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is found supporting the conjecture that, under reasonable assumptions about the equations of state of

matter on the shell, the configurations are not stable under radial velocity perturbations.
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I. INTRODUCTION

Following the leading work by Morris and Thorne [1],
traversable Lorentzian wormholes received considerable
attention [2]. Wormholes would imply a nontrivial topol-
ogy, connecting two regions of the Universe by a travers-
able throat. If they actually exist, such configurations could
include some features of unusual interest, as, for example,
the possibility of time travel [3]. However, the flareout
condition to be fulfilled at the wormhole throat re-
quires—in the framework of general relativity—the exis-
tence of matter which violates the energy conditions
(‘‘exotic matter’’) [1,2,4]. Conditions reducing matter sup-
porting wormhole geometries, consequently, have de-
served a detailed analysis. Besides (as most solutions of
the equations of gravitation), traversable wormhole geome-
tries result of physical interest mainly as long as they are
stable, at least under a simple kind of perturbation. Thus,
beyond the mere characterization of static wormhole solu-
tions, their stability under perturbations should always be
explored.

Some years ago, the gravitational effects of topological
defects as domain walls and cosmic strings were the object
of a thorough study, because of their possible relevance in
structure formation in the early Universe, and also for their
possible manifestation as gravitational lenses (see
Ref. [5]). On the other hand, present theoretical develop-
ments suggest a scenario in which the fundamental build-
ing blocks of nature are extended objects. In particular,
one-dimensional objects—strings—constitute the candi-
dates more often considered. Thus the interest in the gravi-
tational effects of both cosmic and fundamental strings has
been renewed in the last years (see, for example, Ref. [6]).
Recent studies regarding cylindrical wormholes include
the works by Clément [7,8], Aros and Zamorano [9],
Kuhfittig [10], Bronnikov and Lemos [11], and by
Bejarano, Eiroa and one of us [12,13]. The thin-shell
wormhole configurations associated to local and global
cosmic strings analyzed in Refs. [12,13] turned out to be
unstable under velocity perturbations preserving the cylin-

drical symmetry. Moreover, it was noted [13] that this
feature seemed to be independent of the particular geome-
try considered, as long as the symmetry and the form of the
equations of state of the static configurations were pre-
served. Because for a far observer these wormholes would
appear as cosmic strings, bounds on cosmic string abun-
dance, which seem rather restrictive (see for instance
Ref. [14]), could imply a first constraint on the existence
of such wormholes. Mechanical unstability would mean an
additional restriction to the possibility of finding these
objects in the present day Universe.
In the present work, we perform two extensions of these

previous analysis regarding cylindrical thin-shell worm-
holes associated to cosmic strings. We first construct thin-
shell wormholes associated with two different global
strings; then, starting from static wormhole configurations,
we consider small velocity perturbations and determine the
character of the subsequent dynamical evolution. Our re-
sults are consistent with the conjecture introduced in
Ref. [13].

II. THIN-SHELLWORMHOLES

The wormhole construction follows the usual steps of
the cut and paste procedure [15]. Starting from a manifold
M described by coordinates X� ¼ ðt; r; �; zÞwe remove the
region defined by r < a and take two copies Mþ and M�
of the resulting manifold. Then we join them at the surface
� defined by r ¼ a, so that a new geodesically complete
manifold M ¼ Mþ [M� is obtained. The surface � is a
minimal area hypersurface satisfying the flareout condi-
tion: in both sides of the newmanifold, surfaces of constant
r increase their areas as one moves away from �; thus one
says that M presents a throat at r ¼ a. On the surface �
we define coordinates � ¼ ð�; �; zÞ, where � is the proper
time. Then, to allow for a dynamical analysis, we let the
radius depend on �, so that the surface � is given by the
function H which fulfills the condition H ðr; �Þ ¼ r�
að�Þ ¼ 0. As a result of pasting the two copies of the
original manifold, we have a matter shell placed at r ¼
a. Its dynamical evolution is determined by the Einstein
equations projected on �, that is, by the Lanczos equations
[16]
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The bracket ½Kj
i � denotes the jump Kjþ

i � Kj�
i across the

surface �; ½K� ¼ gij½Kij� is the trace of ½Kij�; and Sji ¼
diagð�	; p�; pzÞ is the surface stress-energy tensor, with	
the surface energy density and p�, pz the surface pressures.

III. WORMHOLES ASSOCIATED TO COSMIC
STRINGS

A. Nonsingular global string

We first construct a thin-shell wormhole associated to a
global cosmic string whose metric, differing from the case
treated in [13], presents no curvature singularity; this is a
consequence of relaxing the demand of boost invariance
along the axis of symmetry [17]. The geometry has the
form

ds2 ¼ FðrÞð�dt2 þ dr2Þ þHðrÞdz2 þGðrÞd�2; (4)
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p
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The constant r0 is the core radius, and P, B and � are
integration constants fulfilling B2 ¼ 4�v2=�2, with v de-
fining the value of the field associated to the string [17]. It
is clear from the metric (4) that for P> 0, which corre-
sponds to the case of no outer singularity, the area per unit
length is an increasing function of the radial coordinate for
r > r0. Then the flareout condition required for the worm-
hole construction is fulfilled. Also, note that the geodesics
within a plane orthogonal to the string open up at the throat
of the wormhole construction, because the metric compo-
nent g��ðrÞ is itself an increasing function of r.

In terms of these functions the components of the ex-
trinsic curvature read

K��
� ¼ �

ffiffiffiffiffiffiffiffiffiffi
FðaÞp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where the dot means d=d� and the prime indicates a
derivative with respect to r. Replacing these expressions
in the Lanczos equations we obtain the surface energy
density 	 ¼ �S�� and the pressures p� ¼ S�� and pz ¼ Szz:
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From these equations we find that for the static situation
_a ¼ €a ¼ 0 the pressures and the surface energy density
satisfy the equations of state

p� ¼ �	
GðaÞ½FðaÞH0ðaÞ þ F0ðaÞHðaÞ�
FðaÞ½GðaÞH0ðaÞ þG0ðaÞHðaÞ� ; (14)

pz ¼ �	
HðaÞ½FðaÞG0ðaÞ þ F0ðaÞGðaÞ�
FðaÞ½GðaÞH0ðaÞ þG0ðaÞHðaÞ� : (15)

If we are interested in small velocity perturbations, it is
licit to assume that the evolution of the matter on the shell
can be described as a succession of static states. Thus we
shall accept, as done before [12,13], that the form of the
equations of state corresponding to the static case is kept
valid in the dynamical evolution.1 With this assumption,
the equations above lead to the equation of motion

2FðaÞ €aþ F0ðaÞ _a2 ¼ 0: (16)

By writing €a ¼ _ad _a=da we can recast this equation (for

1Besides, the perturbative treatment avoids possible subtleties
regarding the validity of the static geometry for r > a in the
presence of a cylindrical moving shell.
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_a � 0) as

2FðaÞ d _a

da
þ F0ðaÞ _a ¼ 0: (17)

This equation is solved by

_að�Þ ¼ _a0

ffiffiffiffiffiffiffiffiffiffiffiffi
Fða0Þ
FðaÞ

s
; (18)

where a0 and _a0 are, respectively, the initial wormhole
radius and its initial velocity. This shows that the sign of
the velocity is determined by its initial sign, that is, after a
small velocity perturbation the throat undergoes a monoto-
nous evolution; no oscillatory behavior exists, at least
under the approximations assumed. Note that, because F
is a decreasing function of a, then the absolute value of the
throat velocity decreases when _a0 is negative, while the
velocity grows when _a0 points outwards (so, after a finite
time the assumption of a low velocity is no more valid).

B. Global string with curvature singularity

After studying the nonsingular metric case, we now
address a generalization of the analysis carried out in
Ref. [13]. The starting point is the metric [18]

ds2 ¼ �UðrÞdt2 þWðrÞdz2 þ VðrÞðdr2 þ r2d�2Þ (19)

with the functions U, W, and V defined as follows:

UðrÞ ¼
�
1� lnr

lnrs

�
1þ!

; (20)

WðrÞ ¼
�
1� lnr

lnrs

�
1�!

; (21)

VðrÞ ¼ �2

�
1� lnr

lnrs

�ð1=2Þð!2�1Þ
exp

�
� ln2r

lnrs

�
: (22)

This metric presents a curvature singularity placed at finite
proper distance rs ¼ ð8�F2Þ�1, where F is the vacuum
expectation value of the scalar field whose symmetry
breaking leads to the global string. The parameter ! is
related to the mass excess (per unit length and as a fraction
of M2

P, being MP the Planck mass) resulting from the
existence of a timelike current along the string. The con-
stant � can be determined by matching the metric (19) with
the metric inside the core; the radius of the core is rcore � 1
(see Ref. [18]). We shall assume 0<!< 1; in the limit
! ! 0 the case studied in Ref. [13] is recovered.

The extension of our analysis to this metric is slightly
more complicated than the preceding one. It requires some
care with the preliminary study of the original manifold,

because of the existence of a curvature singularity at finite
r and because the flareout condition is not fulfilled every-
where for arbitrary values of the parameters. However, the
steps leading to an equation allowing for a qualitative
understanding of the dynamical evolution turn out to be
straightforward. The area per unit of z coordinate, for a
given value of the radius, is determined by the product of
W, V and r2. Taking the corresponding derivative with
respect to r, it is easy to show that the flareout condition
required for the possible existence of the associated thin-
shell wormhole can be satisfied. Indeed, we find that the

flareout condition is fulfilled as long as a < rs expð�j!�
1j ffiffiffiffiffiffiffiffiffiffiffiffiðlnrsÞ
p

=2Þ is selected as the wormhole throat radius.
Applying the cut and paste procedure, the components of
the extrinsic curvature now turn to be

K��
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The resulting expressions for the energy density and pres-
sures are
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In the static case _a ¼ €a ¼ 0, the pressures are related with
the energy density by the equations of state

pz ¼ �	
U0ðaÞVðaÞWðaÞaþUðaÞV 0ðaÞWðaÞaþ 2UðaÞWðaÞVðaÞ
UðaÞVðaÞW 0ðaÞaþUðaÞV 0ðaÞWðaÞaþ 2UðaÞWðaÞVðaÞ ; (29)
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p� ¼ �	
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If we propose, as before, that the static equations of state
remain valid for the dynamic case (as long as the same
hypothesis above are satisfied) then, after some algebraic
manipulations, we obtain the equation of motion

2VðaÞ €aþ V 0ðaÞ _a2 ¼ 0: (31)

The form of the equation of motion is the same of that
obtained before, and the solution for the throat velocity is
then

_að�Þ ¼ _a0

ffiffiffiffiffiffiffiffiffiffiffiffi
Vða0Þ
VðaÞ

s
: (32)

Therefore, after a small velocity perturbation the wormhole
throat undergoes a monotonous evolution. In other words,
no oscillatory behavior exists after perturbing an initially
static configuration. Within the range r� < r < rþ with
r� ¼ ffiffiffiffi

rs
p

expð� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnrsðlnrs þ!2 � 1Þp

=2Þ the function V
decreases with r. For 0<!< 1, the radius r� turns to
be smaller than the core radius, while rþ results greater
than the singularity radius. Thus for such values of ! we

have V 0 < 0 for any physically meaningful radius beyond
the core and satisfying the flareout condition. Con-
sequently, the throat contracts decelerating if _a < 0, while
in the case of an initial velocity pointing outwards the
result is an accelerated expansion (as before, the low
velocity assumption is eventually no more fulfilled).

IV. CONCLUSION

Summarizing, for both extensions of previous analysis
within the framework of thin-shell wormholes associated
to cosmic strings, we find that no oscillatory solutions exist
for the class of equations of state adopted. A small initial
velocity pointing to the axis of symmetry leads to a decel-
erated contraction of the wormhole throat, while an initial
slow expansion is accelerated. Our results, thus, provide
more evidence supporting the recent conjecture that this
class of wormholes would not be stable under small veloc-
ity perturbations, as long as the cylindrical symmetry and
the static equations of state for matter on the shell are
preserved.
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