acyl-HSL and C10, C12, and C14 acyl-HSL having a 3-keto substituent
(3OC10, 3OC12, and 3OC14) (Nievas et al., 2012b). These findings are
consistent with many previous reports of high diversity of acyl-HSLs
produced by rhizobia (Sanchez-Contreras et al., 2007; Brelles-
Marino and Bedmar, 2001; Atkinson and Williams, 2009). For
example, R. leguminosarum bv. viciae synthesizes mainly 3OC8 acyl-
HSL and C6 acyl-HSL (Danino et al., 2003), and S. meliloti Rm
1021 produces at least seven distinct acyl-HSLs, notably 3OC14 acyl-
HSL (Marketon and González, 2002). There appears to be overlap in
the production and recognition of acyl-HSLs by various strains,
suggesting common QS mechanisms, or cross-talk, among rhizobia.

4.2. Biological processes regulated by QS in Bradyrhizobium sp.

In preliminary studies of peanut-nodulating Bradyrhizobium
strains, addition of various types and concentrations of acyl-HSLs
to cultured bacteria affected physiological processes related to
survival, i.e., biofilm formation, motility, and autoaggregation
(Nievas et al., 2012b).

Biofilms are bacterial communities attached to a surface in
which cells are embedded in a self-produced matrix of extracellu-
lar polymeric compounds (Branda et al., 2005). Bacteria growing in
natural habitats typically undergo transitions involving repeated
cycles of differentiation from free-living planktonic forms to
complex communities organized on and attached to biotic or
abiotic surfaces (biofilms) (Webb et al., 2003). The occurrence of
these cycles is governed by complex regulatory systems that



Fig. 3. Proposed model of QS mechanisms in Bradyrhizobium strains and the
physiological processes regulated. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
Green arrows: gene expression or process development. Dashed purple arrows:
putative gene expression or suppression, or putative process development.
Production of aryl-HSL by Bradyrhizobium ORS278 upregulates its own synthesis
through binding to BraR regulator and activation of braI gene. Production of acyl-
HSL in peanut-nodulating Bradyrhizobium strains is associated with physiological
processes related to bacterial survival.
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respond continuously to metabolic and environmental changes. QS
regulation is a central component in regulation of major aspects of
biofilm development, including adhesion, motility, maturation,
and dispersion (Dong et al., 2008; Parsek and Greenberg, 2005;
Daniels et al., 2004; Stoodley et al., 2002).

Recent studies show that acyl-HSLs participate in physiological
processes that control physical cell-cell interactions in peanut-
nodulating Bradyrhizobium strains. Such interactions are essential
for bacterial survival in the environment and for establishment of a
symbiotic association with the legume host. Exogenous addition of
acyl-HSLs (3OC10, 3OC12, 3OC14) was found to alter the processes of
biofilm formation, autoaggregation, and bacterial motility (swim-
ming) (Nievas et al., 2012b). Bacteria displayed increased biofilm
formation ability in the presence of 3OC12 acyl-HSL, and to a lesser
degree 3OC10 or 3OC14.

The mechanism whereby QS regulates biofilm formation by
peanut-nodulating Bradyrhizobium strains is largely unknown.
Such regulation may occur at various biological levels through
effects on the production or structures of surface components such
as lipopolysaccharide (LPS), capsular polysaccharides (CPSs),
flagella, pili, and extracellular compounds (e.g., EPSs) essential
for initial adhesion of bacteria to surfaces and subsequent biofilm
development (Koutsoudis et al., 2006; Rinaudi and González,
2009; De Araujo et al., 2010; Rinaudi and Giordano, 2010). Biofilm
formation ability is crucial for survival of bacteria in the rhizo-
spheric environment and for their colonization/invasion of plant
roots. The biological role of QS systems mediated by acyl-HSLs in
peanut-nodulating Bradyrhizobium strains remains to be elucidat-
ed, but recent findings suggest that these signaling molecules
promote biofilm formation (Nievas et al., 2012b).
QS systems are involved in control of bacterial motility
(Soutourina and Bertin, 2003; Hoang et al., 2008; Conrad, 2012).
Motility of peanut-nodulating Bradyrhizobium strains (similarly to
biofilm formation ability) was enhanced in the presence of acyl-
HSLs (Nievas et al., 2012b). These bacteria must reach infectable
root sites to establish a symbiotic association with the host and
obtain essential nutrients. Bacterial motility is a crucial process for
survival in varied edaphic niches, for reaching infectable root sites,
and for dispersion in nutritionally limited environments (Hoang
et al., 2008). Adequate motility increases the likelihood that
rhizobia will survive as free-living cells in soil and/or establish
themselves in biofilm communities when conditions prevent
symbiosis with a legume host. Motility is also important in
colonization of surfaces, the first step in biofilm formation (O’Toole
and Kolter, 1998; Stanley and Lazazzera, 2004). The role of a QS
system in biofilm formation by peanut-nodulating Bradyrhizobium
strains may be indirect; i.e., QS signals primarily promote motility,
and movement secondarily enhances adhesion of bacteria to new
surfaces.

Results of a study by Nievas et al. (2012b) suggest that QS
signaling molecules can either inhibit or promote the autoag-
gregation process in peanut-nodulating Bradyrhizobium strains.
Depending on the bacterial strain, QS mechanisms may either
induce dispersion of cellular aggregates (allowing individual
bacteria to colonize new microniches) or promote autoaggregation
(improving overall bacterial survival) in soil.

A proposed model based on present knowledge of QS
mechanisms in Bradyrhizobium strains is shown in Fig. 3. Recent
findings that peanut-nodulating strains produce various acyl-HSL
signaling molecules (Nievas et al., 2012b) and that certain
Bradyrhizobium strains synthesize other signaling molecules with
novel chemical structures (Loh et al., 2002b; Lindemann et al.,
2011; Ahlgren et al., 2011) give promise for discovery of more new
signaling molecules in future studies. Bradyrhizobium strains have
been shown to synthesize a wide variety of QS molecules, and
presumably express genes for synthesis of a wide range of HSLs or
multiple luxI genes specific for each type of QS signal.
The determinants that govern QS-regulated biological processes
in Bradyrhizobium sp. in general, and peanut-nodulating strains
in particular, will be identified and characterized in future
studies.

5. Conclusions

Bradyrhizobium sp. clearly have more than one QS system of
communication. The presently limited knowledge of the genetic
mechanisms and physiological processes regulated by QS in this
bacterial genus should inspire more extensive studies along these
lines. The development of differing research strategies for different
Bradyrhizobium strains will help clarify the QS mechanisms
involved in bacteria–bacteria and bacteria–legume communica-
tion and signaling processes. Molecular genetic studies of the
systems responsible for producing signaling molecules are
essential for understanding the mechanisms whereby the bra-
dyrhizobia communicate with each other and interact symbioti-
cally with the host plant. Mechanistic studies of the molecular and
biochemical processes regulated by QS will help clarify the key
physiological events governed by QS communication and the role
of such communication in bacterial survival in various environ-
ments and development of symbiotic relationships. It is also
important to identify the active compounds in host legumes that
affect bacterial QS processes, and the role of these compounds in
development of symbiosis and in bacterial colonization of the
rhizosphere.

Improved understanding of these interaction processes can be
extended to other regulatory mechanisms in bacterial
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ecophysiology, and to techniques for improving agricultural yields
of legume crops symbiotically associated with Bradyrhizobium sp.
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