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Topological Kondo insulators are strongly correlated materials where itinerant electrons hybridize with
localized spins, giving rise to a topologically nontrivial band structure. Here, we use nonperturbative
bosonization and renormalization-group techniques to study theoretically a one-dimensional topological
Kondo insulator, described as a Kondo-Heisenberg model, where the Heisenberg spin-1=2 chain is coupled to
a Hubbard chain through a Kondo exchange interaction in the p-wave channel (i.e., a strongly correlated
version of the prototypical Tamm-Schockley model). We derive and solve renormalization-group equations at
two-loop order in the Kondo parameter, and find that, at half filling, the charge degrees of freedom in the
Hubbard chain acquire a Mott gap, even in the case of a noninteracting conduction band (Hubbard parameter
U ¼ 0). Furthermore, at low enough temperatures, the system maps onto a spin-1=2 ladder with local
ferromagnetic interactions along the rungs, effectively locking the spin degrees of freedom into a spin-1 chain
with frozen charge degrees of freedom. This structure behaves as a spin-1 Haldane chain, a prototypical
interacting topological spin model, and features two magnetic spin-1=2 end states for chains with open
boundary conditions. Our analysis allows us to derive an insightful connection between topological Kondo
insulators in one spatial dimension and thewell-known physics of the Haldane chain, showing that the ground
state of the former is qualitatively different from the predictions of the naive mean-field theory.
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I. INTRODUCTION

Starting with the pioneering works of Kane and Mele
[1,2] and others [3–5], there has been a surge of interest
in topological characterization of insulating states [6–8].
It is now understood that there exist distinct symmetry-
protected classes of noninteracting insulators, such that
two representatives from different classes cannot be
adiabatically transformed into one another (without closing
the insulating gap and breaking the underlying symmetry
along the way). A complete topological classification
of such band insulators has been developed in the form
of a “periodic table of topological insulators” [9,10].
Furthermore, it was realized that the nontrivial (topological)
insulators from this table possess, as their hallmark features,
gapless boundary modes. The latter have been spectacularly

observed in a variety of experiments in both three- [11,12]
and two-dimensional systems [13–16].
The aforementioned classification, however, is limited to

noninteracting systems, and as such, it represents a clas-
sification of single-particle band structures. Adding inter-
actions to the theory leads to significant complications.
Understanding and classifying strongly interacting topo-
logical insulator phases in many-particle systems is a
fundamental open problem in condensed matter.
A class of material that combines strong interactions and

nontrivial topology of emergent bands is topological Kondo
insulators (TKI) [17]. A basic model of these heavy
fermion systems involves even-parity conduction electrons
hybridizing with strongly correlated f electrons. At low
temperatures, a hybridization gap opens up and an insulat-
ing state can be formed. Its simplified mean-field descrip-
tion makes it amenable to a topological classification
according to the noninteracting theory, and a topologically
nontrivial state appears due to the opposite parities of the
states being hybridized. Although the mean-field descrip-
tion (formally well controlled in the large-N approximation
[18–20]) does appear to correctly describe the nature of the
topological Kondo insulating states observed in bulk
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materials thus far [21–25], it is interesting to see if
nonperturbative effects beyond mean field can qualitatively
change the mean-field picture.
In contrast to higher dimensions, where reliable theo-

retical techniques to treat strong interactions are scarce,
there exists a rich arsenal of such nonperturbative methods
for one-dimensional systems, where strongly correlated
“non-mean-field” ground states abound. Since the Kondo
insulating Hamiltonian and its mean-field treatment are
largely dimension independent, it is interesting to consider
the one-dimensional model as a natural playground to study
the interplay between strong interactions and nontrivial
topology.
With this motivation in mind, we study here a strongly

interacting model of a one-dimensional topological Kondo
insulator, i.e., a “p-wave” Kondo-Heisenberg model, intro-
duced earlier by Alexandrov and Coleman [26], who
treated the problem in the mean-field approximation.
Here, we go beyond the mean-field level and consider
quantum fluctuations nonpeturbatively, using the Abelian
bosonization technique. It is shown that a “topological
coupling” between the electrons in the Hubbard chain and
spins in the Heisenberg chain gives rise to a charge gap at
half filling in the former. The relevant interaction between
the remaining spin-1=2 degrees of freedom in the chains is
effectively ferromagnetic, which locks them into a state
qualitatively similar to the Haldane spin-1 chain. The
ground state, therefore, is a strongly correlated topological
insulator, which exhibits neutral spin-1=2 end modes.
While our main motivation is essentially theoretical

(i.e., to allow a deeper understanding of strongly interacting
topological matter), we believe our results might have
direct application in ultracold atom experiments, where
double-well optical superlattices loaded with atoms in s and
p orbitals have been realized [27,28]. In addition, our work
might have some relevance in recent experimental results
[29–31], which suggest the existence of a ferromagnetic
phase transition and/or suppressed surface charge transport
in samples of samarium hexaboride (SmB6—a three-
dimensional topological Kondo insulator).
This article is organized as follows. In Sec. II, we specify

the model for a 1D TKI and introduce the Abelian
bosonization description. In Sec. III, we present the
renormalization-group (RG) analysis and discuss the quan-
tum phase diagram of the system. In Sec. IV, we analyze the
topological aspects of the problem and explain the emer-
gence of topologically protected magnetic edge states, and
in Sec. V, we present a summary and discussion of the
results. Finally, in the Appendix, we present the technical
derivation of the renormalization-group equations.

II. MODEL

We start our theoretical description by considering
the Hamiltonian of the system depicted in Fig. 1,
H ¼ H1 þH2 þHK, where

H1 ¼ −t XNs−1

j¼1;σ

ðc†j;σcjþ1;σ þ H:c:Þ − μ
XNs

j¼1;σ

nj;σ

þ U
XNs

j¼1

�
nj↑ − 1

2

��
nj↓ − 1

2

�
ð1Þ

is a fermionic 1D Hubbard chain with Ns sites, where
nj;σ ¼ c†j;σcj;σ is the density of spin-σ electrons at site j, μ is
the chemical potential, and U is the Hubbard interaction
parameter. In this work, we focus on only the half filled
case μ ¼ 0, where there is one electron per site. However,
we expect our results to also remain valid for small
deviations of half filling. The spin chain is described by
the spin-1=2 Heisenberg model,

H2 ¼ J
XNs−1

j¼1

Sj · Sjþ1; ð2Þ

with J > 0. Here, we assume the same lattice parameter a
for both chains H1 and H2. Finally, motivated by the work
by Alexandrov and Coleman [26], we assume the following
exchange coupling between the two chains,

HK ¼ JK
XNs

j¼1

Sj · πj; ð3Þ

where JK > 0 is the Kondo interaction between the jth
spin (Sj) in the Heisenberg chain and the p-wave spin
density in the fermionic chain at site j, defined as

πj ≡ p†
j;α

�
σαβ
2

�
pj;β; ð4Þ

where pj;α ≡ ðcjþ1;α − cj−1;αÞ=
ffiffiffi
2

p
is a linear combination

of orbitals with p-wave symmetry and σαβ is the vector of
Pauli matrices. This model can be regarded as a strongly
interacting version of the Tamm-Shockley model [32–34].
While for our present purposes this is an interesting

FIG. 1. Schematic representation of the 1D “p-wave” Kondo-
Heisenberg model. The top chain corresponds to the Hubbard
model and the bottom chain is the S ¼ 1=2 antiferromagnetic
Heisenberg model. The Kondo exchange (depicted pictorially as
slanted bonds with odd inversion symmetry) is a nonlocal
nearest-neighbor antiferromagnetic interaction JK > 0 that
couples a spin Sj in the Heisenberg chain with the p-wave spin
density πj in the Hubbard chain [see Eq. (4)].
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“toy model” Hamiltonian that allows us to extract a useful
insight into strongly interacting topological phases, it
could, in principle, be realized in ultracold-atom experi-
ments (see Sec. V for details). In the absence of interactions
in the fermionic chain (i.e., U ¼ 0) and in the large-N
mean-field approximation, Alexandrov and Coleman have
shown the emergence of topologically protected edge states
arising from the nontrivial form of the Kondo term [Eq. (3)]
[26]. In their mean-field approach, the effective description
of the system corresponds to noninteracting quasiparticles
filling a strongly renormalized valence band with a non-
trivial topology, stemming from the charge conjugation,
time reversal, and charge U(1) symmetry of the effectively
noninteracting Hamiltonian (see also Ref. [35] for a
discussion of a closely related system).
In this paper, our goal is to understand the emergence of

topologically protected edge states without introducing any
decoupling of the Kondo interaction, including the inter-
acting case, U ≠ 0. We consider the case of small U and
JK . This is formally represented by linearizing the non-
interacting spectrum ϵk ¼ −2t cos ka in the fermionic
chain H1 around the Fermi energy μ ¼ 0 and taking the
continuum limit where the lattice constant a → 0. Then, the
fermionic operators admit the low-energy representation
[36,37]

cj;σffiffiffi
a

p ∼ eikFxjR1;σðxjÞ þ e−ikFxjL1;σðxjÞ; ð5Þ

where R1;σðxÞ and L1;σðxÞ are right- and left-moving
fermionic field operators, which vary slowly on the scale
of a. As we are interested in the edge-state physics, we
consider open boundary conditions c0;σ ¼ cNsþ1;σ ¼ 0,
leading to the following constraints:

L1;σð0Þ ¼ −R1;σð0Þ; ð6Þ

L1;σðLcÞ ¼ −ei2kFLcR1;σðLcÞ; ð7Þ

where Lc ¼ Nsa is the length of the chain. We next
introduce the Abelian bosonization formalism [36,37],

R1;σðxÞ ¼
F1;σffiffiffiffiffiffiffiffi
2πα

p e−iϕ1;R;σðxÞ;

L1;σðxÞ ¼
F1;σffiffiffiffiffiffiffiffi
2πα

p eiϕ1;L;σðxÞ; ð8Þ

where α is a short distance cutoff in the bosonization
procedure (we take α ¼ a hereafter). In Eq. (8), ϕ1;λσðxÞ
(with λ ¼ fR;Lg) are bosonic fields obeying the commu-
tation relations ½ϕ1;RσðxÞ;ϕ1;Rσ0 ðyÞ� ¼ iπsgnðx − yÞδσ;σ0 ,
½ϕ1;LσðxÞ;ϕ1;Lσ0 ðyÞ� ¼ −iπsgnðx − yÞδσ;σ0 , and F1;σ are
Klein operators, which obey anticommutation relations
fF1;σ; F1;σ0 g ¼ δσ;σ0 , and, therefore, ensure the correct
anticommutation relations for fermions. Because of the

constraints (6) and (7) introduced by the open boundary
conditions, the right and left movers are not independent,
and obey the constraints

ϕ1;L;σð0Þ ¼ −ϕ1;R;σð0Þ þ π; ð9Þ

ϕ1;L;σðLcÞ ¼ −ϕ1;R;σðLcÞ þ 2kFLc − π þ 2qσπ: ð10Þ

Here, qσ is an integer representing the occupation of the
“zero-mode” excitations, i.e., particle-hole excitations with
momentum k ¼ 0 and total spin σ. Its presence in Eq. (10)
can be understood recalling that the expression of the
nonchiral bosonic field ϕ1;σ ¼ ðϕ1;R;σ þ ϕ1;L;σÞ=2 is [38]

ϕ1;σðxÞ ¼
π

2
þ ðkFLc − π þ πqσÞ

x
Lc

þ
X∞
n¼1

sin ðknxÞffiffiffi
n

p ðαn;σ þ α†n;σÞ;

where kn ≡ πn=Lc, with integer n > 0, and α†n;σ are
bosonic operators obeying the commutation relation
½αn;σ;α†m;σ0 � ¼ δn;mδσ;σ0 (see Refs. [38,39] for details).
From here, we obtain the additional commutation
relations [38]

½ϕ1;RσðxÞ;ϕ1;Lσ0 ðyÞ� ¼

8><
>:

−iπδσ;σ0 for 0 < x; y < Lc

0 for x ¼ y ¼ 0

−2πiδσ;σ0 for x ¼ y ¼ Lc:

ð11Þ

The bosonization procedure applied to the 1D Hubbard
model is standard, and we refer the reader to textbooks for
details [36,37]. Introducing charge and spin bosonic fields
ϕ1;λσ ¼ 1=

ffiffiffi
2

p ½ϕ1c − λθ1c þ σðϕ1s − λθ1sÞ� (where the con-
vention of signs λ ¼ fR;Lg ¼ fþ;−g and σ ¼ f↑;↓g ¼
fþ;−g is implied), the 1D Hubbard model at half filling
(i.e., kF ¼ π=2a) becomes [36]

H1 ¼
X
ν¼c;s

Z
Lc

0

dx

�
v1ν

2πK1ν
ð∂xϕ1νÞ2 þ

v1νK1ν

2π
ð∂xθ1νÞ2

�

−
U

2ðπaÞ2
Z

Lc

0

dx½cosð
ffiffiffi
8

p
ϕ1cÞ − cosð

ffiffiffi
8

p
ϕ1sÞ�; ð12Þ

where the new fields obey the boundary conditions

ϕ1sð0Þ ¼ 0; ϕ1sðLcÞ ¼
πffiffiffi
2

p ðq↑ − q↓Þ; ð13Þ

ϕ1cð0Þ ¼
πffiffiffi
2

p ;

ϕ1cðLcÞ ¼
ffiffiffi
2

p �
kFLc − π

2

�
þ πffiffiffi

2
p ðq↑ þ q↓Þ; ð14Þ
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and the commutation relation ½ϕ1;νðxÞ; θ1;ν0 ðyÞ� ¼−iðπ=2Þδν;ν0sgnðx − yÞ. From here, we conclude that the
field ð1=πÞ∂xθ1;νðxÞ is the momentum canonically con-
jugated to ϕ1;νðxÞ.
As is well known, in 1D charge and spin excitations

generally decouple and the above Hamiltonian can be split
as H1 ¼ H1c þH1s, with the first line describing indepen-
dent Luttinger liquids for the charge and spin sectors,
which are characterized by charge (spin) acoustic modes
with velocities v1c ¼ vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ua=ðπvFÞ

p ðv1s ¼ vFÞ, and
Luttinger parameter controlling the decay of the correlation
functions K1c ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þUa=ðπvFÞ

p
(K1s ¼ 1). The pres-

ence of the cosine terms in the second line of Eq. (12)
changes the physics qualitatively. In the present work, we
restrict our focus to the case U ≥ 0, where the term
∼ cosð ffiffiffi

8
p

ϕ1cÞ is marginally relevant in the renormaliza-
tion-group sense and opens a Mott gap in the charge sector.
At the same time, the term ∼ cosð ffiffiffi

8
p

ϕ1sÞ is marginally
irrelevant at the SU(2) symmetric point, and the spin sector
remains gapless [36,37].
The bosonization of the Heisenberg chain H2 is also

quite standard, and we refer the reader to the above-
mentioned textbooks [36,37]. A usual trick consists of
representing the spin operators Sj by auxiliary fermionic
operators in a half filled Hubbard model with interaction
parameter U0 ≫ U. Therefore, while technically the pro-
cedure is identical to Eq. (12), the charge degrees of
freedom in the bosonized Hamiltonian, H2 can be assumed
to be absent at the relevant energy scales of the problem due
to the Mott gap ∼U0. Then, ignoring the charge degrees of

freedom and irrelevant operators in Eq. (12), and replacing
the chain label 1 → 2, we obtain

H2 ¼
v2s
2π

Z
Lc

0

dx½ð∂xϕ2sÞ2 þ ð∂xθ2sÞ2�: ð15Þ

Finally, we bosonize the Kondo Hamiltonian. The
p-wave spin density in the fermionic chain and the spin
density in the Heisenberg chain are, respectively,

πj

a
∼ 2½J1RðxjÞ þ J1LðxjÞ − ð−1ÞjN1ðxjÞ�; ð16Þ

Sj

a
∼ J2RðxjÞ þ J2LðxjÞ þ ð−1ÞjN2ðxjÞ; ð17Þ

where JaRðxÞ ¼ R†
a;αðxÞðσα;β=2ÞRa;βðxÞ and JaLðxÞ ¼

L†
a;αðxÞðσα;β=2ÞLa;βðxÞ (with a ¼ 1; 2) are the

smooth components of the spin density, with bosonic
representation

JxaλðxÞ ¼
1

2πa
cosf

ffiffiffi
2

p
½λϕa;sðxÞ − θa;sðxÞ�g; ð18Þ

JyaλðxÞ ¼
1

2πa
sinf

ffiffiffi
2

p
½λϕa;sðxÞ − θa;sðxÞ�g; ð19Þ

JzaλðxÞ ¼ − 1ffiffiffi
8

p
π
½∂xϕa;sðxÞ − λ∂xθa;sðxÞ�; ð20Þ

where λ ¼ RðLÞ corresponds to the plus (minus) sign, and
whereNaðxÞ ¼ R†

a;αðxÞðσα;β=2ÞLa;βðxÞ þ H:c: are the stag-
gered components

N1ðxÞ ¼
cos ½ ffiffiffi

2
p

ϕ1cðxÞ�
πa

fcos½
ffiffiffi
2

p
θ1sðxÞ�;− sin½

ffiffiffi
2

p
θ1sðxÞ�;− cos½

ffiffiffi
2

p
ϕ1sðxÞ�g; ð21Þ

N2ðxÞ ¼
m2

πa
fcos½

ffiffiffi
2

p
θ2sðxÞ�;− sin½

ffiffiffi
2

p
θ2sðxÞ�;− cos½

ffiffiffi
2

p
ϕ2sðxÞ�g; ð22Þ

with m2 ¼ hcos ½ ffiffiffi
2

p
ϕ2cðxÞ�i resulting from the integration

of the gapped charge degrees of freedom in the Heisenberg
chain. Therefore, although the spin densities (16) and (17)
look similar in the bosonized language, they actually differ
in two crucial aspects. (1) While in Eq. (22) the charge
degrees of freedom are absent in the expression of the
staggered magnetization, they are still present in Eq. (21) in
the term cos½ ffiffiffi

2
p

ϕ1cðxÞ� and we need to consider them.
(2) Comparing Eqs. (16) and (17), we note a sign difference
in the staggered components. This sign is related to the
p-wave nature of the operators pj;σ , and is, therefore,
intimately connected to the topology of the Kondo inter-
action. The role of this sign turns out to be crucial in the rest
of the paper.

Replacing the above results into Eq. (3), and taking the
continuum limit, the Kondo interaction becomes, in the
bosonic language,

HK ∼ 2JKa
Z

Lc

0

dx

� X
λ;λ0¼L;R

∶J1λðxÞ · J2λ0 ðxÞ∶

− ∶N1ðxÞ ·N2ðxÞ∶
�
; ð23Þ

where the sign in the second line is a consequence of the
above-mentioned sign in the staggered part of πðxÞ.
Note that this model is reminiscent of the (nontopolog-

ical) 1D Kondo-Heisenberg model, which has recently
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received much attention in the context of pair-density
wave-ordered phases in high-Tc cuprate physics [40–46],
and of the Hamiltonian of a spin-1=2 ladder [38,47–49].
However, a crucial difference from those works is the
nontrivial structure of the Kondo interaction, which
differs from the usual coupling ∼JKSj · sj, where sj ≡
c†j;αðσαβ=2Þcj;β is the standard (i.e., s wave in this context)
spin density in the fermionic chain. The first line in Eq. (23)
is, in fact, closely related to the model considered in
Refs. [41–45]. In the half filling situation we are analyzing
here, however, the most relevant part of HK (in the RG
sense) is given by the product N1ðxÞ ·N2ðxÞ, which
dominates the physics at low energies [38,47–49]. The
term N1ðxÞ ·N2ðxÞ survives when the system is at (or close
enough to) half filling, and when both chains have the same
lattice parameter (in other situations, the oscillatory factors
e�i2kFx suppress this term, and the situation corresponds to
the case analyzed in Refs. [41–45]). Therefore, for our
present purposes, we can neglect the first term in Eq. (23)
and focus on the second term:

HK ≈ −2JKa
Z

Lc

0

dxN1ðxÞ ·N2ðxÞ;

¼ − 2JKm2

π2a

Z
Lc

0

dx cosð
ffiffiffi
2

p
ϕ1cÞ

× ½cosð
ffiffiffi
2

p
θ1sÞ cosð

ffiffiffi
2

p
θ2sÞ þ sinð

ffiffiffi
2

p
θ1sÞ

× sinð
ffiffiffi
2

p
θ2sÞ þ sinð

ffiffiffi
2

p
ϕ1sÞ sinð

ffiffiffi
2

p
ϕ2sÞ�: ð24Þ

At this point, we note that the problem is reminiscent of the
well-known case of S ¼ 1=2 ladders with open boundary
conditions [38,48], with the important difference that here
there is an extra factor ∼ cosð ffiffiffi

2
p

ϕ1cÞ.
The physics of the spin sector [i.e., the term in square

brackets in Eq. (24)] is quite nontrivial due to the presence
of both the canonically conjugate fields ϕa;sðxÞ and θa;sðxÞ,
which cannot be simultaneously stabilized. However,
the analysis of the charge sector is simpler, as only the
field ϕ1cðxÞ appears in the expression. This means that
in the limit JK → ∞, the system can gain energy by
“freezing out” the charge degrees of freedom, i.e., m1 ¼
hcos½ ffiffiffi

2
p

ϕ1cðxÞ�i, as there is no other competing mecha-
nism. In the next section, we substantiate these ideas by
providing a rigorous analysis.

III. RENORMALIZATION-GROUP ANALYSIS

Based on the similarity with the physics of spin ladders,
we introduce symmetric and antisymmetric fields ϕ� ¼
ð1= ffiffiffi

2
p Þðϕ1s � ϕ2sÞ and θ� ¼ ð1= ffiffiffi

2
p Þðθ1s � θ2sÞ, in terms

of which the Hamiltonian becomes

HK ¼ − JKm2

π2a

Z
Lc

0

dx cosð
ffiffiffi
2

p
ϕ1cÞ

× ½− cos ð2ϕþÞ þ cos ð2ϕ−Þ þ 2 cos ð2θ−Þ�: ð25Þ

In what follows, we assume identical spinon dispersion
v1s ¼ v2s ¼ vs. Although this assumption is certainly an
idealization, one can show that the asymmetry δv≡
v1s − v2s is a marginal perturbation in the renormaliza-
tion-group sense, and therefore we do not expect that small
asymmetries will have a qualitative effect on our results.
We now write the Euclidean action of the system using
complex space-time coordinates z ¼ vFτ þ ix and z̄ ¼
vFτ − ix, with τ ¼ it the imaginary time, and the left
and right fields ϕν ¼ ðϕνL þϕνRÞ=2, where fν¼þ;−;1cg.
The Euclidean action becomes

S ¼ S0 þ SU þ SK; ð26Þ

S0 ¼ − 1

4π

Z
d2r

�
ð∂zϕcLÞ2 þ ð∂ z̄ϕcRÞ2

þ
X
ν¼�

½ð∂zϕνRÞ2 þ ð∂ z̄ϕνRÞ2�
�
; ð27Þ

SU ¼ G2c

Z
d2rO2cðrÞ þG3

Z
d2rO3ðrÞ; ð28Þ

SK ¼ GK

Z
d2rffiffiffi
a

p OKðrÞ; ð29Þ

with d2r ¼ vFdxdτ, and where we have defined the
dimensionless couplings,

G0
2c ¼ G0

3 ¼
Ua
πvF

; G0
K ¼ JKm2a

πvF
; ð30Þ

and the scaling operators,

O2c ¼
1

4π
∂zϕ1cL∂ z̄ϕ1cR; ð31Þ

O3 ¼ − 2π

L2
∶ cosð2

ffiffiffi
2

p
ϕ1cÞ∶; ð32Þ

OK ¼ −
ffiffiffiffiffiffi
2π

p

L3=2 ∶ cosð
ffiffiffi
2

p
ϕ1cÞ½− cos ð2ϕþÞ

þ cos ð2ϕ−Þ þ 2 cos ð2θ−Þ�∶; ð33Þ

where we have explicitly normal ordered the operators. S0
corresponds to a free fixed-point action, and SU and SK are
perturbations arising from the Hubbard repulsion in chain 1
and the Kondo interchain interaction, respectively. We
neglect all the perturbations in the spin sector generated
by U, as they renormalize to zero along the SU(2)-invariant
line in the parameter space. We also neglect the less
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relevant terms coming from the product of the smooth part
of the currents in Eqs. (16) and (17).
Expanding the generating functional Z ¼R Q

i¼f1c;�gD½ϕi; θi�e−S½ϕi;θi� perturbatively at second order
in Gi, we obtain the product of the different operators [i.e.,
the operator product expansion (OPE)] of Eqs. (31)–(33).
Importantly, the OPE of the Kondo interaction
OKðz0; z̄0ÞOKðz; z̄Þ gives rise to operators O3 and O2c,
which are already present in the charge sector of chain 1.
This corresponds to an effective dynamically generated
Hubbard repulsion originated by the interchain Kondo
coupling (see the Appendix). Therefore, even for an
initially noninteracting chain (i.e., U ¼ 0), this emergent
repulsive interaction induces the opening of a Mott insu-
lating gap in the charge sector of the half filled conduction
band. At energies below this gap, the field ϕ1c becomes
pinned to the degenerate values 0 or π=

ffiffiffi
2

p
. Note that only

the latter is consistent with the boundary conditions given
in Eq. (14). Therefore, this analysis suggests that the energy
is minimized by a uniform configuration of the field ϕ1c,
which “freezes” at the bulk value π=

ffiffiffi
2

p
. While other

configurations with kink excitations connecting the differ-
ent minima are certainly possible, these configurations
are more costly energetically speaking and do not belong to
the ground state. Therefore, energy minimization prevents
the ground state from developing “kink” excitations in the
charge sector and, consequently, we can exclude the
presence of localized charge edge states. Then, at low
enough energies, the system becomes a Mott insulator in
the bulk due to the electronic correlations, and no topo-
logical effects arise in the charge sector.
A more quantitative study can be done by analyzing the

two-loop RG-flow equations (see the Appendix for details):

dG2c

dl
¼ G2

3 þ
3

4
G2

K; ð34Þ

dG3

dl
¼ G2cG3 þ

3

4
G2

K; ð35Þ

dGK

dl
¼ GK

2
þ 1

4
G2cGK þ G3GK; ð36Þ

where l ¼ ln ða=a0Þ is the logarithmic RG scale. When
GK ¼ 0, these equations reduce to the Kosterlitz-Thouless
RG equations corresponding to the charge sector of the
Hubbard model. They predict a charge gap that is expo-
nentially small in U [36].
Let us now analyze the case of an initially U ¼ 0. In this

situation, only the linear term survives in the right-hand
side of Eq. (36), which expresses the relevance of the
operator OK and gives rise to an exponential increase of
GKðlÞ with the RG scale l as GKðlÞ ¼ G0

Ke
l=2. As a

consequence, the coupling G3ðlÞ in Eq. (35), representing
the Hubbard repulsion, also increases exponentially

G3ðlÞ ¼ 3
4
ðG0

KÞ2ðel− 1Þ, from its initial value G3ð0Þ ¼ 0.
This produces the anticipated Mott insulating gap Δc in the
charge sector. Its dependence with the parameters can be
obtained by the procedure described in Ref. [36] (p. 65).
We obtain Δc ∼ ðG0

KÞ2 for small enough JK . We can
envisage that if U and JK would be of the same order,
the dominant contribution to Δc would come from the
interchain Kondo coupling.
Following previous references [38,47–49], we can refer-

mionize Eq. (25), noting that the scaling dimension of the
cosines in the square bracket exactly corresponds to the
free-fermion point and therefore they can be written in
terms of right- and left-moving free Dirac fermion fields
η�;RðxÞ and η�;LðxÞ as

cos ð2ϕ�Þ ¼ −iπaðη†�Rη�L − η†�Lη�RÞ; ð37Þ

cos ð2θ�Þ ¼ iπaðη†�Rη
†
�L − η�Lη�RÞ: ð38Þ

For later purposes, it is more convenient to introduce a
Majorana-fermion representation of the fields ηþ;λ ¼
1=

ffiffiffi
2

p ðξ2λ þ iξ1λÞ, η−;λ ¼ 1=
ffiffiffi
2

p ðξ3λ þ iξ0λÞ; the Hamiltonian
can be compactly written as H ¼ H0 þHK , where

H0 ¼
v1c
2π

Z
Lc

0

dx

�ð∂xϕ1cÞ2
K1c

þK1cð∂xθ1cÞ2 −U cos
ffiffiffi
8

p
ϕ1c

v1cπa2

�

− i
vs
2

X3
a¼0

Z
Lc

0

dx½ξaR∂xξ
a
R − ξaL∂xξ

a
L�; ð39Þ

HK ¼ i
JKm2

2π

Z
Lc

0

dx cosð
ffiffiffi
2

p
ϕ1cÞ

�
3ξ0Rξ

0
L −X3

a¼1

ξaRξ
a
L

�
;

ð40Þ

where the Majorana fields obey the boundary conditions

ξaRð0Þ ¼ ξaLð0Þ; ð41Þ

ξaRðLcÞ ¼ ξaLðLcÞ: ð42Þ

The uniform symmetric and antisymmetric spin densities in
the ladder become [47]

Ma
λ ¼ Ja1;λ þ Ja2;λ ¼ − i

2
ϵabcξ

b
λξ

c
λ; ð43Þ

Ka
λ ¼ Ja1;λ − Ja2;λ ¼ − i

2
ξ0λξ

a
λ ; ð44Þ

with a ¼ f1; 2; 3g and λ ¼ fR;Lg. This is a well-known
representation of two independent SUð2Þ1 Kac-Moody
currents J1;λ and J2;λ in terms of four Majorana fields
[47]. In our case, these four degrees of freedom, resulting
from the combination of the two SU(2) spin-density fields
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in the two chains, are expressed in terms of a singlet ξ0λ and
triplet ξaλ Majorana fields.
From the previous analysis, we conclude that at temper-

atures T ≪ Δc, the charge and spin degrees of freedom
become effectively decoupled, and the low-energy
Hamiltonian of the system can be written as H → ~H ¼
~Hc þ ~Hs, with

~Hc ¼
v1c
2π

Z
Lc

0

dx

�ð∂xϕ1cÞ2
K1c

þ K1cð∂xθ1cÞ2

þUeffm2
1

v1cπa2
ðϕ1cÞ2

�
; ð45Þ

where, based on the discussion above Eq. (34), we have
expanded the charge field near the value ϕ1c ¼ π=

ffiffiffi
2

p
, and

~Hs ¼ − i
vs
2

X3
a¼0

Z
Lc

0

dx½ξaR∂xξ
a
R − ξaL∂xξ

a
L�

þ i
JKm2m1

2π

Z
Lc

0

dx
�
3ξ0Rξ

0
L −X3

a¼1

ξaRξ
a
L

�
; ð46Þ

where Ueff ≡UðJKÞ is the renormalized Coulomb repul-
sion parameter and where the charge degrees of freedom
in the fermionic chain develop a gap m1 ≡m1ðJKÞ ¼
hcosð ffiffiffi

2
p

ϕ1cÞi. Note that, in this form, the spin
Hamiltonian ~Hs is similar to that of a spin-1=2 ladder
[38,47,48]. The quantitative determination of the parameter
m1 requires a self-consistent calculation, which is beyond
the scope of the present work. Nevertheless, the previous
analysis allows us to understand two important aspects of
the topological Kondo-Heisenberg chain: (a) the generation
of an insulating state in the bulk (necessary to reproduce the
bulk insulating state of a TKI) and (b) the emergence of
magnetic edge states, which is the subject of the next
section.

IV. S ¼ 1=2 MAGNETIC EDGE MODES
AND TOPOLOGICAL INVARIANT

The previous analysis shows that, at low temperatures
T ≪ Δc, the 1D p-wave Kondo-Heisenberg chain at half
filling can be effectively mapped onto a spin ladder
problem, which is dominated by the staggered components
of the spin densities. Interestingly, for an antiferromagnetic
Kondo coupling JK > 0, the negative sign emerging from
the structure of the nonlocal Kondo interaction (24)
effectively induces a local ferromagnetic interaction [see
vertical dashed lines in Fig. 2(a)]. It is well known that the
spin ladder with ferromagnetic exchange coupling J⊥ < 0
along the rungs has a low-energy triplet sector [38,47,48],
which maps onto the Haldane spin-1 chain [50,51].
Therefore, at temperatures T ≪ J⊥, our model describes
the physics of the Haldane spin-1 chain, which is known to

host symmetry-protected topological spin-1=2modes at the
boundaries [52–60]. This situation is also very reminiscent
of the case of the ferromagnetic Kondo lattice [61–64].
To see how these spin-1=2 boundary modes emerge in
our low-energy Hamiltonian (46), we consider solutions
of the eigenvalue equation ~HsΨaðxÞ ¼ 0, where ΨaðxÞ ¼
ðξaR; ξaLÞT is a Majorana spinor, and a ¼ ð0; 1; 2; 3Þ [38].
In matrix form, this equation is

½−ivsτ̂3∂x þmaτ̂2�ΨaðxÞ ¼ 0; ð47Þ

with ma ¼ −3JKm2m1=2π, for a ¼ 0 [ma ¼ JKm2m1=2π
for a ¼ ð1; 2; 3Þ] and τ̂i the Pauli matrices acting on the
right- or left-moving space. Equation (47) admits solutions
of the form ΨaðxÞ ∝ exp ð−maτ̂1x=vsÞΨað0Þ, and one
would think that, in principle, two normalizable solutions
in the limit x → ∞ could arise: (1) the choice
Ψað0Þ ¼ ð1;−1ÞT , with ma < 0, and (2) Ψað0Þ ¼ ð1;1ÞT ,
with ma > 0. However, note that only the last choice is
compatible with the boundary condition (41). Then, the
only physical solution localized around x ¼ 0 corresponds
to the choice ma > 0, which in our case corresponds to
a ¼ ð1; 2; 3Þ:

ΨaðxÞ ∝ ξae−max=vs

�
1

1

�
; a ¼ ð1; 2; 3Þ; ð48Þ

with ξa being a localized Majorana fermion. Using the
expression (43) for the smooth part of the spin density, we
can physically associate the presence of the localized
Majorana bound state with a localized spin-1=2 magnetic
edge state. This is consistent with the results in Ref. [26],
where, in the case of a uniform Kondo interaction,

FIG. 2. (a) At temperatures T ≪ Δc ∼ J2K , the dynamically
induced Mott gap, the charge degrees of freedom in the Hubbard
chain become frozen and the system maps onto a ladder where the
nonlocal antiferromagnetic Kondo coupling effectively induces
local ferromagnetic correlations between the spins in the ladder
(vertical dashed lines). (b) The system depicted in (a) can be
mapped onto a S ¼ 1 Haldane chain, which supports topologi-
cally protected S ¼ 1=2 end states [38,47,48,52–56].
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a magnetic mode with no admixture with charge degrees of
freedom emerges at the boundaries. However, note that the
origin of these edge states is quite different: while in the
mean-field regime they emerge as a consequence of Kondo-
unscreened end spins in the Heisenberg chain, in our
case they are intimately related to the physics of the
Haldane chain.
We now derive a topological invariant to characterize the

presence of the edge states, using a suitable generalization
of the concept of electrical polarization in 1D insulators
[65–70]. We, therefore, focus on the uniform magnetization
Eq. (43). Although the original Hamiltonian has spin-
rotational symmetry, the Abelian bosonization is not an
explicitly SU(2)-invariant formalism. Therefore, while the
choice of axes is arbitrary due to the spin-rotation sym-
metry of the problem, once we define the z direction as the
spin-quantization axis, the perpendicular components of
the magnetization MxðxÞ and MyðxÞ acquire a more
complicated mathematical form. For that reason, it is
convenient to focus only on the z component of the
symmetric spin density Eq. (43):

MzðxÞ ¼
X
λ¼L;R

Mz
1;λðxÞ þMz

2;λðxÞ;

¼ − 1ffiffiffi
π

p ∂xϕþðxÞ: ð49Þ

In the expression above, we use Eq. (20) and the definition
of ϕþðxÞ ¼ ð1= ffiffiffi

2
p Þ½ϕ1ðxÞ þ ϕ2ðxÞ�. We now define the

total magnetic moment along the ẑ axis at one end
(for concreteness, the left end) of the chain as
mz

T ≡ ð1= ffiffiffi
π

p Þ R xb
0 dxMzðxÞ, where xb is an unspecified

position in the interior of the chain where the magnetization
reaches the value in the bulk. In bosonic language, it
acquires the compact form

mz
T ¼ − 1

π
½ϕþðxbÞ − ϕþð0Þ�: ð50Þ

From the expression of the bosonic Hamiltonian Eq. (25) in
the limit JK → ∞, we see that the system minimizes the
energy in the bulk by pinning the field ϕþðxÞ to one of the
degenerate values:

ϕþðxbÞ ¼ � π

2
: ð51Þ

On the other hand, from the definition of ϕ�ðxÞ ¼
ð1= ffiffiffi

2
p Þ½ϕ1sðxÞ � ϕ2sðxÞ� and Eq. (13), the boundary con-

dition ϕþð0Þ ¼ 0 is obtained. Replacing these values into
Eq. (50), we obtain the following quantized values of the
magnetic moment at the left end:

mz
T ¼ � 1

2
: ð52Þ

This magnetic moment at the end of the chain is analogous
to the electrical polarization [65–69] or the time-reversal
polarization [70] in 1D insulators. In particular, we note the
close relation between our Eq. (50) and the expressions for
the displacement operator appearing in Eq. (23) of
Ref. [67], and for the time-reversal polarization appearing
in Eq. (4.8) in Ref. [70], both given in bosonic language.
From here, we can define a Z2 topological invariant that
characterizes the topological phase of the Kondo-
Heisenberg chain,

Q ¼ ð−1Þ2mz
T=π ¼ ei2πm

z
T ; ð53Þ

which in the limit of an infinite system L → ∞ is Q ¼ −1
in the topological phase (JK > 0) and Q ¼ 1 in the trivial
phase (JK < 0).
The bosonic representation also provides an alternative

way to demonstrate the existence of magnetic edge modes.
Since none of the degenerate values (51) of ϕþðxÞ in the
bulk satisfy the boundary condition at x ¼ 0, we conclude
that a kink excitation necessarily must emerge near the
boundary in order to connect those values: precisely this
kink excitation gives rise to the spin-1=2 end state, upon
use of Eq. (49). We remind the reader that in Sec. III, using
similar arguments, we demonstrate the absence of kink
configurations in the charge field ϕ1cðxÞ, and the fact that
there are no charge edge states in the ground state.

V. CONCLUSIONS

We study theoretically a model for a topological 1D
Kondo insulator (the 1D Kondo-Heisenberg model coupled
in the p-wave channel, with an on-site Hubbard interaction
U in the conduction band) using the Abelian bosonization
formalism and derive the two-loop RG flow equations for
the system at half filling. Our RG analysis shows that the
system develops a Mott insulating gap at low enough
temperatures, even if U ¼ 0. Moreover, the remaining spin
degrees of freedom are effectively described by a ferro-
magnetic spin-1=2 ladder, which in turn maps onto a spin-1
Haldane chain with topologically protected spin-1=2 mag-
netic edge modes. This situation is reminiscent of the
physics of the ferromagnetic Kondo necklace, which also
maps onto the spin-1 Haldane chain [61–64], although in
our case it arises as a result of the nontrivial structure of the
Kondo coupling.
In contrast to three-dimensional bulk topological Kondo

insulators, where the mean-field approximation is well
justified and the system can be effectively described in
terms of noninteracting quasiparticles opening a (renor-
malized) hybridization gap near the Fermi surface
[17,19,71], in one spatial dimension the presence of strong
quantum fluctuations cannot be ignored, and one is forced
to use different approaches. The Abelian bosonization
method allows us to obtain a description of the 1D TKI,
which is fundamentally different from the mean-field
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picture. In the first place, the system develops a Mott gap
(instead of a hybridization gap) in the spectrum of charge
excitations when the conduction band is half filled (small
deviations from half filling do not affect this scenario
qualitatively [36]). This Mott gap arises from umklapp
processes at second order in the Kondo interaction.
Physically, this can be understood as a dynamically induced
effective interaction term, which appears at order J2K in the
conduction band by integrating out perturbatively short-
time spin excitations in the Heisenberg chain. In contrast to
the mean-field description, where the hybridization gap
depends exponentially on the microscopic Kondo
coupling Δc ∼ exp ð−1=JKÞ, the integration of the RG
Eqs. (34)–(36) in the limit JK → 0 results in Δc ∼ J2K .
Our RG analysis indicates that JK is a relevant perturbation
and flows to strong coupling, dominating the physics at low
temperatures. In particular, at temperatures below the Mott
gap, the charge degrees of freedom are frozen and the
system effectively behaves as a ferromagnetic spin-1=2
ladder, which is known to map onto the spin-1 Haldane
chain. Therefore, our work allows us to make an insightful
connection between two a priori unrelated physical mod-
els. Interestingly, exploiting this connection, we predict the
existence of topologically protected spin-1=2 edge states.
This seems to correspond to the “magnetic phase” found by
Alexandrov and Coleman [26], which for a uniform Kondo
coupling JK is characterized by Kondo-unscreened spins at
the end of the Heisenberg chain. However, the emergence
of these edge states again corresponds to a very different
mechanism than the one provided by the mean-field theory.
Interestingly, within the bosonization framework, we are
able to obtain a Z2 topological invariant [see Eq. (53)] in
terms of the magnetization at an end of the chain.
Our work opens the possibility to explore the

physics of broken Z2 × Z2 hidden symmetry and the
existence of a nonvanishing string order parameter

Oα
string ≡ limjl−mj→∞hSαl eiπ

P
l≤j<m

Sαj Sαmi ≠ 0 (which are
well-known features of the Haldane phase [52,53,72]) in
the p-wave Kondo-Heisenberg model. In particular, note
the close relation between the Z2 topological invariant (53)
and the string-order parameter in bosonized form [see
Eq. (83) in Ref. [47]].
Furthermore, we reiterate that the model studied here can

be viewed as a nontrivial strongly correlated generalization
of the old Tamm-Shockley model [32,33]. The latter is a
prototypical one-dimensional model that exhibits a topo-
logical phase transition and it can be used to construct high-
dimensional topological band insulators [34]. Likewise, the
strongly correlated topological Kondo-Heisenberg model
could potentially become a building block in constructing
higher-dimensional strongly interacting topological
states—not adiabatically connected to “simple” topological
band insulators. Although the physical realization of the 1D
p-wave Kondo lattice model studied here in solid-state
systems might be quite challenging, our results might have

direct application to ultracold-atom experiments, where
double-well optical superlattices loaded with atoms in s and
p orbitals have been realized [27,28]. In such systems, one
can imagine the atoms forming ladders where one of the
legs corresponds to the s orbitals and the other to p orbitals
(e.g., see Ref. [35]). The overlap between s and p orbitals
along the rungs vanishes by symmetry, and therefore only
the off-diagonal hopping tsp survives. Next, allowing for an
on-site repulsive Hubbard U0 interaction in the s-orbital leg
(using, e.g., Feschbach resonances), one can derive an
effective p-wave Kondo lattice model in the limit
tsp=U → 0, introducing a canonical transformation to
eliminate processes at first order in tsp. At half filling,
the s orbitals are effectively described by SU(2) spins and
the Kondo parameter in our Eq. (3) becomes proportional to
JK ∼ t2sp=U. Therefore, the system can be described by the
model described in this work. Finally, we mention in this
context recent experimental results [29–31], which suggest
the existence of a magnetic phase transition and/or sup-
pressed surface charge transport in select samples of
samarium hexaboride (SmB6—a three-dimensional topo-
logical Kondo insulator). It is possible that these phenom-
ena, which remain unexplained at this stage, involve in a
crucial way an interplay between band topology and strong
correlations, which conceivably may lead to the formation
of nontrivial magnetic topological surface modes reminis-
cent of the edge states found here. In a more general
context, our results might be relevant to other materials that
belong to the same “Haldane universality class,” thanks to
the connection (unveiled in this work) to the ferromagnetic
Kondo lattice model. For example, the organic molecular
compound Mo3S7ðdmitÞ3 at two-third filling, a promising
candidate for a quantum spin liquid, has recently been
shown to be a realization of the ferromagnetic Kondo lattice
model at half filling [63,64], and therefore, it should
realize a Haldane phase with magnetic end modes at low
temperatures.
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APPENDIX: DYNAMICALLY GENERATED
INTERACTIONS AND DERIVATION OF THE
RENORMALIZATION-GROUP EQUATIONS

Here, we derive an effective action for the system and the
renormalization-group equations [Eqs. (34)–(36)]. The idea
is to show that umklapp processes, which mimic a repulsive

interaction among electrons in the half filled conduction
band, arise at order OðJ2KÞ and open a gap in the charge
sector of the model. To that end, we expand the generating
functional of the system (i.e., the partition function) up to
second order in the coupling constants Gα following
Refs. [73,74],

Z
Z0

¼
�
1 −X

α

Gα

a2−Δα

Z
d2rhOαi0 þ

1

2

X
α;β

GαGβ

a4−Δα−Δβ

Z Z
jr−r0j>a

d2rd2r0hOαðrÞOβðr0Þi0 þ � � �
�
; ðA1Þ

where indices α and β run on 2c, 3, and K. Here, Δα

is the scaling dimension of the operator Oα defined
in Eqs. (31)–(33) (Δ3 ¼ Δ2c ¼ 2, ΔK ¼ 3

2
), Z0 ¼R Q

i¼f1c;�gD½ϕi; θi�e−S0½ϕi;θi� is the generating function
of the free theory, and the mean values h� � �i0 also
correspond to that theory. This formalism is standard in
the analysis of 1D quantum systems, and has been applied
in several previous works (see, for example, Ref. [75],
where the method is explained in detail).
The third term of the rhs in Eq. (A1) takes the same form

as the second one if we assume that for r → r0 the product
of two operators fulfills the following operator product
expansion property [73,74] :

OαðrÞOβðr0Þ ¼
X
γ

Cγ
αβ

Oγðrþr0
2
Þ

∣r − r0∣ΔαþΔβ−Δγ

þmore irrelevant operators; ðA2Þ

where Oγ includes all the operators generated from
each OPE.
Let us focus on the OPE between two OK operators,

which is the most relevant perturbation in the RG sense,
and is precisely the contribution that leads to the umklapp
processes we are trying to describe. To simplify the
discussion, here we return to the representation of the
bosonic fields in terms of left and right movers ϕLðzÞ and
ϕRðz̄Þ [see Eq. (8)], with z ¼ vFτ þ ix and z̄ ¼ vFτ − ix.
We now assume to be sufficiently far away from the
boundaries. In these conditions, the boundary conditions
(9) and (10) and the commutation relation (11) can be
effectively neglected, and the fields ϕLðzÞ and ϕRðz̄Þ
become independent (i.e., they do not mix). This allows
us to focus on only the processes involving the left-moving
field ϕLðzÞ (for right-moving fields, we just need to change
L → R and z → z̄). The basic OPE we need is

∶eiλϕLðzÞ∶ ∶eiλ0ϕLðz0Þ∶ ¼
�
2π

L

�
λλ0=2

∶eiðλþλ0ÞϕLðz0Þ
�

1

ðz − z0Þ−λλ0 þ
iλ∂z0ϕLðz0Þ
ðz − z0Þ−λλ0−1 þ � � �

�
∶; ðA3Þ

which is obtained by normal ordering the rhs expression
and then developing for z0 near z. Through repeated use of
this expression, we obtain the desired OPE, which reads

OKðz; z̄ÞOKðz0; z̄0Þ ¼ −
3

4π

O3

∣z − z0∣ −
3

4π

O2c

∣z − z0∣
þ 3

4π

O−
∣z − z0∣ −

1

4π

Oþ
∣z − z0∣ ; ðA4Þ

where we define the operatorsO� ≡ 1
4π ∂ z̄ϕ�R∂zϕ�L [which

also appear in the z component of the product of the right and
left smooth-varying spin currents, in the first two lines in
Eq. (3.8) of Ref. [45]]. Note that these terms break the SU(2)
invariance of the model. This is a well-known feature of the
Abelian bosonization prescription, which is not explicitly
SU(2)-invariant formalism [36,37]. This means that one has
to keep track of all contributions to recover the SU(2)
invariance and, vice versa, neglecting irrelevant operators

[as we do to obtain the action in Eq. (26)] might result in
apparent inconsistencies in the formalism. In our case, this
problem has no consequences for our purposes because the
operators O� renormalize the couplings of the marginal
contributions, which we, in any case, neglect in relation to
the relevant contribution ∼∶N1 ·N2∶. Therefore, we will not
consider these operators.
On the other hand, the first line in Eq. (A4) is physically

more interesting, as the operators O3 and O2c were already
present in the action (28) corresponding to the Hubbard
model. If we insert (A4) into (A1), change variables as
r̂ ¼ r − r0 and R ¼ rþ r0=2, and integrate over r̂ imposing
a cutoff of order a, we obtain an expression that renorm-
alizes the first-order contribution. We identify the effective
coupling for operators O2c and O3 as

Ĝ0
2c ¼ G0

2c þ
3

8
G2

K; ðA5Þ
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and the same for Ĝ0
3. Therefore, we show that the interchain

Kondo coupling generates an effective Hubbard repulsion
Ueff ¼ ð3a=8ÞððJKm2Þ2=πvFÞ in the conduction chain. The
equation above can be physically interpreted as umklapp
processes (generated by integrating out fast spin fluctua-
tions in the Heisenberg chain at second order in the
interchain Kondo coupling) which mimic the effect of an
interaction in the conduction band.
To determine the actual dependence of the charge gapΔc

with respect to the parameters of the model, we need to
derive the RG flow equations. This is achieved following
similar steps as in the previous paragraphs. The main idea
is that the theory defined with a microscopic cutoff a
should remain invariant under a scaling transformation
a → að1þ dlÞ, where dl is a dimensionless infinitesimal.
Therefore, the couplings GαðaÞ in Eq. (A1) must be
changed in such a way that they preserve the generating
functional, i.e., Z½a� ¼ Z½að1þ dlÞ�. The method is stan-
dard and we refer the reader to Ref. [73] for details. The
renormalization group flow equations can be written in
terms of the coefficients Cγ

αβ as

dGγ

dl
¼ ð2 − ΔγÞGγ − π

X
αβ

Cγ
αβGαGβ; ðA6Þ

where the coefficients C2c
KK ¼ C3

KK ¼ −ð3=4πÞ are
extracted from Eq. (A4). The remaining coefficients are
obtained by the OPEs between the corresponding oper-
ators. Following the lines of Ref. [39], we straightforwardly
obtain

C3
2c 3 ¼ − 1

2π
; C2c

3 3 ¼ − 1

π
;

CK
2cK ¼ − 1

8π
; CK

3K ¼ − 1

2π
: ðA7Þ

Inserting these values into Eq. (A6), we obtain
Eqs. (34)–(36) in the main text.
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