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We study heat transport in a one-dimensional inhomogeneous quantum spin-1/2 system. It consists of a
finite-size XX spin chain coupled at its ends to semi-infinite XX and XY chains at different temperatures, which
play the role of heat and spin reservoirs. After using the Jordan-Wigner transformation we map the original
spin Hamiltonian into a fermionic Hamiltonian, which contains normal and pairing terms. We find the expres-
sions for the heat currents and solve the problem with a nonequilibrium Green’s-function formalism. We
analyze the behavior of the heat currents as functions of the model parameters. When finite magnetic fields are
applied at the two reservoirs, the system exhibits rectifying effects in the heat flow.

DOI: 10.1103/PhysRevB.80.014425 PACS number�s�: 75.10.Jm, 72.15.Eb, 74.25.Fy, 85.80.Lp

I. INTRODUCTION

In the last decade there has been a renewed interest re-
lated to the research of thermal transport in one-dimensional
magnetic systems.1,2 Most of these studies have been moti-
vated by unusual high values of thermal conductance of
some materials, as, for example, reported in Ref. 3. From the
theoretical side, several works calculating and discussing
thermal conductivity in different model Hamiltonians have
also appeared4,5 On the other hand, spin Hamiltonians pro-
vide the natural scenario to implement quantum computa-
tion. This motivated interesting proposals of a variety of
physical systems such as arrays of quantum dots, optical lat-
tices, and nuclear magnetic-resonace experiments which are
architectured to effectively behave like one-dimensional spin
systems.6

Most of the theoretical studies on heat transport in spin
systems are performed within the linear-response regime, as-
suming a very small temperature gradient �T and using a
Kubo formula. Although this formula is widely used in cal-
culating thermal-transport properties it has several concep-
tual difficulties, particularly if �T is not small.2,7 The ther-
mal averaging assumes a constant temperature and �as in all
Kubo formulas� the time dependence is governed by the total
Hamiltonian H=H0+H�, including the perturbation H�
� �T while the thermodynamic averaging is done with H0,
assuming a fast evolution. For finite �T the separation of H
into an unperturbed part H0 and a perturbation H� is, in prin-
ciple, ambiguous. On the other hand, real experiments are
performed by coupling the system under study to macro-
scopic systems with well-defined temperatures that act as
reservoirs. Therefore, it seems desirable to develop alterna-
tive approaches designed to treat systems out of equilibrium.
Important progress has been achieved by studying the prop-
erties of nonequilibrium steady states of XX and XY chains
within an algebraic setting which allows one to obtain ex-
plicit analytical expressions for different quantities such as
entropy production.8 Recently, the usefulness of Kubo for-
mula for the investigation of heat transport in quantum sys-
tems has been discussed9 and the investigation of energy
transport through spin systems beyond Kubo formula has
been addressed on the basis of master equations and quantum

Monte Carlo methods.10 Nevertheless, it is not clear how to
extend these ideas to more general situations.

In this work we address the problem of thermal transport
in one-dimensional magnetic systems from a different per-
spective. We study a problem that to the best of our knowl-
edge has not been considered yet. We study the heat flow
through a spin-chain heterostructure, which we generically
define as a set of finite or semi-infinite spin chains attached
by their ends. Each piece of the heterostructure can be, in
principle, described by a different Hamiltonian. For definite-
ness, we shall consider in this work a finite central system
connected to two �left and right� semi-infinite chains, with a
finite temperature difference between them.10,11 This problem
is the thermal analog of electronic transport through mesos-
copic structures, nanodevices, or molecules connected to
conducting leads with a finite applied bias voltage, a subject
of intense research in recent years. In fact, this type of setup
is the common situation found in the study of charge trans-
port in electronic systems, where a central system is con-
nected to charge reservoirs that also act as thermal baths.
This is the basis of the “Landauer” approach, which is one of
the most common frameworks to study transport properties
of mesodevices and nanodevices in the last years.12

In addition, as it is well known, one-dimensional spin-1/2
systems can be mapped, via the Jordan-Wigner transforma-
tion to fermionic systems. Thus, the model under investiga-
tion is equivalent to an electronic heterostructure where very
well established techniques, as the Schwinger-Keldysh non-
equilibrium Green’s-functions method can be applied.13

We focus on a simple device where the central and right
parts of the system can be described by XX spin-1/2 chains
and the left part corresponds to an anisotropic XY chain. The
Jordan-Wigner transformation maps these models into bilin-
ear fermionic systems, rendering the theoretical study sim-
pler. We show that this simple device presents an interesting
physical effect, due to a mechanism reminiscent of Andreev
reflections in superconductors, this device could act as ther-
mal diode. This rectifying effect might be useful for applica-
tions. We argue that this is a generic feature, which remains
valid for anisotropic XYZ models.

The paper is organized as follows: in Sec. II we present
the model and the nonequilibrium formalism based on
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Green’s functions. Section III contains the numerical results.
Section IV is a summary and discussion.

II. THE FORMALISM

A. Model

We consider a system of three one-dimensional spin-1/2
chains coupled through their ends as shown in Fig. 1. The
system is described by the following Hamiltonian H=HL
+HC+HR+Hcoup, where

H� = J� �
i=1

N�−1

�S�,i
x S�,i+1

x + ��S�,i
y S�,i+1

y � − B��
i=1

N�

S�,i
z ,

Hcoup = J��SL,1
x SC,1

x + SL,1
y SC,1

y � + J��SR,1
x SC,NC

x + SR,1
y SNC,1

y � ,

�1�

where in the first line, the index �=L ,C ,R �left, center, and
right� labels the different chains. Each chain is characterized
by its nearest-neighbor exchange J�, with anisotropy �� for
the ratio of the interaction along the y direction with respect
to that along x, and the magnetic field B� applied along the z
direction. The isotropic case for a given chain corresponds to
��=1. The Hamiltonian Hcoup describes the coupling be-
tween the central chain and the left and right ones. In terms
of the representation for the spin operators S�=Sx� iSy, the
above Hamiltonian reads

H� =
J�

4 �
l=1

N�−1

��1 − ����S�,l
+ S�,l+1

+ + S�,l
− S�,l+1

− � + �1 + ���

��S�,l
+ S�,l+1

− + S�,l
− S�,l+1

+ �� − B��
l=1

N�

S�,l
z ,

Hcoup =
J�

2
�SL,1

+ SC,1
− + SL,1

− SC,1
+ � +

J�

2
�SR,1

− SC,NC

+ + SR,1
+ SNC,1

− � .

�2�

For the isotropic case, ��=1 only the flip-flop terms with
products of one raising and one lowering spin operators sur-
vive.

We now introduce the Jordan-Wigner transformation to
map the spin-1/2 Hamiltonian into a fermionic Hamiltonian
through S�,l

+ = f�,l
† exp�i�� j�f�,j

† f�,j�, where � j� denotes a sum
over all the positions located at the left of the position � , l.
Similarly, the other spin operators transform as S�,l

− =exp�
−i�� j�f�,j

† f�,j�f�,l and S�,l
z = f�,l

† f�,l−1 /2, where the operators
f l , f l

† obey fermionic commutation rules �f�,l , f��,l�
† �

=�l,l���,�� and �f�,l
† , f��,l�

† �= �f�,l , f��,l��=0. Substituting in the
Hamiltonian �2�, we get

H� = �
l=1

N�−1

�w��f�,l
† f�,l+1 + f�,l+1

† f�,l�

+ ���f�,l
† f�,l+1

† + f�,l+1f�,l�� − ���
l=1

N�

f�,l
† f�,l,

Hcoup = w��fL,1
† fC,1 + fC,1

† fL,1� + w��fC,NC

† fR,1 + fR,1
† fC,NC

� ,

�3�

where w�=J��1+��� /4, ��=J��1−��� /4, ��=B�
z , and w�

=J� /2. Therefore, in the language of fermionic operators, the
Hamiltonian contains “normal” terms, with a creation and a
destruction operator, as well as “anomalous” terms, with two
creation or two destruction operators. The normal ones are a
hopping term between nearest neighbors �w��, which is
originated in the flip-flop spin terms and a chemical potential
���� coupled to the fermionic density, which comes from the
magnetic field pointing along the z direction. The anomalous
terms ���� are similar to those of a one-dimensional Hamil-
tonian with a gap function with p-wave symmetry, decoupled
in the Bardeen-Cooper-Schrieffer �BCS� approximation and
are originated by the anisotropy between the X and Y ex-
change interaction.

Inspired in this analogy, we focus our study on a junction
between a chain with isotropic interactions �XX spin chain�
and an anisotropic one �XY spin chain�, which in the fermi-
onic language is similar to a normal-superconductor junc-
tion. Such a situation is realized in a configuration with �R
=�C=0 and �L�0. We also assume that the left and right
chains are at temperatures TL and TR, respectively, and they
are both of infinite length �NL→	 and NR→	�

B. Energy balance

A consistent procedure to define an expression for the
heat current from first principles, is to analyze the evolution
of the energy stored in a small volume of the system and
derive the corresponding equation for the conservation of the
energy.14 For the present Hamiltonian we choose an elemen-
tary volume containing two nearest-neighbor positions of the
chain. We place the volume enclosing the sites l , l+1 within
the central �XX� chain, which in the fermionic language con-
tains only normal terms. We work in units where 
=1. The
equation for the conservation of the energy enclosed by this
volume is

dEl,l+1

dt
=

JC

2

d

dt
	Sl

+Sl+1
− + Sl

−Sl+1
+ 
 − BC

z d	Sl
z


dt

= wC
d

dt
	fC,l

† fC,l+1 + fC,l+1
† fC,l
 − BC

z d

dt
	fC,l

† fC,l


= − iwC	�H, fC,l
† fC,l+1 + fC,l+1

† fC,l�
 + i�C	�H, fC,l
† fC,l�


= Jl+1,l+2
Q − Jl−1,l

Q , �4�

where Jl,l+1
Q is the heat current flowing from l to l+1, which

������������������
������������������

�����������������
�����������������
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FIG. 1. �Color online� Schematic showing the setup of the sys-
tem. The right and central chains correspond to XX models while
the left chain is described by an XY model. Left and right chains are
taken semi-infinite at temperatures TL and TR, respectively.
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in the present setup coincides with the energy current. Its
explicit expression is obtained from the evaluation of the
above commutator, which gives

JQ = Jl,l+1
Q = Jl−1,l

Q

= i�l,l+1
C ��l−1,l

C 	fC,l−1
† fC,l+1 − fC,l+1

† fC,l−1


+ �l+1,l+1
C 	fC,l+2

† fC,l+1 − fC,l+1
† fC,l+2
� , �5�

where �l,l�
C denotes the matrix element l , l� of the Hamil-

tonian HC. In order to evaluate the above current it is con-
venient to introduce the lesser Green’s functions

G�l,�l�
 �t,t�� = i	f�l�

† �t��f�l�t�
 , �6�

thus

JQ = 2 Re��l,l+1
C GCl+1,Cl−1

 �t,t��l−1,l
C

+ �l+1,l+1
C GCl+1,Cl+2

 �t,t��l+2,l+1
C � . �7�

The lesser Green’s functions are one of the basic elements
within Keldysh nonequilibrium Green’s-function
formalism.13 They are evaluated by solving the equations of
motion �Dyson’s equations�, which for our model can be
written as follows:

�
k

GCl,Ck
 �����k,l�� − �k,l�

C � = 0 �8�

for coordinates l , l� lying within the central chain. We have
used the stationary property of the system, as a consequence
of which the Green’s functions depend on the difference t
− t�, which allows us to transform Gj,j�

 �t− t��=�−	
+	d� /

�2��e−i��t−t��Gj,j�
 ���. Thus, using the above equation in Eq.

�7� the energy current can be also expressed in the following
way:

JQ = 2 Re�
−	

+	 d�

2�
���l,l+1

C GCl+1,Cl
 ���

+ �l+1,l+1
C GCl+1,Cl+1

 ����� . �9�

However Re�Gj+1,j+1
 ����=0. Thus, the heat current reduces

to

JQ = 2 Re�
−	

+	 d�

2�
��l,l+1

C GCl+1,Cl
 ���� . �10�

Similarly, if we evaluate the heat current through the contacts
L−C and C−R, we find

JQ = 2w� Re�
−	

+	 d�

2�
�GL1,C1

 ���� ,

=2w� Re�
−	

+	 d�

2�
�GCN,R1

 ���� . �11�

C. Solving Dyson’s equations

In order to evaluate G and the heat current we follow a
treatment close to that presented in Ref. 15. We define the

retarded normal and “Gorkov” Green’s functions

G�l,�l�
R �t,t�� = − i��t − t��	�f�,l�t�, f�,l�

† �t���
 ,

F�l,�l�
R �t,t�� = − i��t − t��	�f�,l

† �t�, f�,l�
† �t���
 . �12�

Before writing down the Dyson’s equations satisfied the
these “full” Green’s function let us define the following
“free” particle ĝ�

0��� and hole ĝ̄�
0��� Green’s functions

�ĝ�
0�����l,�l�

−1 = �l,l��� + i�� − �l,l�
� ,

�ĝ̄�
0�����l,�l�

−1 = �l,l��� + i�� + �l,l�
� , �13�

with �=0+.
From now on we will work in Fourier space and we will

not write explicitly the � dependence of Green’s functions
unless necessary. For the left chain, we also define the func-

tions ĜL
0, Ĝ̄L

0 containing the paring term contribution, through
the relations

�ĜL
0�−1 = �gL

0�−1 − �̂Lĝ̄L
0�̂L,

�Ĝ̄L
0�−1 = �ḡL

0�−1 − �̂LĝL
0�̂L. �14�

We also introduce

ĝ0 = �
�=L,C,R

ĝ�
0 , ĝ̄0 = �

�=L,C,R
ĝ̄�

0 ,

Ĝ0 = ĜL
0 + ĝC

0 + ĝR
0 ,

Ĝ̄0 = Ĝ̄L
0 + ĝ̄C

0 + ĝ̄R
0 ,

F̂L
0 = Ĝ̄0�̂LĝL

0 ,

F̂̄L
0 = Ĝ0�̂Lĝ̄L

0 . �15�

Here �l,l�
� and ��l,�l� are matrices defined on the coordinates

of the chain �=L ,C or R, containing, respectively, the nor-
mal and anomalous elements of the Hamiltonian. In the case

we are studying only �̂L is nonvanishing.
To obtain these Green’s functions, we write the following

Dyson’s equation which relate them with Green’s functions
of the “disconnected” chains ĝ�

0 and ĝ̄�
0 �see below� and the

matrix elements of the contacts

��ĝL
0�−1 + �ĝC

0 �−1 + �ĝR
0�−1 − �Ŵ��ĜR − �̂LF̂R = 1̂, �16�

��ĝ̄L
0�−1 + �ĝ̄C

0 �−1 + �ĝ̄R
0�−1 + �Ŵ��F̂R − �̂LĜR = 0̂. �17�

The matrix Ŵ=ŴL+ŴR contains the matrix elements of Hcont
describing the connections between the central and left parts
and between the central and right parts.

The above equations can be rewritten in a more conve-
nient form by recourse to the following procedure. From
Eq. �17�
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F̂R = ĝ̄0��̂LĜR − ŴF̂R� , �18�

ĜR = ĝ0 + ĝ0��̂LF̂R + ŴĜR� . �19�

Substituting Eq. �18� in Eq. �16� and Eq. �19� in Eq. �17� one
obtains

ĜR = Ĝ0�1 + ŴĜR� + F̂̄L
0ŴF̂R, �20�

F̂R = F̂L
0�1 + ŴĜR� − Ĝ̄0ŴF̂R. �21�

Let us now consider Eq. �20� for the following particular
coordinates:

GCl,Cl�
R = gC,l,l�

0 + gC,l,1
0 w�GL1,Cl�

R + gC,l,N
0 w�GR1,Cl�

R , �22�

GL1,Cl�
R = GL,1,1

0 w�GC1,Cl�
R + F̄L,1,1

0 w�FC1,Cl�
R , �23�

GR1,Cl�
R = gR,1,1

0 w�GCN,Cl�
R . �24�

Substituting Eqs. �23� and �24� in Eq. �22� it is easy to see
that the Dyson’s equation for the two indices corresponding
to coordinates of C can be written as follows:

��ĝC
0 �−1 − �̂R,gg�ĜC

R + �̂R,gfF̂C
R = 1̂, �25�

��ĝ̄L
0�−1 − �̂R,f f�F̂C

R + �̂R,fgĜC
R = 0̂, �26�

where the matrices of the above equations have sizes NC
�NC and elements corresponding to the coordinates of the
central chain. The “self-energy” matrices are

�l,l�
R,f f = �l,l��w��2��l,1ḠL,1,1

0 + �l,NC
ḡR,1,1

0 � ,

�l,l�
R,gg = �l,l��w��2��l,1GL,1,1

0 + �l,NC
gR,1,1

0 � ,

�l,l�
R,gf = �l,l��w��2�l,1F̄L,1,1

0 ,

�l,l�
R,fg = �l,l��w��2�l,1FL,1,1

0 . �27�

The explicit expressions for these functions imply the evalu-
ation of all the functions appearing in the right-hand sides of
Eq. �27�. Notice that these functions have been defined from
manipulations of the Dyson’s equations corresponding to HL
or HR isolated from the central chain. We indicate a proce-
dure for the calculation of these functions in the Appendix.
Note also that since the right and left parts of the system are
held at two different but constant temperatures, these Green’s
functions can be calculated at equilibrium. The advantage of
the above representation becomes clear by writing Eq. �26�
as

F̂C
R = ĝ̄C�̂R,fgĜR,

�ĝ̄C�−1 = �ĝ̄C
0 �−1 − �̂R,f f , �28�

and substituting it in Eq. �25�. The result leads to the solution
of the retarded normal Green’s function within C

ĜC
R = ��ĝC

0 �−1 − �̂eff
−1� ,

�̂eff
R = �̂R,gg + �̂R,gfĝ̄C�̂R,fg. �29�

The results obtained so far correspond to the retarded
Green’s functions and self-energies. The lesser Green’s func-
tion with coordinates within C can be easily obtained by
recourse to Langreth rules.16,17 In particular, one obtains15

ĜC
 = ĜC

R�̂eff
 ĜC

A , �30�

where the advanced Green’s function is obtained from the

retarded one by means of the relation ĜC
A���= �ĜC

R����† and
the lesser component of the self-energy is

�̂eff
 = �̂,gg + �̂R�̂,fg + �̂,gf�̂A + �̂R�̂,f f�̂A, �31�

with �̂R���= �̂�
R,gf���ĝ̄C��� and �̂A���= ��̂R����†. The self-

energies have components

�l,l�
,�,����� = i�l,l���l,1�L

�,�����fL��� + �l,N�R
�,�����fR����

being �L
�,�����=−2 Im��R,������1,1� and �R

�,�����
=−2 Im��R,������N,N� with � ,��=g , f . The Fermi functions
f����, with �=L ,R depend on the temperatures TL and TR of
the left and right chains, respectively, f����=1 / �1+e�/T��, in
units where kB=1.

Finally, the lesser counterparts of Eqs. �23� and �24�,
which correspond to Green’s functions with one of the coor-
dinates in the central �C� chain and the other one in the left
�L� or right �R� chain, can be calculated by recourse again to
Langreth rules16,17

GL1,Cl�
 = GL,1,1

0, w�GC1,Cl�
A + GL,1,1

0,R w�GC1,Cl�
 + F̄L,1,1

0, w�FC1,Cl�
A

+ F̄L,1,1
0,R w�FC1,Cl�

 , �32�

GR1,Cl�
 = gR,1,1

0, w�GCN,Cl�
A + gR,1,1

0,R w�GCN,Cl�
 . �33�

D. Heat currents and transmission functions

We focus on the expression for the heat current evaluated
in the contact between the central chain C and R given in Eq.
�11�. Using Eq. �33� one obtains

JQ = − 2�w��2
−	

+	 d�

2�
� Re�GCN,CN

 ���gR,1,1
0,A ���

+ GCN,CN
R ���gR,1,1

0, ���� . �34�

Using Eq. �30� and after some algebra �see Ref. 15�, it is
found

JQ = 
−	

+	 d�

2�
��fL��� − fR�����Tn��� − Ta���� ,

Tn��� = �R
gg����GC,N,1

R ����2�L,eff
gg ��� ,
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Ta��� = �R
gg�����̄N,N����2�R

f f��� , �35�

where

�L,eff
gg = �L

gg + 2 Re��L
gf�1,N

A � + ��1,1
R �2�L

f f + ��1,N
R �2�R

f f ,

�̄N,N
R = GC,N,1

R �1,N
R . �36�

The difference of Fermi functions in the expression of JQ,
reflects the fact that the existence of a nonvanishing heat
current through the central system depends on the existence
of a difference of temperatures between the left and right
chains. The details of the model are enclosed in the behavior
of the normal and anomalous transmission functions Tn���
and Ta���, which are analogous to those defined in Ref. 15 in
the context of particle transport in a setup with normal and
superconducting wires. The first function has, in fact, the
structure of a transmission. Notice that it depends on the
densities of states of the right and left chains through the
functions �R and �L

eff, and one the particle propagator be-
tween the first and last points of the central chain. Instead,
Ta��� actually has the structure of a reflection process. No-
tice that it depends on the density of states for particles and
holes of the right reservoir and on a multiparticle propagator

�̄N,N
R at the last point of the central chain. Typical plots for

these functions are shown in Fig. 2. These functions do not
depend on the temperatures TL and TR and are nonvanishing
only within a finite range of energies of a width, that is, set
by the largest exchange parameter between the left, right,
and central chains. These functions are symmetric with re-
spect to �=0 for BL=BR=0 �see Fig. 2�. This symmetry is
broken for finite B� since the effect of a finite magnetic field
in one of the side chains is to shift the corresponding func-

tion as ��
������→��

�����−B��.
In the language of fermionic systems, two different kinds

of processes take place in a normal-superconductor junction.
For energies higher than the gap, the transport is due to the
tunneling of normal single-particle high-energy excitations.
This mechanism contributes to the electronic transmission

function Tn���. Instead, for low energies, below the gap, the
transport is due to the mechanism known as “Andreev reflec-
tion,” which implies the combination of two fermions of the
normal side into a Cooper pair within the superconducting
one, leaving a hole, that is, reflected back from the junction
into the normal side. Because of this mechanism, Tn���
�Ta����1 for energies within the superconducting gap,
i.e., �����L. The effective conversion of electrons into Coo-
per pairs taking place in the mechanism of Andreev reflec-
tion helps to particle transport. Mathematically, this is re-
flected by the fact that the total particle transmission function
is Tn���+Ta���.15,18 Instead, in the case of heat transport,
Ta��� and Tn��� contribute with opposite sign, as explicitly
shown in Eq. �35�, i.e., the mechanism of Andreev reflection,
plays a negative role regarding the heat transport. The con-
sequence is a vanishing heat transport due to excitations
within the energy window defined by the superconducting
gap.

In the original language of interacting spins, the above
picture translates as follows. Low-energy spin excitations
traveling from the isotropic chain via flip-flop processes in
the z direction meet an energy gap at the other side of junc-
tion due to the anisotropic interaction which tends to favor
flip-flop processes in a different direction. This favors the
simultaneous raising or lowering of two spins at two neigh-
boring positions of the chain and causes multiscattering pro-
cesses in which a portion of the incident spin wave packet
manages to twist and propagate into the other side, at the
same time that a portion becomes reflected and propagates
back.

We can describe the behavior of JQ for low T and small
temperature gradients �T as follows. Writing TR=T and TL
=TR+�T we can approximate the difference of Fermi func-
tions in Eq. �35� as

fL��� − fR��� �
� fR���

�T
�T . �37�

On the other hand, from Fig. 2, we can write,

Tn��� − Ta��� � 0� � 2�L, �38�

Tn��� − Ta��� � 12�L � � � 2J �39�

leading to,

JQ =
�T

�


2�L

+2J

d��
� fR���

�T
. �40�

For low enough temperatures, T�2�L�2J, this expression
can be further approximated as

JQ �
�T

�

�

�T


2�L

	

d��e−��, �41�

�
4

�
�T

�L
2

T
e−2�L/T. �42�

Therefore, for T�L, the heat current is exponentially small.
On the other hand, for �L=0, the behavior of the JQ is

fully due to normal tunneling. For low T we can perform a
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FIG. 2. �Color online� normal �left� and anomalous �right� trans-
mission functions. The latter is the counterpart to Andreev transmis-
sion function in electronic systems. Parameters are �L=0.2, JL

=JR=JC=J�=1 and all chemical potentials set to zero.
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Sommerfeld expansion on the Fermi function to get

JQ =
2

T2�T
�

���0

+	 d�

2�
�f���Tn���� ,

�
�

3
T�T, T � J�, �L = 0. �43�

III. RESULTS

In this section we discuss the behavior of the heat current
as a function of the different ingredients of the spin system.
For simplicity, we consider identical exchange parameters
along the left, central, and right chains, JL=JC=JR=J�=J.
Without loss of generality we set J=1. Thus, we focus on a
spin heterostructure with a single junction between a semi-
infinite XX and a semi-infinite XY chain, which in the fermi-
onic language translates to a single superconductor-normal
junction. For this particular configuration, our results do not
depend on the length of the central chain.

As discussed in the previous subsection, the structure of
the expression �35� for the heat current clearly reflects the
fact that for small temperature differences, we obtain a be-
havior of the form

JQ = − K�T , �44�

where the coefficient K can be interpreted as a thermal con-
ductance. It is tempting to relate this coefficient with the
conductivity � evaluated in several works on the basis of
linear-response theory. If we assume that the relation be-
tween the two coefficients is similar to the one between elec-
trical conductance and electrical conductivity, K and �
should differ just by a geometrical factor. However, to the
best of our knowledge, a rigorous relation between these two
coefficients has not been presented in the literature. Never-
theless, the behavior of K as a function of T shown in the left
upper panel of Fig. 3 for the case of two connected XX
chains �see the plot corresponding to �L=0� is similar to the
one reported in the literature for homogeneous and isotropic
chains.3–5 In this case, the anomalous component is zero and
K increases linearly in T for low temperature �see Eq. �43��,
as discussed at the end of the previous section. The conduc-
tance reaches a maximum at T�J. and decreases at higher
temperatures, as a consequence of the finite bandwidth �en-
ergy window� for the spin excitations amenable to cross the
central-chain transporting energy from one side to the other
one. As expected, for a fixed temperature K decreases for
increasing values of �L. In agreement with the behavior dis-
cussed in the previous section, K is exponentially small for
T�L �see Eq. �40��, For higher temperatures, the high-
energy excitations are allowed to perform tunneling above
the energy gap, with the concomitant increase in K. As in the
case with �L=0, the maximum is achieved at T�J.

We also evaluate the specific heat for the equilibrium cen-
tral system in contact to the side chains at the same tempera-
ture T as follows:

C�T� = −
2

N
�
l=1

N 
−	

+	 d�

2�

� f���
�T

� Im�GC,l,l
R ���� . �45�

In a normal metallic system as described by Drude model,
this quantity is related to the thermal conductivity through
�=vlC /3, being v the Fermi velocity of the electrons and l
their mean-free path.19 We plot this quantity in the right up-
per panel of Fig. 3. This physical quantity is almost insensi-
tive to the opening of the energy gap and the different plots,
corresponding to different values of �L almost coincide
within the scale of the figure. From the lower panel of Fig. 3
we see that while for high temperatures there is a linear
relation between K and C, this is not the case at lower tem-
peratures where Andreev type processes are relevant.

As stressed before, our calculation is not restricted to
small temperature gradients. We show in Fig. 4 a plot of the
heat current for several values of the anisotropy parameter
�L as a function of the temperature of the left chain while the
temperature of the right chain T is set fixed to zero. The
figure clearly shows the suppression of the current as a con-
sequence of the “Andreev reflection ”phenomena mentioned
before. In fact for T�L the current is exponentially small
while it grows for higher temperatures.

Finally, in Fig. 5 we illustrate the behavior of the heat
current when finite different magnetic fields are applied at
the two side chains. The effect of applying magnetic fields at
both sides of the junction leads to an interesting effect which
me name “thermal-diode effect.” As discussed in the previ-
ous section, a finite magnetic field originates a shift in the

arguments of the functions ��
������, which leads to asymme-

tries in the transmission functions Tn��� and Ta���. For �L
=0, only the normal transmission function and the functions
��

gg��� are nonvanishing. Furthermore, these functions are
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FIG. 3. �Color online� Top left: Conductance, defined as the
ratio of heat current to temperature gradient between right and left
chains. Top right: specific heat of the central system. Bottom: ratio
of the above magnitudes. Parameters are TL=T+�T ,TR=T, where
�T=0.005, all chemical potentials set to zero and �from top to bot-
tom� �L=0,0.25,0.5.
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identical and gapless for �=L ,R. Therefore, the heat flow is
perfectly antisymmetrical �the sign of the current is reversed
preserving the absolute value� under the simultaneous
change TL↔TR and BL→BR. Instead, for a finite �L, the
situation changes. A gap opens for the excitations of the left

chain and the functions �L
������=0 vanish for ����L while

the functions �R
gg���=�R

f f�−�� remain finite. The conse-
quence is an asymmetry in the behavior of the transmission
functions under the change BL→BR. The result is an effect of
thermal rectification. That is, the magnitude of the current JQ

when �TL=T ,�L=�� and �TR=T� ,�R=��� is different to JQ�

when �TL=T� ,�L=��� and �TR=T ,�R=��, which means
that the device is more likely to conduct heat when the tem-
perature difference is applied in one direction than in the
other. We display the phenomena for two different values of
�L. We show the current when ��L=0.3,TL=T ,�R=0,TR
=0� with dots and the current when ��R=0.3,TR=T ,�L

=0,TL=0� with a full line. When the value of �L=0.2 both
currents are rather large and similar but when �L=0.75 the
currents are smaller and clearly different.

IV. SUMMARY AND DISCUSSION

We have presented a theoretical framework to study heat
transport in one-dimensional spin heterostructures.

In the present work we have focused on a simple system
composed of a junction between an anisotropic �XY� and an
isotropic �XX� chain under the effect of an inhomogeneous
magnetic field along the z direction. Using the Jordan-
Wigner transformation to map the problem into a fermionic
system and using the nonequilibrium Keldysh-Schwinger
formalism we have obtained exact expression for the heat
current in terms of Green’s functions of the “disconnected”
spin-chain components. The resulting expressions can be
evaluated numerically in a simple way. In the limits �L�T
�J and T��L�J explicit analytic expressions can also be
given. We have studied the heat transport as a function of the
different parameters of the model and we have shown that
when different magnetic fields are applied at the end chains,
a rectifying effect in the heat current occurs. This effect
might be of interest for applications. Its origin can be traced
back to the appearance of paring terms induced by the aniso-
tropy parameter, which are, in turn, responsible for an
Andreev-reflection-type mechanism.

In this work we have analyzed a simple model. However
this methodology can be straightforwardly extended to more
complex structures with many junctions and disorder. Our
treatment relies on the Jordan-Wigner transformation which
maps the original spin Hamiltonians into fermionic ones. In
the case we have considered, the latter are bilinear. In more
generic models, although we expect the rectifying effect still
to be present, the technical analysis could be more compli-
cated. For instance, in the isotropic Heisenberg model, which
in addition to the exchange interaction along x and y direc-
tions, contains an additional exchange term along the z di-
rection, the Jordan-Wigner transformation translates such a
term into a many-body fermionic interaction, which does not
enable a straightforward analytical solution of the problem,
as in the case we considered here. Nevertheless, the Green’s-
function formalism offers a framework for the construction
of systematic approximations to treat those terms. Numerical
methods could also be useful to deal with models containing
many-body terms.20 As in electronic systems, many-body
terms are expected to introduce further inelastic-scattering
processes, which could add further ingredients in addition to
the transport mechanisms we have discussed here. We hope
to report on some of these issues in future work.
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APPENDIX: GREEN’S FUNCTIONS FOR AN OPEN
CHAIN WITH p-WAVE SUPERCONDUCTIVITY

In this we show a derivation of the Green’s functions

GL,1,1
0 ���, ḠL,1,1

0 ���, FL,1,1
0 ���, and F̄L,1,1

0 ���, entering Eq.
�27�, which correspond to the end of a half infinite chain
with p-wave superconductivity in the BCS approximation.
Making the superconducting parameter �L=0, the first two
Green’s functions give the corresponding result for the nor-
mal chain gR,1,1

0 ��� and ḡR,1,1
0 ���, respectively.

The Green’s functions of the open chain can be solved
considering a ring of N sites, periodic except for the fact that
the energy at one site �which we label as site 0� is increased
by an energy A and then taking the limit N ,A→+	. The
Hamiltonian is

H = �
l=0

N−1

�w�f l
†f l+1 + f l+1

† f l� + ��f l
†f l+1

† + f l+1f l��

− ��
l=0

N−1

f l
†f l + Af0

†f0. �A1�

We have solved the problem using two different methods: �i�
solving the equations of motion in Fourier space and �ii�
solving a Dyson’s equation that relates the above Green’s
functions to those of the periodic chain �A=0� which can be
obtained easily using Bloch theorem. Both results of course
coincide but the latter method involves a simpler algebra. We
define a matrix

G̃ = �GL,1,1
0 ��� FL,1,1

0 ���

F̄L,1,1
0 ��� ḠL,1,1

0 ���
� , �A2�

with the Green’s functions for A�0 and a corresponding
matrix g̃ for A=0. These matrices are equivalent to the ones
obtained by using Nambu’s representation for the Hamil-
tonian and the Green’s functions.21 From the equations of
motion of these Green’s functions, one obtains

G̃ = g̃ + g̃ÃG̃ , �A3�

where Ã is proportional to A.

Solving Eq. �A3� for G̃ and taking the limit A→+	 the
following expressions result

GL,1,1
0 = h0��� −

h1
2���

h0���
−

h2
2���

h0
��− ��

, �A4�

FL,1,1
0 = h2����h1

��− ��
h0

��− ��
−

h1���
h0���� , �A5�

ḠL,1,1
0 ��� = − �GL,1,1

0 ���− ��F̄L,1,1
0 = − �FL,1,1

0 ���− �� .

�A6�

The h functions entering the second members of Eqs. �A4�
and �A5� are Green’s functions of the periodic chain and can
be calculated easily in Fourier space. The result is

h0��� =
1

N
�

k

� + �k

�2 − �k
2 − �k

2 ,

h1��� =
1

N
�

k

�� + �k�cos k

�2 − �k
2 − �k

2 ,

h2��� =
1

N
�

k

2� sin2 k

�2 − �k
2 − �k

2 , �A7�

where in the second members � includes an infinitesimally
small imaginary part, �k=2w cos k−� and �k=2� sin k.

For N→+	, the sums can be replaced by integrals. De-
composing the integrands into a sum of simple fractions with
denominators linear in cos k and numerators independent of
k, the integrals can be evaluated analytically using22

I�b� =
1

�


0

� dk

cos k + b
=

1
�b2 − 1

, �A8�

where the sign of the root is determined by the sign of the
imaginary part of the second member.

Defining

�̃ =
�

2w
, �̃ =

�

w
, �̃ =

�

2w
, d = 1 − �̃2,

r = ���̃2 − �̃2�d + ��̃�̃�2�1/2/d ,

b1 = �̃/d − r, b2 = �̃/d + r ,

d1 = �4wrd�−1, �A9�

the result takes the form

h0��� = d1��r − �̃ − �̃�̃2/b�I�b1� + �r + �̃ + �̃�̃2/b�I�b2�� ,

h1��� = − d1�2r − ��r − �̃ − �̃�̃2/b�b1I�b1�

+ �r + �̃ + �̃�̃2/b�b2I�b2��� ,

h2��� = d1�̃�2r + �I�b1��−1 − �I�b2��−1� . �A10�
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