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Scaling laws in the quantum-to-classical transition in chaotic systems
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We study the quantum-to-classical transition in a chaotic system surrounded by a diffusive environment.
First, we analyze the emergence of classicality when it is monitored by the Renyi entropy, a measure of the
entanglement of a system with its environment. We show that the Renyi entropy has a transition from quantum
to classical behavior that scales with hgff/ D, where fi. is the effective Planck constant and D is the strength
of the noise. However, it was recently shown that a different scaling law controls the quantum-to-classical
transition when it is measured comparing the corresponding phase-space distributions. Then, we discuss the
meaning of both scalings in the precise definition of a frontier between the classical and quantum behaviors.

Finally, we show that there are quantum coherences that the Renyi entropy is unable to detect, which questions

its use in studies of decoherence.
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Since the birth of quantum theory, the fundamental ques-
tion of how a quantum-mechanical system starts to behave
classically has been the subject of an intense debate. In the
last years, it has been well established that decoherence in-
duced by the environment is the main ingredient in the
quantum-to-classical transition [1,2]. However, a clear way
to describe the fuzzy boundary between the quantum and
classical worlds has not been found yet.

Many attempts have been done to understand the loss of
the quantum coherence and several measures of the restora-
tion of the classicality have been proposed, especially in cha-
otic systems. Recently, it was conjectured that, in the pres-
ence of noise, a single composite parameter controls the
quantum-to-classical transition of classically chaotic systems
[3]. This single parameter should appear in the computation
of some measure which directly reflects the “distance” be-
tween quantum and classical evolutions as a function of the
effective Planck constant i (i.e., the relative size of the
Planck constant), the strength D of the coupling with the
environment, and the Lyapunov coefficient \ of the classical
dynamics of the system. Thus, the computed distance would
be controlled by a combined parameter of the general form
E=hSNPDY when the transition from quantum to classical
behavior occurs. This conjecture was shown to be valid, for
example, in [4], where the phase-space integral of the modu-
lus of the difference between the Wigner function and the
classical distribution was used as a measure of the quantum
to classical distance.

Another usual quantity to study the transition from quan-
tum to classical behavior is the purity P=Tr[p?], which is a
measure of the entanglement of the system with the environ-
ment. Any function of the purity has the same information,
but the so-called Renyi entropy S=—In(P) is particularly in-
teresting because it clearly reveals that above a threshold of
the strength of the coupling with the environment its behav-
ior is dominated by the positive classical Lyapunov expo-
nents of the system [5,6].

In this work we show, for the same system and environ-
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ment used in [4], that the behavior of the Renyi entropy S
(and thus the purity P) is controlled by the combined param-
eter x' =2/ D. This scaling was also founded in [7] using
the Duffing oscillator, suggesting universality of this scaling
law. In our system the emergence of classicality when moni-
tored with the Renyi entropy should correspond to the re-
gime x'<100. However, in the regime 1<y’ <100 the
evolved Wigner function displays an interference fringe pat-
tern that clearly indicates that not all quantum coherences of
the system have disappeared. We explain that while ' con-
trols which quantum terms effectively contribute in the mas-
ter equation for evolution of the Wigner function, the fine
coherent structure of this function is controlled by the com-
posite parameter X:ﬁgffK /4D3? (where K is a parameter that
controls the nonlinearity of the system) [4]. We also show
that only in this essentially classical regime and for short
times, the behavior of the Renyi entropy is independent on
the diffusion constant and dominated by a classical
Lyapunov exponent.

The system we analyze is the kicked harmonic oscillator
(KHO) whose quantum Hamiltonian is

P o1

4=
2m 2

mi2Q% + A cos(kQ) 8,(7), (1)

where 8,(7)=2_,8(t—n7), m is the particle mass, v the os-
cillator frequency, A the amplitude of the kicks, and 7 the
interval between two consecutive kicks. Working with di-
mensionless quantities é=kQ, 13=kl3/m1/ and K=kA/mv,
we can define an effective Planck constant 7.y, so that
[q.pl=2i7’ =ihy, with the so-called Lamb-Dicke param-
eter p=kAQ,=k\Vh/2mv being the quotient between the
width AQ of the ground state of the harmonic oscillator and

the wavelength N=27/k of the position-dependent pulse.
The classical dynamics in the phase space of the KHO is
unbounded, and the stroboscopic sections exhibit a mixed
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FIG. 1. Quantum (®) and classical (O) Renyi entropy as a func-
tion of the number of the kicks for the KHO with K=2 and 7
=\fio/2=0.125. From bottom to top, the diffusion constants are
D=2.56X10"",6.4%107°,9%x 107, and 4 X 1073. The dashed line
is a linear function with a slope given by the logarithm of the
classical expansion coefficient at (¢,p)=(0,0).

dynamics with stable islands surrounded by a chaotic sea [8].
Here, we consider the relation 7=7/6 between the period of
the harmonic oscillator 7=27/v and the interval between
kicks 7. Thus, the classical phase-space structure corresponds
to a stochastic web, its thickness governed by K. We have
considered K=2; thus, the phase-space origin is a hyperbolic
fixed point and the area around it shows an essentially cha-
otic behavior [9].

In order to study the decoherence effects that induce a
quantum-to-classical transition, we coupled the KHO, as
usual [3,4,6,7], to a thermal reservoir with average popula-
tion 72 and coupling constant I' in the Markovian and weak-
coupling limits, and we considered the purely diffusive re-
gime (i.e., the high-temperature regime 77— % together with

[—0and = nl" 77 a constant value). For this kind of envi-
ronment the master equation for the evolution of the Wigner
function W(x) reads

oW
—=Ly+L,+T
it
“ — 1)mp2m Pty gmelyy
={H’W}+E 2( ) N 2m+1 2m+1
o1 27 2m+ 1) g7t apT
(W FW
N—+—-—=].
dq dp

(2)

The equivalent evolution equation for the classical distribu-
tion only contains the evolution generated by the Poisson
brackets, L., and the term T that comes from the coupling
with the diffusive environment. The quantal term L, comes
from the nonlinear part of the Hamiltonian, which in our case
are simply the kicks V(g)=K cos(g) §,(7). The strength of the
interaction with the environment is controlled by the dimen-

sionless diffusion constant D=T"r.

Let us first consider the quantum-to-classical transition by
monitoring the behavior of the classical and quantum Renyi
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FIG. 2. Slope vy of the linear growth of the quantum (solid
symbols) and classical (open symbols) Renyi entropies as a func-

tion of ﬁgff/ D (main plot) and 1/D (inset) (D is the diffusion con-

stant) for 7=\fi.;/2=0.5 (triangles), 0.3125 (diamonds), 0.125
(squares), and 0.0625 (circles). We have also plotted the functions
y=D/h2; (dotted line) and y< D/ (dashed line). See text for
details.

entropies S=—In(P)=—In[2 7./ W?(x)dx] (W is the Wigner
function or the classical phase-space distribution). In Fig. 1
we show the behavior of the entropies in the KHO with K
=2 and n=\Ti./2=0.125 for several values of the strength
of the interaction with the environment, D. The initial state is
a coherent state centered at the origin of phase space with
width Ag=Ap=7. We can see that for extremely small val-
ues of D (D=2.56X%107") and short times, the quantum and
classical evolutions are nearly unitary, and thus the Renyi
entropies are S,~0. Increasing the value of the diffusion
constant D and in the regime where the initially localized
wave packet stretches in the direction of the unstable classi-
cal manifold the quantum and classical Renyi entropies ex-
hibit different time regimes (Fig. 1). When D is still rela-
tively small, we can see two regimes [12]. In the first one the
behavior of both entropies is essentially quadratic in time
and the differences between them are negligible. Then, there
is a linear regime with a slope that depends on D and can be
different for the quantum and classical cases. This linear re-
gime occurs for times of the order of the well-known loga-
rithmic time tz=1In(1/%.g)/(2N\), with N the Lyapunov expo-
nent or, as in our example, the logarithm of the expansion
coefficient of the linearization of the dynamics at the origin
(hyperbolic fixed point) [4]. Finally, we can see that for suf-
ficiently greater values of D the linear growth of the quantum
and classical Renyi entropies are identical and given by A
[5].

We have studied systematically the dependence of the lin-
ear growth regime with the diffusion constant D and .. In
Fig. 2 (inset) we show the slope vy for the linear growth of
the quantum and classical Renyi entropies as a function of
the diffusion constant D for several values of 7.y Both
slopes 7y approach A (horizontal line) for all the #.g consid-
ered, but at different values of the diffusion constant D.
However, when 7 is plotted as a function of A2/D, a clear
scaling emerges. We can see that the classical and quantum
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FIG. 3. The measure o(ng) (see text) of the differences between
the quantum and classical Renyi entropies. The initial state is a
coherent state centered around the origin of phase space with width
Ag=Ap=7, with 5=2%h4=0.5 (triangles), 0.3125 (diamonds),
0.125 (squares), and 0.0625 (circles). For each 7i ¢ the Renyi entro-
pies were computed at the logarithmic time tg=~ngT.

entropy linear growth rates measured by v are equal for
fi2/ D <100, but it is only in the range %2/D <1 that the
classical and quantum slopes approach M\ (the so-called
“Lyapunov” regime). On the other hand, for ﬁgﬁ-/D > 100 the
linear growth rate of the Renyi entropy depends linearly with
the diffusion constant D. This is the so-called Fermi-golden-
rule regime, which was explained in Refs. [5,10,11]. For the
classical case, we found that the Renyi entropy linear growth
rate scales with \D. This fact deserves further investigation
[12]. The scaling with ﬁeff/ D can also be appreciated in
Fig. 3 where we plot the measure o(n)=[S,(n)
—S.(n)|/S,(n) of the “distance” between the quantum Renyi
entropy, S,, and the classical one, S, computed at the num-
ber of kicks n=ng=tg/ 7=In(1/fiep)/ (27N\).

Another approach to monitor the emergency of classical-
ity is to directly compare the evolution of the Wigner func-
tion and the corresponding classical distribution in the pres-
ence of the environment [4,9]. A different scaling law
appears in this approach where it was shown that the Wigner
function and the classical distribution are essentially equal in
the parameters regimes #2;/D<<1 and y=h2K/4D’?=<1.
However, we have seen that the linear growth of the classical
and quantum Renyi entropies are equal for ﬁgff/ D <100.
Even more, from Fig. 1 we see that the differences between
the quantum and classical Renyi entropies are negligible be-
yond the linear regime up to n<<9—for example, for D

=9X107%, where y'=h2;/D~10<100, but y=h2K/4D>
~571>1. In Fig. 4, we show the quantum and classical
distributions immediately before the kick n=7 for y' =10
where we clearly see that the Wigner distribution shows im-
portant interference fringes arising from quantum coherences
not detected by the Renyi entropy. These quantum coher-
ences separate the quantum from the classical behavior.

We can understand the different role of the scalings x’
and y from the exact solution of Eq. (2) between kicks. This
solution can be written as the map W, (x)
=[dx'L(x®,x")W,(x"), where W,,, and W, are the Wigner
functions or the classical phase-space distributions immedi-
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FIG. 4. (Color online) Wigner distribution (top panel) and clas-
sical distribution [inset (a)] immediately before the kick n=7 for
7=\2%=0.125 and diffusion constant D=9 X 107, Inset (b):
Wigner distribution immediately before the kick n=8 for 7
= G%:0.0Z% and diffusion constant D=9 X 107>. Bottom panel:

Wigner distribution (blue dotted line) and classical distribution (red
solid line) evaluated on (g=-2,p) (dashed lines in the top panel).

ately before the kicks n+1 and n, respectively, L is the quan-
tum or classical propagator of one kick plus the action of the
diffusion reservoir, and xf= (g%, p®)=R'(x) correspond to
the harmonic evolution [4,9]. It is instructive to write the
one-step quantum nonunitary propagator L for an arbitrary
position-dependent kick V(g):

e—(qR—ql)z/ztD J‘+w du

2,22
- e Pl
\4wD oo 27 ey

LixRx') =
X eliltelVia'~w/2)-Vig"+u2)-up"=p"] (3)

[for V(q)=K cos(q), this formula corrects for a small mistake
in Eq. (16) of Ref. [9]]. If we write

2m+]

V(é]i) -Vig,) = N

where ¢'.=¢q' = u/2 and &fim”VE PmV(g" ) agP™ (m
=0,1,...)," and we kept only the first term, we recover the
classwal propagator of the classical distribution: L(xR x")
=e ")/ 47D, where y=(pf-p'+4 V)/Z\D and x=(gF

"Note that for the KHO we have &Z"MVq) (=1)"1sin(q);
thus, we get the 51mp11ﬁcat10n Vig)-V(q,)
=2sin(g")=; _o(=1)"™(w/2)*™1/ (2m+1)!=2 sin(g’)sin(u/2).
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—q)/2\D. Thus, we see from Eq. (4) that the same high-
order odd derivatives that enter in the quantal “correction” L,
in the master equation (2) enter in the one- step propagator
(3). Therefore, the value of the variance x’/2=#> </ 2D of the
Gaussian factor exp(—=Du?/ heff) in Eq. (3) is crumal in the
quantum-to-classical transition because it controls which
terms of this quantal “correction” effectively contribute.
Thus, if the variance x'/2 is sufficiently small for the
quantal ~“corrections,” we have |u|*"*!|5" V] / fepe

<| |0V imaxl / Fregrc,  where ¢=22"(2m+1)! and |é’2m+1V|
<|9V,nax| is an upper bound valid in the region where the
initial wave packet nax| =K in all
position space). But |u]*| 0V x|/ fiegic it is only a small cor-
rection iff y=h2| V| /4DY><1, where, following the
steps described in [9], we can write

PALUR) } )

L(x",x") ~ L”l(XR,X’)[l +X v, |f(y)

with f(y)=1/4(y—2y3/3). Based on this result, in Refs. [4,9]
it is shown that the distance between the corresponding
phase-space distributions, D,= [ dx|W,,(x)—Wf11(x), which
quantify the quantum effects, scales with the single param-
eter x. In Fig. 4 [inset (b)] we can see that for y=1 the
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evolved Wigner distribution does not display essentially any
quantum coherence.

We have shown that the quantum-to-classical transition in
the presence of a diffusive environment is governed by the
single parameter x’=#%%/D when we look at the Renyi en-
tropy. Also, we have shown that x’ controls whose terms are
the leading-order quantum corrections in the master equation
for the Wigner function. However, for a class of kicked sys-
tems we have shown that the combined parameter that indi-
cates in which regime the leading correction is negligible is
X=h2| V.l /4D (which for the KHO reduces to x

=fio:K/4D*?). It was previously shown that the distance be-
tween the classical and quantum phase space distributions,
which measure the quantum signatures, is proportional to the
parameter xy= ﬁzﬁK /4D??, Thus, it is the combined y param-
eter that defines the precise frontier between the classical and
quantum behaviors of a system in a purely diffusive reser-
voir. Furthermore, our results clearly indicate that the dy-
namics of the Renyi entropy or the purity is unable to detect
non-negligible quantum coherences and therefore questioned
its use to study the quantum-to-classical transition.
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