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We show that local directional alignment of the velocity and magnetic field fluctuations occurs rapidly
in magnetohydrodynamics for a variety of parameters and is seen both in direct numerical simulations and
in solar wind data. The phenomenon is due to an alignment between magnetic field and gradients of either
pressure or kinetic energy, and is similar to alignment of velocity and vorticity in Navier-Stokes
turbulence. This rapid and robust relaxation process leads to a local weakening of nonlinear terms.
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In magnetohydrodynamic (MHD) turbulence, the fluc-
tuations of magnetic field b and velocity v enter on nearly
equal footing. One consequence is that the nonlinear MHD
equations are linearized when b (in Alfvén speed units) is
everywhere equal (or opposite) to v. Such ‘‘Alfvénic’’
states have a large cross-helicity (see below), or correlation
between v and b, and have long been thought to be favored
in relaxation processes [1], and are observed in the inner
solar wind [2,3]. Global evolution towards Alfvénic states,
or ‘‘dynamic alignment’’ [4], requires many nonlinear
eddy turnover times. Here we describe a related, rapid
relaxation process, in which local, directional near align-
ment of v and b emerges in less than one turnover time, for
a variety of turbulence parameters. This process need not
be associated with global alignment, but rather occurs
independently in localized patches.

Dynamic alignment competes with other MHD relaxa-
tion processes [5], and, for some parameters, it does not
occur or is incomplete. Solar wind observations show that
the magnitude of the correlation between v and b, often
called ‘‘Alfvénicity,’’ decreases at larger heliocentric dis-
tance [3], in apparent contradiction to the dynamic align-
ment principle. There are suggestions that directional
alignment (a necessary condition for global dynamic align-
ment) may be more ubiquitous. MHD relaxation can be
described by a variational principle [5] in which cross-
helicity and a magnetic invariant [helicity in three dimen-
sions (3D), or mean square flux function in two dimensions
(2D)] are held constant, while energy is minimized. The
emergent Euler-Lagrange equations predict final states, in
both 2D and 3D, and for all parameters, in which v and b
are directionally aligned or antialigned. This theory is well
confirmed by numerical simulations [5]. These ideas have
been extended to explain steady state MHD spectral prop-
erties [6]. Evidently, in the long time limit, pointwise
directional alignment is obtained more easily than is the
global Alfvénic state. Here we show using numerical ex-
periments that local directional alignment is even more
robust and occurs rapidly as well as in local patches. We
also show that alignment in the solar wind is consistent

with this picture. This rapid relaxation can be understood
by examination of the MHD equations. These features have
not been fully recognized previously, and are analogous to
the local emergence of Beltrami flows [7] in hydro-
dynamics.

MHD and Alfvénic states.—In familiar dimensionless
Alfvén speed units, the equations of incompressible MHD
are

 

@v
@t
� v � rv � �rP � j� b� �r2v; (1)

 

@b
@t
� v � rb � b � rv� �r2b; (2)

with r � v � r � b � 0. Here, b � r� a with a the mag-
netic potential, the electric current density is j � r� b,
and P is the pressure. The viscosity � and resistivity �
define mechanical and magnetic Reynolds numbers,
respectively, as RV � LU=� and RM � LU=�, with spa-
tial average h. . .i, U � hjvj2i1=2, and L a length (integral
scale) associated with the large-scale flow. The energy E �
Ev � Eb � hjvj2 � jbj2i=2, the cross-helicity Hc �
hv � bi, and the magnetic helicity Hm � ha � bi are 3D
ideal (� � � � 0) invariants. Dimensionless helicities
are �c � 2Hc=E and �m � �EL � ER�=Eb, where EL
and ER are the energy in left- and right-handed magnetic
polarizations, respectively.

Simulations.—We examine simulations (see Table I) of
the MHD equations in a spatially periodic domain of side
2�, using a second order Runge-Kutta method, and either
2=3-rule dealiased [8], or non-dealiased pseudospectral
methods. All runs freely decay in time, with no external
forcing. The type labeled RAN are 1283 incompressible
runs, with random broadband initial conditions. Four cases
have varying initial �m and �c, spanning a range of pos-
sibilities starting from a fully random state.

We employ other initial conditions with controlled he-
licities and more ordered fields. Orszag-Tang (OT) runs are
a generalization of the 2D OT vortex [9], a standard large-
scale initial condition for MHD turbulence. In our OT case,
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initially energies Ev � Eb � 2. The set of runs labeled
ABC consists of a parametrized large-scale helical flow,
an uncorrelated and helical large-scale magnetic field, and
added noise with energy spectra �k�3 exp	�2�k=k0�


2 at
t � 0, with k0 � N=6 [10]. These runs have Ev � Eb �
0:5, �c � 1� 10�4, and �m � 0:5. Finally we analyze a
small region near a current sheet in a very high-Reynilds-
number ABC run.

Probability density functions (PDFs).—Our main diag-
nostics are PDFs of the local cosine of the angle � between
v and b

 cos� � cos��v;b� �
v � b
jvjjbj

; (3)

which are computed for each run. The PDFs for RAN2,
shown in Fig. 1, at times t � 0, 0.5, 1.0, and 2.0, are highly
peaked near cos� � 1, much more so than would be
needed to account for the cross-helicity (initially �c �
0:5, decaying to �c � 0:24 at t � 2:0). The more peaked

curves are for the progressively later times. For RAN1,
having no helicities (see Fig. 2), the PDFs are suppressed
near cos� � 0 and strongly peaked near cos� � 1. This
indicates an enhanced probability of aligned or antialigned
v and b. This enhanced directional alignment occurs
quickly and even when the global cross-helicity is �0;
therefore, this process is distinct from long term or steady
alignment discussed previously [4–6].

Results of RAN3 and RAN4, with �m � 0:5 (not
shown) are almost indistinguishable from the correspond-
ing case with �m � 0. The PDFs in the OT runs (also not
shown) are asymmetric and strongly peaked at cos� � 1,
as in the RAN2 and RAN4 cases. For the ABC runs, with
initial �c � 0, the PDFs peak at cos� � 1 after less than
half a turnover time, following the pattern of the RAN runs.
Figure 3 shows the PDFs from the ABC runs at the peak of
dissipation (t � 4) for different Reynolds numbers. This
local alignment process is fast in all cases, with substantial
and apparently nearly saturated alignment occurring in
less than one large-scale turnover time. No clear depen-
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FIG. 1. PDFs of cos� for initial normalized cross-helicity
�c � 0:5 for run RAN2. Global normalized cross-helicity is
0.24 at t � 2. Different lines are for different times (see text).
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FIG. 2. PDFs of cos� at times t � 0 (flat, dotted line), 0.5
(dash-dotted line), 1.0 (dashed line), 2 (solid line) for 3D run
RAN1, �c � 0, �m � 0.

FIG. 3. PDFs of cos�: runs ABC1 (solid line), ABC2 (dotted
line), ABC3 (dashed line), ABC4 (dash-dotted line), at the peak
of dissipation.

TABLE I. Parameters for runs RAN, OT, and ABC (see text):
N is the resolution, � and � the viscosity and magnetic diffu-
sivity, �c and �m the normalized cross and magnetic helicities.

Run N3 or N2 � � � �c �m

RAN1 1283 2:5� 10�3 0 0
RAN2 1283 2:5� 10�3 0.5 0
RAN3 1283 2:5� 10�3 0 0.5
RAN4 1283 2:5� 10�3 0.5 0.5
OT1 1283 5� 10�3 0.4 0
OT2 2563 1:5� 10�3 0.4 0
OT3 5123 7:5� 10�4 0.4 0
ABC1 1283 3� 10�3 0 0.5
ABC2 2563 1:25� 10�3 0 0.5
ABC3 5123 6� 10�4 0 0.5
ABC4 15363 2� 10�4 0 0.5
2D 10242 2:5� 10�4 0 0
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dence on Reynolds numbers is seen when comparing cases
ABC1–4.

When PDFs of cos� are computed in the vicinity of
strong shear in the magnetic field (run ABC4), an only
slightly different result is obtained (Fig. 4). Inside the
associated current sheet, v and b are strongly antialigned
(producing the peak near�1), and the PDF is linear. When
larger subvolumes near the current sheet are considered, or
at later times when more current sheets with different
alignments are included in the subvolume, the PDF con-
verges towards the form seen in Fig. 3.

Physics of alignment.—Why does local alignment take
place in these simulations? And why is it so fast?
Manipulating Eqs. (1) and (2) in the ideal case (� � � �
0), one finds the equation for evolution of the local cross-
helicity:

 

@�v � b�
@t

� v � r�v � b� � b � r
v2

2
� b � rP : (4)

In the ideal, incompressible case, this equation embodies
all effects that cause local change of v � b. The equation for
the evolution of cos� contains additional terms associated
with the rates of change of jvj and jbj. Equation (4) is
simple and revealing. The terms on the left are the con-
vective derivative. The terms on the right are divergences:
using that r � b � 0, and when integrated over volume
with the proper boundary conditions (e.g., periodic
boundaries), they vanish. This expresses the fact that the
global cross-helicity is an ideal invariant.

However, kinetic energy and pressure gradients affect
local alignment. The first term on the right of Eq. (4) shows
that kinetic energy gradients (e.g., shear) changes align-
ment or v and b when rjvj2 is parallel to b. Indeed, a
magnetic field line (which acts as a material line by
Alfvén’s theorem) is distorted by shear and tends to align
with the local v. For a planar shear, this is similar to what is
called field line stretching. From the second term on the
right, rP parallel to b also changes the alignment. When
the v is directed from a region of higher P towards lower
P , andrP has a projection onto b, the local alignment of v

and b increases. A direct numerical study (not shown) of
the right-hand side of Eq. (4) using Table I simulation data
confirms that these terms drive a tendency towards local
alignment of v and b. We can estimate the time for the local
alignment to take place as�bl=l, where bl is the magnetic
fluctuation amplitude at scale l. Since bl � vl (the velocity
amplitude at scale l), this time is proportional to the eddy
turnover time.

Since Eq. (2) is formally equivalent to the hydrodynamic
vorticity equation, analogous reasoning implies that the
hydrodynamic velocity v and vorticity ! � r� v tend
to align locally. This is found numerically [7] in regions
of low dissipation. Replacing b by! in Eq. (4), we see that
alignment occurs when ! is parallel to kinetic energy and
pressure gradients.

Solar wind observations.—Using samples of spacecraft
data we computed distributions of the alignment angle for
two interplanetary data sets—the Omni data set at 1 A.U.
near Earth orbit in the ecliptic plane, and a sample of
Ulysses data from high heliographic latitude. Figure (5)
shows the results of these analyses. The low latitude OMNI
analysis is divided into intervals in which the large-scale
interplanetary magnetic field is directed either away from
or towards the sun. The sign of the average cross-helicity in
the higher latitude Ulysses sample is associated with out-
ward propagation. In each of these cases, the PDFs of the
local alignment are consistent with the net cross-helicity in
each sample.

Discussion and conclusions.— The characteristic PDFs
of cos� described above cannot be explained as a super-
position of uncorrelated Gaussian distributions for the
velocity and magnetic field components, although the
PDFs of the velocity and magnetic field themselves are
Gaussian (but clearly correlated). PDFs computed from
random broadband uncorrelated Gaussian-component ve-
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FIG. 5. PDF of cos��� from 30 years of Omni data (ISEE, IMP,
and other satellite data), and from Ulysses spacecraft data
between 50� and 59� heliospheric north latitude during a polar
pass in solar minimum conditions.

FIG. 4. PDF of cos� near a current sheet (subvolume of 1503

grid points) within 15363 run ABC4.
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locity and magnetic fields have a flat f�cos�� distribution.
For the coherent ABC flows, cos� peaks at 0 initially, while
for the nonhelical RAN1 and RAN3 flows the distribu-
tion is initially flat. All cases evolve towards the character-
istic shape that is highly peaked at j cos�j � 1. In contrast,
prior studies have shown that the distribution of the in-
duced electric field, �v� b, is accurately computed from
Gaussian statistics, for both high and low cross-helicity, in
simulations and in solar wind data [11]. What apparently
accounts for the difference is that the induced EMF does
not correspond to a conserved quantity, while the align-
ment angle is closely associated with the ideally conserved
cross-helicity. The EMF can be accounted for using
Gaussian statistics, but alignment, even of Gaussian fields,
is a dynamical quantity constrained by the local transport
and conservation, as implied by Eq. (4).

Note that Alfvén vortices [12], which are coherent struc-
tures predicted for reduced MHD, have been recently
observed in space plasmas [13]; the generalized Alfvén
condition found in these vortices corresponds to a local
directional alignment. Evidently this type of robust align-
ment process may be influential in a variety of space and
astrophysical plasmas as well as in neutral fluids.

We conclude that directional alignment is a rapid and
robust process in turbulence. The magnetic and velocity
fields respond to the local values of the shear and pressure
gradients, essentially independently of the conditions at
remote locations, leading to local alignment or antialign-

ment. Figure 6 illustrates this localization or patchiness of
the directional alignment, using a 2D MHD simulation (see
also [14]). Since the alignment appears to be a universal
and rapid process, it would not be surprising if coherent
small scale structures in MHD turbulence are associated
with it. Indeed, Fig. 4 is an example where coherent current
sheets are observed to have maximum alignment between
the velocity and the magnetic fields [10]; similarly the local
v-! alignment may explain the slow return to full isotropy
in fluid turbulence.
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FIG. 6. Two-dimensional incompressible MHD simulation,
showing areas where cos� <�0:7 (black), j cos�j< 0:7
(gray), and cos� > 0:7 (white). Areas with highly aligned or
antialigned velocity and magnetic field dominate the picture.
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