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Abstract
Vortices are known to play a key role in the dynamics of the quantum trajectories
defined within the framework of the de Broglie–Bohm formalism of quantum
mechanics. It has been rigourously proved that the motion of a vortex in the
associated velocity field can induce chaos in these trajectories, and numerical
studies have explored the rich variety of behaviors that due to their influence
can be observed. In this paper, we go one step further and show how the
theory of dynamical systems can be used to construct a general and systematic
classification of such dynamical behaviors. This should contribute to establish
some firm grounds on which the studies on the intrinsic stochasticity of Bohm’s
quantum trajectories can be based. An application to the two-dimensional
isotropic harmonic oscillator is presented as an illustration.

PACS numbers: 03.65.−w, 03.65.Ta

1. Introduction

Some interpretational difficulties [1] with the standard version [2] led David Bohm to develop
in the 1950s [3] an alternative formulation of quantum mechanics. Despite initial criticisms,
this theory has recently received much attention [4, 5], having experimented in the past few
years an important revitalization, supported by a new computationally oriented point of view.
In this way, many interesting practical applications, including the analysis of the tunneling
mechanism [6–8], scattering processes [9–11] or the classical-quantum correspondence
[12, 13], just to name a few, have been revisited using this novel point of view. Also,
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the chaotic properties of these trajectories [14–18], or more fundamental issues, such as the
extension to quantum field theory [19], or the dynamical origin of Born’s probability rule
[20] (one of the most fundamental cornerstones of the quantum theory), have been addressed
within this framework .

Most interesting in Bohmian mechanics is the fact that this theory is based on quantum
trajectories, ‘piloted’ by the de Broglie’s wave which creates a (quantum) potential term
additional to the physical one derived from the actual forces existing in the system [3]. This
term brings into the theory interpretative capabilities in terms of intuitive concepts and ideas,
which are naturally deduced due to fact that quantum trajectories provide causal connections
between physical events well defined in configuration and time. Once these ideas have
been established as the basis of many numerical studies, it becomes, in our opinion, of
great importance to provide firm dynamical grounds that can support the arguments based on
quantum trajectories. For example, it has been recently discussed that the chaotic properties
of quantum trajectories are critical for a deep understanding of Born’s probability quantum
postulate, considering it as an emergent property [20]. Unfortunately very little progress,
i.e. rigorous formally proved mathematical results, has taken place along this line due to
the lack of a solid theory that can foster this possibility. Moreover, there are cases in the
literature clearly demonstrating the dangers of not proceeding in this way. One example can
be found in [21], where a chaotic character was ascribed to quantum trajectories for the quartic
potential, supporting the argument solely on the fact that numerically computed neighboring
pairs separate exponentially. This analysis was clearly done in a way in which the relative
importance of the quantum effects could not be gauged. Something even worse happened with
the results reported in [22], that were subsequently proved to be wrong in a careful analysis
of the trajectories [23].

Recently, some of the authors have made in [15–17] what we consider a relevant advance
along the line proposed in this paper, by considering the relationship between the eventual
chaotic nature of quantum trajectories and the vortices existing in the associated velocity field
which is given by the quantum potential, a possibility that had been pointed out previously
by Frisk [14]. Vortices have always attracted the interest of scientists from many different
fields. They are associated with singularities at which certain mathematical properties become
infinity or abruptly change, and play a central role to explain many interesting phenomena in
both classical and quantum physics [25]. In [15–17] it was shown that quantum trajectories
are, in general, intrinsically chaotic, being the motion of the velocity field vortices a sufficient
mechanism to induce this complexity [15]. In this way, the presence of a single moving
vortex, in an otherwise classically integrable system, is enough to make quantum trajectories
chaotic. When two or few vortices exist, the interaction among them may end up in the
annihilation or creation of them in pairs with opposite vorticities. This phenomenon makes
the size of the regular regions in phase space grow as vortices disappear [17]. Finally, it has
been shown that when a great number of vortices are present the previous conclusions also
hold, and they statistically combine in such a way that they can be related to a suitably defined
Lyapunov exponent, as a global numerical indicator of chaos in the quantum trajectories [16].
Summarizing, this makes chaos the general dynamical scenario for quantum trajectories, and
this is due to the existence and motion of the vortices of the associated velocity field.

In this paper, we extend and rigorously justify the numerical results in [15–17] concerning
the behavior of quantum trajectories and its structure by presenting the general analysis
of a particular problem of general interest, namely a two-dimensional harmonic oscillator,
where chaos does not arise from classical reasons. In this way, we provide a systematic
classification of all possible dynamical behaviors of the existing quantum trajectories, based
on the application of dynamical systems theory [24]. This classification provides a complete
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‘road map’ which makes possible a deep understanding, put on firm grounds, of the dynamical
structure for the problem being addressed.

2. Bohmian mechanics and quantum trajectories

The Bohmian mechanics formalism of quantum trajectories starts from the suggestion made
by Madelung of writing the wavefunction in polar form

ψ(r, t) = R(r, t) eiS(r,t),

where R2 = ψψ and S = (ln ψ − ln ψ)/(2i) are two real functions of position and time
respectively. For convenience, we set h̄ = 1 throughout the paper, and consider a particle
of unit mass. Substitution of this expression into the time-dependent Schrödinger equation
allows us to recast the quantum theory into a ‘hydrodynamical’ form [5], which is governed
by

∂R2

∂t
= −∇ · (R2∇S), (1)

∂S

∂t
= − (∇S)2

2
− V − 1

2

∇2R

R
, (2)

which are the continuity and the ‘quantum’ Hamilton–Jacobi equations, respectively. The
qualifying term in the last expression is customarily included since this equation contains an
extra non-local contribution (determined by the quantum state), Q = 1

2∇2R/R, called the
‘quantum’ potential. Together with V, this additional term determines the total force acting
on the system, and it is responsible for the so-called quantum effects in the dynamics of the
system.

Similarly to what happens in the standard Hamilton–Jacobi theory, equations (1) and (2)
allow us to define, for spinless particles, quantum trajectories by integration of the differential
equation system: r̈ = −∇V (r) − ∇Q(r). Alternatively, one can consider the velocity vector
field

Xψ = ∇S = i

2

ψ∇ψ − ψ∇ψ

|ψ |2 . (3)

Note that, in general, this Bohmian vector field is not Hamiltonian, but it may nevertheless
have some interesting properties. In particular, for the example considered in this paper it
will be shown that it is time-reversible, this symmetry allowing the study of its dynamics in a
systematic way.

Let us recall that a system, ṙ = X(r, t), is time-reversible if there exists an involution,
r = �(s), that is a change of variables satisfying �2 = Id and � �= Id, such that the new
system results in ṡ = D�−1(s)X(�(s), t) = −X(s, t). One of the dynamical consequences
of reversibility is that if r(t) is a solution, then so it is �(r(−t)). This fact introduces
symmetries in the system giving rise to relevant dynamical constraints. For example, let us
assume that �(x, y) = (x,−y) is a time-reversible symmetry (see figure 1). Then any solution
r(t) = (x(t), y(t)) defines another solution given by (x(−t),−y(−t)). Let us remark that
this fact constraints the system dynamics since if, for example, r(t) crosses the symmetry axis
(y = 0 is invariant under �), then the two solutions must coincide.

We conclude this section by stressing that time-reversible systems generated a lot of
interest during the 1980s due to the fact that they exhibit most of the properties of Hamiltonian
systems (see [26–28]). In particular, this type of systems can have quasi-periodic tori which
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r1(t)

(r1(−t))

r2(t)

(r2(−t))

y = 0

Figure 1. Illustration of the dynamical consequences of a time-reversible symmetry.

are invariant under both the flow and the involution �. That is, KAM theory fully applies
in this context. Furthermore, some interesting results concerning the splitting of separatrices
have been developed successfully for time-reversible systems [29], providing powerful tools
for the study of homoclinic and heteroclinic chaos.

3. Model and canonical form

The system that we choose to study is the two-dimensional isotropic harmonic oscillator.
Without loss of generality, the corresponding Hamiltonian operator for r = (x, y) can be
written in the form

Ĥ (x, y) = −1

2

(
∂2

∂x2
+

∂2

∂y2

)
+

1

2
(x2 + y2).

In this paper, we consider the particular combination of eigenstates: ϕ0,0 = 1/
√

π with energy
1, and ϕ1,0 = 2x/

√
2π , ϕ0,1 = 2y/

√
2π with energy 2. It can be immediately checked that

the time evolution of the resulting wavefunction is given by

ψ =
(
A e−it

√
π

+
2xB e−2it

√
2π

+
2yC e−2it

√
2π

)
e− 1

2 (x2+y2), (4)

where4 A = A+ iD, B = B + iE and C = F + iC, subject to the usual normalization condition
|A|2 + |B|2 + |C|2 = 1. In addition, we further assume the condition BC �= EF in order to
ensure the existence of a unique vortex in the velocity field at any time. Accordingly, the
quantum trajectories associated with (4) are solutions of the system of differential equations:

ẋ = −2(BC − EF)y − √
2(BD − AE) cos t − √

2(AB + DE) sin t

V (x, y, t)
, (5)

ẏ = 2(BC − EF)x +
√

2(AC − DF) cos t − √
2(DC + AF) sin t

V (x, y, t)
, (6)

4 The choice of notation for the real and imaginary parts of C may look arbitrary at this point, but it makes simpler
the notation for the canonical form introduced in the next section.
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Figure 2. Stroboscopic 2π -periodic sections for the quantum trajectories generated by equations
(5) and (6) for different values of the normalized constants. Left plot: A = 0.37, D = −0.02,
B = C = 0.44 and E = −F . Right plot: A = 0.4, D = −0.018, B = 0.37 and C = E = 0.49.

where

V (x, y, t) = 2(B2 + E2)x2 + 2(C2 + F 2)y2 + 4(BF + EC)xy + D2 + A2

+ 2
√

2((AB + DE) cos t + (AE − DB) sin t)x

+ 2
√

2((DC + AF) cos t + (AC − DF) sin t)y.

To integrate this equation a 7/8th-order Runge–Kutta–Fehlberg method has been used.
Moreover, since the vector field is periodic, the dynamics can be well monitored by using
stroboscopic sections. In particular, we plot the solution (x(t), y(t)) at times t = 2πn for
n = 1, 2, . . . , 104 and for several initial conditions.

In figure 2 we show the results of two such stroboscopic sections. As can be seen the left
plot corresponds to completely integrable motions, whereas the right one to sizeable chaotic
zones coexisting with stability islands, this strongly suggesting the applicability of the KAM
scenario. However, our vector field is neither Hamiltonian nor time-reversible, and then the
KAM theory does not directly apply to this case. However, we will show how a suitable change
of variables can be performed that unveils a time-reversible symmetry existing in our vector
field. For this purpose, we first recall that the structure of gradient vector fields is preserved
under orthogonal transformations. In this way, if we consider the transformation r = Ms, with
MT = M−1, applied to ṙ = ∇S(r, t), we have that ṡ = ∇S̃(s, t), being S̃(s, t) = S(Ms, t).
In other words, any orthogonal transformation can be performed on the wavefunction instead
of on the vector field.

Lemma 3.1. If equation (4) satisfies the non-degeneracy condition BC �= EF , then there
exist an orthogonal transformation and a time shift, such that the wavefunction takes the form

ψ =
(

Â e−it

√
π

+
2xB̂ e−2it

√
2π

+
2yiĈ e−2it

√
2π

)
e− 1

2 (x2+y2), (7)

where Â, B̂, Ĉ ∈ R, B̂ > 0, Ĉ �= 0, satisfy Â2 + B̂2 + Ĉ2 = 1.
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Table 1. Wavefunction coefficients in the canonical model corresponding to the results of
figure 2. Hats have been omitted as discussed in the text.

Left plot Right plot

A 0.370 540 146 272 978 0.400 404 795 176 082
B 0.656 772 411 113 622 0.705 788 460 189 184
C 0.656 772 411 113 622 0.584 413 081 188 110

We will refer to the wavefunction (7) as the canonical form of (4), and the rest of
the paper is devoted to the study of this case. For this reason, the hat in the coefficients
will be omitted, since it is understood that D = E = F = 0. In table 1 we give the actual
values the canonical coefficients after the transformation corresponding to the results shown in
figure 2.

Proof. For convenience, we consider the complexified phase space z = x + iy, so that the
wavefunction (4) results in

ψ(z, z̄, t) = (Â e−it + B̂ e−2it z + Ĉ e−2it z̄) e− 1
2 zz̄,

where
√

πÂ = A + iD,
√

2π B̂ = B + C + i(E − F) and
√

2π Ĉ = B − C + i(E + F). Then it
is easy to check that the vortex, i.e. the set of points where the wavefunction vanishes, has the
following position with respect to time:

zv(t) = −|Â||B̂| ei(t−b+a) + |Â||Ĉ| e−i(t−c+a)

|B̂|2 − |Ĉ|2 ,

where Â = |Â| eia , B̂ = |B̂| eib and Ĉ = |Ĉ| eic. Note that the vortex is well defined thanks
to the non-degeneracy assumption, and its trajectory5 follows an ellipse. This ellipse does
not appear in the usual canonical form, but this can be made so by performing the rotation:
z �→ z eiμ and the time shift: t �→ t + λ. In this way

zv(t) = −|Â||B̂| ei(t−b+a−μ+λ) + |Â||Ĉ| e−i(t−c+a+μ+λ)

|B̂|2 − |Ĉ|2 ,

where it is clear that by choosing 2μ = c − b and 2λ = c + b − 2a, the desired result is
obtained. Then the corresponding wavefunction in these new coordinates is

ψ = (|Â| e−it + |B̂| e−2it z + |Ĉ| e−2it z̄) e− 1
2 zz̄ ei(2a− b+c

2 )

that can be further simplified since the factor ei(2a− b+c
2 ) plays no role in the Bohmian equations

for the quantum trajectories. Finally, by recovering the coefficients in cartesian coordinates,
one obtains Â = √

π |Â|, B̂ = √
π
2 (|B̂| + |Ĉ|), Ĉ = √

π
2 (|B̂| − |Ĉ|) and D̂ = Ê = F̂ = 0,

which renders equation (7). �

4. Study of the canonical form

Throughout the rest of the paper we consider the wavefunction (4) with A,C �= 0, B > 0 and
D = E = F = 0. Let us remark that by changing the time t �→ −t , if necessary, we can
further restrict the study to the case C > 0. The corresponding quantum trajectories are then
obtained from the vector field

Xψ =
(−2BCy − √

2AB sin t

V (x, y, t)
,

2BCx +
√

2AC cos t

V (x, y, t)

)
, (8)

5 We use here the term trajectory to refer to the evolution of the vortex, despite the fact that it is not a solution of the
ODE.
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Figure 3. Stroboscopic 2π -periodic sections corresponding to the quantum trajectories generated
by the canonical velocity field defined by equation (8) for a = 0.4, and b = 0.4, 0.44, 0.48 and
0.68 from left-top to right-bottom, respectively.

where V (x, y, t) = 2B2x2+2C2y2+2
√

2ABx cos t+2
√

2ACy sin t+A2. In these coordinates,
the only vortex of the system follows the trajectory given by

(xv(t), yv(t)) =
(

− A√
2B

cos t,− A√
2C

sin t

)
,

which corresponds to an ellipse of semi-axes a = A/(
√

2B) and b = A/(
√

2C), respectively.
In figure 3 we show some stroboscopic sections corresponding to this (canonical) velocity

field for different values of the parameters a and b. As can be seen, a wide variety of dynamical
behaviors, characteristics of a system with mixed dynamics, is found. In the left-top panel,
which corresponds to the case in which a = b (vortex moving in a circle), we have sections
corresponding to a totally integrable case. As we move from left to right and top to bottom
some of these tori are broken, and these areas of stochasticity coexist with others in which the

7
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motion is regular, this including different chains of islands. Moreover, the size of the chaotic
regions grows as the value of b separates from that of a.

This variety of results can be well understood and rationalize by using some standard
techniques of the field of dynamical systems, in the following way. Although the vector field
(8) is not Hamiltonian, it is time-reversible with respect to the involution �(x, y) = (x,−y).
This result is very important for the purpose of the present paper, since it implies that the
KAM theory applies to our system if we are able to write down our vector field in the form
Xψ = X0 + εX1, ε � 1, being the dynamics corresponding to X0 integrable and X1 time-
reversible. More specifically, let us assume that X0 does not depend on t and X1 be 2π -periodic
with respect to t. Moreover, let us assume that for X0 there exists a family of periodic
orbits whose frequency varies along the family (non-degeneracy condition). Then our result
guarantees that when the effect of the perturbation εX1 is considered, most of the previous
periodic orbits give rise to invariant tori of frequencies (1, ω), where ω is the frequency of
the unperturbed periodic orbit. Of course, the persistence of these objects is conditioned to
the fact that the vector (1, ω) satisfies certain arithmetic conditions (see [27, 28] for details).
Since these arithmetic conditions are fulfilled for a big (in the sense of the Lebesgue measure)
set of the initial orbits, the important hypothesis that we have to check in order to ascertain
the applicability of the KAM theory is the non-degeneracy of the frequency map.

In our problem, two such integrable cases exist. First, if A = 0, the vortex is still at
the origin and the time periodic part in the vector field disappears. As a consequence, all the
quantum orbits of the system appear as ellipses centered at the origin in the xy-plane. It will
be shown in the next section that the corresponding frequency varies monotonically along the
orbits. This case has not been explicitly included in figure 3 due to its simplicity. Second,
and as will be analyzed in section 6, if B = C, or equivalently a = b, that is the vortex
moves in a circle, the vector field is also integrable for any value of A. The corresponding
stroboscopic sections are shown in the top-left panel of figure 3). Here, the structure of the
phase space changes notably, since two new periodic orbits, one stable and the other unstable,
appear. Moreover, the obtained integrable vector field depends on t. We will show that this
time dependence can be eliminated by means of a suitable change of coordinates, showing that
our problem remains in the context described in the previous paragraph. The rest of the panels
shown in figure 3 can be understood as the evolution of this structure as the perturbation, here
represented by the difference between B and C, as dictated by the KAM theorem.

To conclude the paper, let us now discuss in detail the two integrable cases in the next
two sections.

5. The integrable autonomous case

For A = 0, B �= 0 and C �= 0 it is easily seen that the vector field (8) is integrable. Actually,
the orbits of the quantum trajectories in the xy-plane are ellipses around the origin (position
at which the vortex is fixed). Also, the frequency of the corresponding trajectories approaches
infinity as they get closer to the vortex position. Let us now compute the frequency ω of these
solutions. First, we introduce a new time variable τ , satisfying dt/dτ = B2x2 + C2y2, and
then solve the resulting system, thus obtaining

x(τ) = α cos(BCτ + β), y(τ ) = α sin(BCτ + β), (9)

where α is the distance from the vortex. Next, we recover the original time, t, by solving the
differential equation defining the previous change of variables

dt

dτ
= α2 B2 + C2

2
+ α2 B2 − C2

2
cos(2BCτ + 2β),

8
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whose solution is given by

2

α2(B2 + C2)︸ ︷︷ ︸
γ

t = τ +
B2 − C2

2(B2 + C2)BC︸ ︷︷ ︸
δ

sin(2BCτ + 2β).

Note that this equation is invertible since |2BCδ| < 1, and then τ = γ t + f (2BCγ t), f being
a 2π -periodic function. Finally, introducing this expression into (9), one can conclude that
the solution has a frequency given by

ω = BCγ = 2BC

α2(B2 + C2)

that varies monotonically with respect to the distance to the vortex. Then, for A � 1, the
existence of invariant tori around the vortex is guaranteed.

6. The integrable non-autonomous case

Let us consider now the case of non-vanishing values of B = C for any A �= 0. In this case,
we have a = b �= 0, and system (8) can be written as

Xψ(x, y, t) =
(−y − a sin(t)

Ṽ (x, y, t)
,
x + a cos(t)

Ṽ (x, y, t)

)
, (10)

where Ṽ (x, y, t) = (x + a cos(t))2 + (y + a sin(t))2. This vector field corresponds to the
following Hamiltonian:

H(x, y, t) = − 1
2 ln Ṽ (x, y, t)

that it is actually integrable.

Lemma 6.1. Let us consider e (energy), the symplectic variable conjugate to t, and define
the autonomous Hamiltonian H1(x, y, t, e) = H(x, y, t) + e; then we have that

H2(x, y, t) = Ṽ (x, y, t) e−x2−y2

is a first integral of H1, in involution and functionally independent. As a consequence, if
a = b �= 0, the system is completely integrable.

Proof. It is straightforward to see that the Poisson bracket with respect to the canonical form
dx ∧ dy + dt ∧ de satisfies {H1,H2} = 0. Moreover, H2 does not depend on e, so that it is an
independent first integral. �

Taking these results into account, one can completely understand the picture presented
in the top-left plot of figure 3. Since the system is integrable, it is foliated by invariant tori,
despite the two periodic orbits that are created by a resonance introduced when parameter A

changes from A = 0 to A �= 0. Next, we characterize these two periodic orbits:

Lemma 6.2. If A > 0, the system has two periodic orbits given by

r±(t) = (x±(t), y±(t)) = (a± cos t, a± sin t),

where the coefficients a+ and a− are given by a± = −a±
√

a2+4
2 . Moreover, the orbit r−(t) is

hyperbolic with characteristic exponents ±(a4
− −1)1/2, and r+(t) is elliptic with characteristic

exponents ±i(1 − a4
+)

1/2. If A < 0 the same result holds just switching the roles of a+ and a−.

Proof. It is known that if the sets
{
H−1

2 (c), c ∈ R
}

are bounded differentiable submanifolds,
their connected components carry quasi-periodic dynamics. Moreover, the critical points of

9
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H2 determine the periodic orbits of the system. Therefore, these periodic orbits are given by
expressions 2xṼ = ∂Ṽ

∂x
, and 2yṼ = ∂Ṽ

∂y
, which can also be written as

x((x + a cos t)2 + (y + a sin t)2) = x + a cos t,

y((x + a cos t)2 + (y + a sin t)2) = y + a sin t,

from which we obtain our two periodic orbits: x±(t) = a± cos t , and y±(t) = a± sin t , with
a± = 1/(a± + a). In addition, it is easy to check that a2

− > 1 and a2
+ < 1, respectively.

Finally, the stability of these orbits can be obtained by considering the following associated
variational equations:(

ẇ1

ẇ2

)
= a2

±

(
sin(2t) −cos(2t)

−cos(2t) −sin(2t)

) (
w1

w2

)
. (11)

Solutions for this equation can be easily obtained by using the complex variable z = w1 + iw2,
and solving ż = −i e2it a2

±z̄. We have the following set of fundamental solutions:

w1(t) = e±t
√

a4−−1((1 − a2
−
)

cos t ∓
√

a4− − 1 sin t
)
,

w2(t) = e±t
√

a4−−1
((

1 − a2
−
)

sin t ±
√

a4− − 1 cos t
)
,

for the hyperbolic case, and

w1(t) = cos
(±t

√
1 − a4

+

)( ±
√

1 − a4
+ cos t − (

1 + a2
+

)
sin t

)
+ sin

( ± t

√
1 − a4

+

)( ±
√

1 − a4
+ cos t +

(
1 + a2

+

)
sin t

)
,

w2(t) = cos
(±t

√
1 − a4

+

)( ±
√

1 − a4
+ sin t +

(
1 + a2

+

)
cos t

)
+ sin

(±t

√
1 − a4

+

)(±√
1 − a4

+ sin t − (
1 + a2

+

)
cos t

)
,

for the elliptic one. Finally, the corresponding characteristic exponents can be obtained by a
straightforward computation of the monodromy matrix. �

Remark 6.3. Note that the chaotic sea observed in figure 3 is associated with the intersection
of the invariant manifolds of the hyperbolic periodic orbit that we have computed.

Now, and in order to apply the KAM theorem, we compute locally the frequency map
of this unperturbed system around the vortex and the elliptic periodic orbit. To this end, we
perform a symplectic change of coordinates in a neighborhood of these objects in order to
obtain action-angle variables up to third order in the action.

In general, let H(x, y, t, e) = H(x, y, t) + e be a Hamiltonian that is 2π -periodic
with respect to t and has a first integral, F(x, y, t). Let us consider the generating
function, S̃(x, t, I, E) = tE + S(x, t, I ), determining a symplectic change of variables
(x, y, t, e) �→ (I, θ, t, E) defined implicitly by

y = ∂S

∂x
, e = E +

∂S

∂t
, θ = ∂S

∂I

where θ is also 2π -periodic. This transformation is introduced in such a way that the new
Hamiltonian depends only on I :

H

(
x,

∂S

∂x
, t

)
+

∂S

∂t
= h(I). (12)

10



J. Phys. A: Math. Theor. 42 (2009) 495103 F Borondo et al

Since a first integral of the system is known, we can define the corresponding action as

I = F(x, y, t) = F

(
x,

∂S

∂x
, t

)
. (13)

From equation (13), we obtain locally the equation ∂S
∂x

= f (x, t, I ), so that we have
S(x, t, I ) = ∫

f (x, t, I ) dx + g(t, I ). Introducing this expression into (12), we obtain the
following equation for g:

∂g

∂t
= h(I) − H(x, f, t) −

∫
∂f

∂t
dx (14)

and can conclude that since g must be 2π -periodic with respect to t, then h(I) has to satisfy

h(I) =
〈
H(x, f, t) +

∫
∂f

∂t
dx

〉
= 〈H(x, f, t)〉, (15)

where 〈·〉 denotes average with respect to t. Finally, we note that since F is a first integral, we
can define g so that θ becomes 2π -periodic.

Computations are simplified observing that the left-hand side of equation (14) does not
depend on x (we use the fact that F is a first integral), so we can set x = 0. According to this,
we have to solve F̂ (f̂ , t) = I , where F̂ (·, t) = F(0, ·, t) and then we have to compute the
average h(I) = 〈Ĥ (f̂ , t)〉, where Ĥ (·, t) = H(0, ·, t).

First, let us consider a neighborhood of the vortex for A > 0. To this end, we introduce
the new variables x = −a cos t + �x and y = −a sin t + �y , so that the Hamiltonian
Hv = Hv(�x,�y, t) and the first integral Fv = Fv(�x,�y, t) are

Hv = − 1
2 ln

(
�2

x + �2
y

) − a�x cos t − a�y sin t,

Fv = (
�2

x + �2
y

)
exp

(−a2 + 2a�x cos t + 2a�y sin t − �2
x − �2

y

)
.

(16)

Proposition 6.4. There exists a symplectic change of variables (�x,�y, t, e) �→ (I, θ, t, E),
with θ ∈ T, setting the vortex at I = 0, such that the new Hamiltonian becomes

hv(I ) = −1

2
ln I − a2

2
− ea2

I

2
− 3a2 e2a2

2
I 2 + O3(I ).

Proof. According to the above discussion, we have F̂v(f̂ v, t) = f̂ 2
v e−a2+2af̂ v sin t−f̂ 2

v = I .
Then by introducing this expression in (16) one obtains

Ĥv(f̂ v, t) = −1

2
ln I − a2

2
− f̂ 2

v

2
.

Finally, we only have to compute the first terms in the expansion of f̂ 2
v obtaining

f̂ 2
v = ea2

I − 2a e
3
2 a2

sin tI 3/2 + 6a2 e2a2
sin2 tI 2 + · · ·

and use that 〈sin t〉 = 0 and 〈sin2 t〉 = 1
2 . �

On the other hand, a neighborhood of the elliptic periodic orbit for A > 0 can be studied
by means of the variables x = a+ cos t + �x and y = a+ sin t + �y . One thus obtains that the
Hamiltonian and the first integral are given by

H+ = − 1
2 ln V+ + a+�x cos t + a+�y sin t,

F+ = V+ exp
(−a2

+ − 2a+�x cos t − 2a+�y sin t − �2
x − �2

y

)
,

where V+ = (a + a+)
2
(
1 + 2a+�x cos t + 2a+�y sin t + a2

+�
2
x + a2

+�
2
y

)
.

11
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Proposition 6.5. There exists a symplectic change of variables (�x,�y, t, e) �→ (I, θ, t, E),
with θ ∈ T, setting the periodic orbit at I = (a+ + a)2 e−a2

, such that the new Hamiltonian
becomes

h+(I ) = − ln(a + a+)
2 +

1 − �1

2
J − 1 + 2�2

4
J 2 + O3(I ),

where we have introduced the notation

J = 1 − ea2
I

(a+ + a)2

and also

�1 = 1√
1 − a4

+

, �2 = a2(41a8 − 88a6 + 119a4 − 54a2 + 18)

36
√

1 − a4(a8 + 1 − 2a4)(1 + a2)
.

Proof. As before, we consider a solution f̂ +(I, t) for the equation F̂+(f̂ +, t) = I . For
convenience, we introduce the notation I = (a+ + a)2 e−a2

(1 − J ) in order to set the periodic
orbit at J = 0. Then it turns out that the expression(

1 − a2
+ cos(2t)

)
f̂ 2

+ +
(
a+(1 + a2) sin t − 8

3a3
+ sin3 t

)
f̂ 3

+ + O4(f̂ +) = J

approximates the previous equation for f̂ + and that the following expansion in terms of J

f̂ 2
+ = α1(t)J + α3/2(t)J

3/2 + α2(t)J
2 + · · ·

holds, where

α1(t) = 1

1 − a2
+ cos 2t

,

α3/2(t) = −a+
(
1 + a2

+

)
sin t + 8

3a3
+ sin3 t(

1 − a2
+ cos(2t)

)5/2
,

α2(t) = 3

2

(
a+(1 + a+)

2 sin t − 8
3a3

+ sin3 t
)2(

1 − a2
+ cos 2t

)4 .

Hence, we have to compute the average of

Ĥ+(f̂ +, t) = − ln(a+ + a)2 − 1

2
ln(1 − J ) − f̂ 2

+

2
that follows from the fact that 〈α1〉 = �1, 〈α3/2〉 = 0 and 〈α2〉 = �2. These averages are
computed easily by using the method of residues. �

7. Conclusion

In this paper we present a scheme to study in a systematic way the intrinsic stochasticity
and general complexity of the quantum trajectories that are the basis of quantum mechanics
in the formalism developed by Bohm in the 1950s. In our opinion this approach, which is
based on the ideas and results of the dynamical systems theory, can seriously contribute to
establish firm grounds that foster the importance of the conclusions of future studies relying
on such trajectories, thus avoiding errors and ambiguities that happened in the past. As an
illustration we have considered the simplest, non-trivial combination of eigenstates of the
two-dimensional isotropic harmonic oscillator.

The corresponding velocity field is put in a so-called canonical form, and the
characteristics of the corresponding quantum trajectories studied in detail. It is proved that

12
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Table 2. Dynamical characteristics of the quantum trajectories generated from the different
possibilities in the canonical model (8) for the pilot wavefunction (4).

Integrable Hamiltonian Time-reversible Stroboscopic sections

A = 0, B �= 0, C �= 0 Yes No Yes Ellipses around origin
A �= 0, B = C Yes Yes Yes Top-left panel in figure 3
A �= 0, B �= C No No Yes Rest of panels in figure 3

only one vortex and two periodic orbits, one elliptic and the other hyperbolic, organize the
full dynamics of the system. In it, there exist invariant tori associated with the vortex and
the elliptic periodic orbit. Moreover, there is a chaotic sea associated with the hyperbolic
periodic orbit. The KAM theory has been applied to this scenario by resorting to a suitable
time-reversible symmetry, that is directly observed in the canonical form for the velocity field
determining the quantum trajectories of the system. It should be remarked that the results
reported here concerning the hyperbolic periodic orbit constitute a generalization of those
previously reported in [15], in the sense that here a more concise and constructive approach
to the associated dynamics is presented. We summarize the dynamical characteristics of the
different possibilities arising from the canonical velocity field (8) in table 2, that represents
a true road-map to navigate across the dynamical system, i.e. quantum trajectories, that are
defined based on the pilot effect [3] of the wavefunction (4). Also, note that the generic model,
i.e. when E,F or G do not vanish, does not satisfy any of the properties considered in the
table.

Finally, the method presented here is, in principle, generalizable to other more complicated
situations in which more vortex and effective dimensions exist. Some methods have been
described in the literature that can be applied to these situations [30]. This will be the subject
of future work.
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