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We theoretically investigate the absorption and emission of light carrying orbital angular momentum
�twisted light� by quasi-two-dimensional �disk-shaped� quantum dots in the presence of a static magnetic field.
We calculate the transition matrix element for the light-matter interaction and use it to explore different
scenarios, depending on the initial and final states of the electron undergoing the optically induced transition.
We make explicit the selection rule for the conservation of the z projection of the orbital angular momentum.
For a realistic set of parameters �quantum dot size, beam waist, photon energy, etc.� the strength of the
transition induced by twisted light is 10% of that induced by plane waves. Finally, our analysis indicates that
it may be possible to select precisely the electronic level one wishes to populate using the appropriate com-
bination of light-beam parameters suggesting technological applications to the quantum control of electronic
states in quantum dots.
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I. INTRODUCTION

It is a common mathematical procedure to describe light
as a superposition of plane waves, which is possible and
convenient thanks to the linearity of Maxwell’s equations
and Fourier analysis. However, plane waves are only one of
the possible representations of light, and despite its wide
applicability, other representations may be better suited to
tackle particular problems.1 For example, the expansion of
the field in multipolar waves is normally used to study the
radiation associated with nuclei and atoms. Another less-
known representation is the so-called twisted light �TL�. As
its name suggests, it has an helicoidal wave front that is
mathematically introduced by a phase with azimuthal depen-
dence, i.e., e−il�, and a radial dependence of the Laguerre-
Gaussian �LG� or Bessel mode type. A peculiarity of the TL
representation is that all modes with same value of l have the
same z projection of orbital angular momentum �OAM�.

The recent development of techniques to generate coher-
ent TL has boosted the study on many aspects of this peculiar
type of radiation. Research involving TL has been done in
numerous areas, such as generation of twisted beams,2 inter-
action of OAM beams with mesoscopic particles �optical
tweezers�,3 entanglement between spin and OAM for poten-
tial applications to quantum-information science,4 interaction
of OAM fields with atoms or molecules,5 and QED in con-
fined geometries,6 with twisted beams. Nevertheless, the
problem of the interaction of TL with condensed matter sys-
tems is largely unexplored;7 very recently we have presented
the first study on the action of TL on a bulk semiconductor.8

Quantum dots �QDs� are well-studied man-made
nanostructures.9,10 Different types of QDs, such as those pro-
duced by lateral confinement in a two-dimensional �2D�
electron gas, vertical or stacked, nanowhisker-based, and
self-assembled QDs, are available experimentally. They all
share the basic feature of producing particle confinement in
all directions, which gives rise to a discrete energy spectrum
akin to that of atoms. Self-assembled, vertical, and nano-
whisker QDs are fabricated using semiconductor materials,

and they can confine both electrons and holes. As the name
suggests, disk-shaped quantum dots �DSQDs� have a stron-
ger confinement along a given axis, and therefore the dynam-
ics of electrons and/or holes inside the dot can be restricted
to the quantized in-plane motion.11 In semiconductor-based
QDs, transitions between different electronic states can be
accomplished by optical excitation. The understanding of the
optical response of QDs is appealing from a basic science
point of view but also because of the many possible applica-
tions, for example, to QD lasers, quantum-information pro-
cessing, and photodetectors. In spite of the fact that the com-
mon Hermite-Gaussian laser pulses are widely used to excite
QDs,12 to the best of our knowledge, no work has been re-
ported on the interaction of these nanostructures with twisted
light.

Here we develop the theory of optical electronic transi-
tions induced by TL in semiconductor-based DSQDs. We
find the corresponding selection rule and discuss the use of
TL as a versatile scheme to induce transitions that are not
possible using common optical techniques. The article is or-
ganized as follows. In Sec. II we review the description of
the TL electromagnetic field and of the electronic states of
semiconductor-based DSQDs in the presence of an external
magnetic field. Section III is devoted to the calculation of the
matrix elements of the interaction Hamiltonian that couples
the light field to the electrons in the DSQD; its applications
to different cases are treated in Sec. IV. The special proper-
ties of the optical transitions induced by twisted light in QDs
and possible technological applications become clear in this
section. Finally, we summarize the results in Sec. V.

II. MODEL

For disk-shaped quantum dots, the electron’s wave func-
tion can be written as the product of a microscopic cell-
periodic function, an envelope function, and a spin part �,
that is,

��r� = ���r,��Z�z��u�r�� . �1�

For the microscopic function u�r�, the strain in the QD lifts
the degeneracy of the heavy-hole and light-hole bands; then,
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it is safe to restrict the study to a two-band model in the
effective-mass approximation with a conduction and a
heavy-hole bands. For the envelope function ���r ,��Z�z��,
the disk shape of the QD allows for the separation into the
vertical �z� and the in-plane �r ,�� motion. Furthermore, since
the confinement in the z direction is much stronger than that
in the x-y plane, it is a good approximation to assume that
the electron remains in the lowest-energy z eigenstate. For
DSQDs ranging in diameter from tens to a few hundreds of
nanometers,11,13 the in-plane confinement potential can be
well approximated by a two-dimensional harmonic oscillator
potential Vi�r�= 1

2mi
��0i

2 r2, where i=c ,v denotes the conduc-
tion and valence bands and mi

� is the effective electron mass.
The corresponding single-particle problem with the inclusion
of an external magnetic field B applied in the z axis is ana-
lytically solvable yielding eigenfunctions,14

�isn�r,�� =
�− 1�s

�2��i

� s!

�s + �n��!
e−r2/�4�i

2�� r
�2�i

��n�

Ls
�n�

�� r2

2�i
2�e−in� = Risn�r�e−in�, �2�

where �i
2=� / �2�mi

���i� is a characteristic length of the con-
finement of the electrons, �i

2=�0i
2 +	i

2 /4 with 	i

=eB / �mi
�c� the cyclotron frequency and Ls

�n� is a generalized
Laguerre polynomial with radial quantum number s and z
projection of the OAM n. The energy spectrum of electrons
in the conduction band is Ec=��c�2s+ �n�+1�− �1 /2��	cn,
while for electrons in the valence band it is Ev= ���0c
−EG�− ���v�2s+ �n��− �1 /2��	vn�. In the presence of an ex-
ternal static magnetic field pointing in the z direction, the
orbital degeneracy of the states is lifted, as shown in Fig. 1,
and for strong enough fields the levels group into Landau
levels �not shown in the figure�.

Two different modes of TL beams are nowadays experi-
mentally realizable, namely, the LG and the Bessel modes.
We proceed to develop our theory for a general case, and in
the final stages of the calculation we work with the LG
modes in order to take advantage of the mathematical struc-
ture of the electronic wave functions given in Eq. �2�, which
contain the generalized Laguerre polynomials. In the

paraxial approximation, the vector potential of the TL beam
is

A�r,t� = �F�r�ei�kz−�t� + c.c. = A�+��r,t� + A�−��r,t� , �3�

with � the circular polarization vector normal to z and for the
Laguerre-Gaussian modes

F�r� = 	Cp
�l�

w0
��2r

w0
��l�

e−r2/w0
2
Lp

�l��2r2

w0
2 �
e−il� = Fr�r�e−il�,

�4�

where w0 is the beam waist, l is the z projection of the orbital
angular momentum, and Cp

�l� is a normalization constant.15

Our system, consisting of a single DSQD plus a TL light
mode, is investigated using the semiclassical model where
the light is treated classically and the electrons quantum me-
chanically. For the electron-light interaction we use the
minimal-coupling Hamiltonian and calculate its optical-
transition matrix elements using the eigenfunctions given in
Eqs. �1� and �2�. Since our main goal here is to explore the
changes in the optical-transition selection rules brought
about by the use of twisted light instead of plane waves, it is
enough to work with a single-particle formalism. The influ-
ence of Coulomb electron-electron interaction, which causes
excitonic effects, modification of the effective confining po-
tential, etc., is left for future study.

III. TL OPTICAL DIPOLE MATRIX ELEMENTS

In order to determine the optical response, we calculate
the matrix elements of the transitions induced by the light-
matter Hamiltonian between single-particle states �Eq. �1��.
We use the minimal-coupling interaction and retain only the
lowest order in the vector potential.16 This matrix element is
the essential ingredient in many calculations, e.g., Fermi’s
golden rule for the rate of absorption/emission. To simplify
the notation, we use as collective indices the Hebrew char-
acters Aleph �
� and Gimel �ℷ� to replace the set �s ,n ,�� �see
Eqs. �1� and �2��, while the band index will still appear ex-
plicitly. The transition matrix element from an initial state
�j ,ℷ� to a final state �i ,
� is

i
�HI�jℷ� = −
q

m
�i
�A�r� · p�� jℷ�

= i�
q

m
�

L3
d3r�i


� �r�A�r� · �� jℷ�r� ,

where q is the charge �−e� and m is the bare electron mass.
The operation �� jℷ�r� yields three terms and we write
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B �T�
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FIG. 1. Energy spectrum as a function of the magnetic field B
for ��0=6 meV and ��c=1.7B meV. The OAM of the envelope
function is shown using the convention: n=0�s�, n=1�p�, n=2�d�,
etc.
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i
�HI�jℷ� = i�
q

m
�

L3
d3rui�r��uj�r�A�r� · ��i
�r�� � � jℷ�r��

��Z�z��2�

��ℷ + i�

q

m
�

L3
d3r�i
�r��� jℷ�r�ui�r��

�uj�r�A�r� · �Z�z�� � Z�z���

��ℷ + i�

q

m

��
L3

d3r�i
�r��� jℷ�r�A�r� · �ui�r�� � uj�r��

��Z�z��2�

��ℷ. �5�

The envelope functions and the vector potential are slowly
varying and can be considered constant over a unit cell �lat-
tice constant a�; in contrast, the microscopic function u�r� is
periodic over unit cells. These two facts allow for the sepa-
ration of the all-space integral ��L3� into an intracell integral
��a3� and an intercell sum ��c�.17 Due to the orthogonality of
the microscopic function in a cell, the first and second terms
in the sum are nonzero only for intraband transitions �notice
also that the second one represents inter-z-band transitions,
which are unlikely under strong confinement in the z direc-
tion�. As we are interested in optical-frequency transitions
which correspond to interband transitions, we focus our at-
tention on the last term

i
�HI�jℷ� =
− q

m
�


��ℷ	�
a3

d3rui�r���− i���uj�r�

·	�

c

�i
�rc��� jℷ�rc��Z�zc��2A�rc�
 , �6�

which is simplified by taking the continuum limit, thus trans-
forming the sum over cells to an intercell integral according
to �→ �1 /a3��, and defining the matrix element a3pij
=�a3d3rui�r���−i���uj�r�. The vector potential �Eq. �3�� con-
sists of two terms. Inserting the positive part A�+��r , t� in Eq.
�6�,

i
�HI
�+��jℷ� = − e−i�t2�q

m
�� · pij��l,�n
−nℷ�

���
,�ℷ�
0

�

drrFr�r�Ri
�r��Rjℷ�r� , �7�

where l corresponds to the vector potential and n to the wave
functions, and we assumed that the light’s wavelength is
much larger than the QD’s height so that eikz�1.

The matrix element i
�HI
�+��jℷ� contains two terms which

represent valence-to-conduction and conduction-to-valence
band transitions, respectively. We eliminate one of them by
using the rotating-wave approximation �RWA� and obtain

c
�HI
�+��vℷ� = − e−i�t2�q

m
�� · pcv��l,�n
−nℷ���
,�ℷ

��
0

�

drrFr�r�Rc
�r��Rvℷ�r� �8�

for the absorption of light. The same can be done with
A�−��r , t� yielding

v
�HI
�−��cℷ� = − ei�t2�q

m
��� · pvc��l,�nℷ−n
���
,�ℷ

��
0

�

drrFr�r�Rv
�r��Rvℷ�r� �9�

for the emission of light. Further simplification and analysis
of Eqs. �8� and �9� are only possible once specific functions
Fr�r�, Rv
�r�, and Rvℷ�r� are given. This will be done in Sec.
IV.

Note that the selection rule for the conservation of the z
component of the OAM in the system of electron plus light
field appears explicitly in Eqs. �8� and �9�. For absorption
and emission processes we get �l,�n
−nℷ� and �l,�nℷ−n
�, respec-
tively.

IV. TL-INDUCED OPTICAL TRANSITIONS

The theory developed in Sec. III will be used here to
study specific cases of optical transitions between QD levels
in order to get a firmer insight into the possibilities opened
by excitation with twisted light. An important goal is to de-
termine how the beam parameters �p , l� �see Eq. �4�� enable
us to choose the allowed transitions and their strength. In
what follows we will study the excitation process for the case
of Laguerre-Gaussian beams. Then the matrix element of
HI

�−� between initial and final states yields zero. From Eq. �8�
with ℷ= �sn� and 
= �tm��, after inserting the expressions
for R�r� and Fr�r�, rearranging terms, and transforming co-
ordinates to x=r2 / �2�c

2�, we obtain

c
�HI
�+��vℷ� = − e−i�t2�q

m
�� · pcv��,��l,�m−n�

Cp
�l�

w0

�− 1�s+t

2�

�� t ! s!

�t + �m�� ! �s + �n��!
��l�/2�

0

�

dxx��n�+�m�+�l��/2e−x�1+�/2�Lp
�l���x�Lt

�m��x�Ls
�n��x� , �10�
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where we assumed that �c=�v �Ref. 18� and defined �
=4�c

2 /w0
2.

Working with Eq. �10�, in Sec. IV A we analyze the op-
tical transitions induced by twisted light from the uppermost
valence-band state �s=n=0� to a general state in the conduc-
tion band �see Fig. 2�. This case offers the mathematical
advantage of having only two generalized Laguerre polyno-
mials in the integral of Eq. �10�, enabling the use of their
orthogonality relations in order to go farther with the analyti-
cal treatment of the matrix elements. We concentrate on the
physically relevant case of small QDs �small compared to the
size of the beam’s waist� in which the parabolic approxima-
tion for the confinement potential is best suited. For small
dots, we compare the strength of the transitions induced by
twisted light with that of the transitions induced by plane
waves. This is done by considering the particular case of a
beam without OAM �l=0 in Eq. �10��, which resembles
plane-wave light. In Sec. IV B we extend the analysis by
solving numerically Eq. �10� for a general valence-band ini-
tial state and for any relative sizes of QD and beam waist.
Finally, in Sec. IV C we discuss some of the possibilities
opened by the use of TL in optical excitation experiments
from the point of view of quantum control of the electronic
states in QDs.

A. Transitions from uppermost valence-band state

Let us consider a QD in its ground state, i.e., with all
electrons occupying the valence-band levels. The transition
of an electron from the valence-band uppermost state to an
arbitrary unoccupied state in the conduction band will be

shown to be possible by choosing the appropriate beam pa-
rameters. The electron in its initial state has wave function
�v00��r�=Rv00�r�� with Rv00�r�= ��2��v�−1exp�−r2 / �4�v

2��,
while the final excited state is �csn�r� �see Eq. �2��. From
Eq. �10� with 
= �sn� and ℷ= �00�� we arrive at

c
�HI
�+��vℷ� = −

Cp
�l�

w0
�− 1�s� s!

�s + �l��!

�e−i�t q

m
�� · pcv��,��l,nh��� , �11�

where the dimensionless function h��� is

h��� = ��l�/2�
0

�

dxx�l�e−x�1+�/2�Lp
�l���x�Ls

�l��x� . �12�

For QDs with sizes ranging from 10 to 200 nm, together
with the minimum size of the beam waist w0=500 nm, we
obtain 0.001���0.6. Thus, it is reasonable to keep in Eq.
�12� only the lowest orders in �. Without loss of generality,
we assume l�0. We simplify the integral in Eq. �12� with
the help of Eq. �A2� to reduce Lp

l ��x�. Thus, we write h���
=�l/2�I0+ I1+ . . .�, with

I0 =
�l + p�!

p!
�0s,

I1 = �
�l + p�!

p!
�p +

l + 1

2
���1s − �0s� , �13�

where the integral �0
�dxxle−xxL0

l �x�Ls
l�x� was reduced by

using Eq. �A3� and the fact that L0
l �x�=1 so xL0

l �x�Ls
l�x�

= ��1+ l�L0
l �x�−L1

l �x��Ls
l�x�.

Let us now verify that a “twisted-light” beam without
OAM �l=0� yields the same result as plane-wave light. For
small QDs, we obtain from Eq. �13� I0+ I1= �1−� /2��0j
+� /2�1j, but since an ideal plane wave has �→0 we keep
only the zeroth-order term in � in this expression. If we focus
on the lowest-energy transition �v00�⇒ �c00� we obtain

HI
�+��PW � − e−i�tC0

0

w0

q

m
�� · pcv�; �14�

this transition, which we named here PW, is depicted in Fig.
2 as a dotted line labeled “plane wave.” The coefficient
C0

0 /w0 is the amplitude of the vector potential. Note that the
plane-wave limit is obtained by taking w0→� and C0

0→�
simultaneously, keeping the ratio constant.

We can now compare the relative strength of transitions
induced by the usual PW light and twisted light for small
QDs. In Fig. 2, TL transitions are shown as dash-dotted and
dashed lines labeled “twisted light” for the particular value
of l=1. Retaining the lowest order in � in Eq. �13� also for
the TL mode, we obtain the ratio of amplitudes

� HI
�+��TL

HI
�+��PW

� =
Cp

l

C0
0� s!

�s + l�!
�l + p�!

p!
�l/2. �15�

Notice the power-law dependence on �, with exponent l /2.
For small QDs �i.e., small ��, the transition amplitude with

E

Lz

co
n

d
u

ct
io

n
va

le
n

ce

s

p

s

p

-1 10

Plane
wave

Twisted
light

d

-2 2

(0)

(1)

(0) (0)

(0) (0)

(1)(0) (0)(1)
f

-3 3

0

ωch

ωc - Egh

2 ωch

FIG. 2. Schematic representation of the single-particle levels
and optical transitions for zero magnetic field: an electron with spin
down has been promoted from a valence-band state to a conduction-
band state. The transition induced by plane waves �dotted line� can
only be “vertical” while transitions induced by twisted light �dash-
dotted and dashed lines� need not be vertical but must obey the
selection rule for the z component of OAM; we show the transition
for light-carrying OAM l=1. The convention of Eq. �2� is adopted
for electronic states: Lz=n and the number between parenthesis is
the radial quantum number s. The shells are given by the letters
�s , p ,d , . . .� as customary in atomic physics.
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TL becomes weaker in comparison to that of PW light as the
OAM of the light beam increases. We expect Eq. �15� to be
helpful in future experiments on optical transitions with TL
since it is cast as a comparison with the standard optical
transitions.

Lastly, let us examine the role of the radial quantum num-
ber of the final state. Still considering small dots, Eq. �13�
suggests that transitions to all values of the final radial quan-
tum number s are allowed and have amplitudes on the order
of �s+�l�/2 �shown in Eq. �13� up to an order of 1�. Figure 3
displays the strength, given by the function h��� of Eq. �12�,
of the transitions to final states with s=0,1 ,2, calculated
numerically to all orders in � for l=1. Two of these transi-
tions are illustrated in Fig. 2: the zeroth-order one shown as
a dash-dotted line and the first-order one as a dashed line. In
Fig. 3 we choose �=0.01. For this small value of � the TL-
induced excitation is dominated by the transition from the
valence-band state ℷ= �00�� to the conduction-band state 

= �s2�� with s=0. There is a strong dependence on s, and it
can be seen that the transition amplitudes to states with s
�0 are several orders of magnitude smaller. We will see in
Sec. V that this situation changes radically for QDs and
beam waists of comparable sizes.

B. Transitions from general valence-band state

Here we consider the transition of an electron initially in a
general valence-band state �vℷ�r� to a conduction-band state
�c
�r�, with collective indices ℷ= �sn� and 
= �tm��. The
analytical solution of the integral appearing in Eq. �10�, al-
though possible, is cumbersome �see Appendix B�. There-
fore, we present numerical results for the function

h��� = ��l�/2�
0

�

dxx��n�+�m�+�l��/2e−x�1+�/2�

�Lp
�l���x�Lt

�m��x�Ls
�n��x� , �16�

which allow us to explore all values of �. A value of ��1

represents a situation of a narrow beam interacting with a
large structure. Even though the parabolic approximation for
the confining potential is likely not to be valid for quantum
disks of such sizes, our calculation may provide qualitatively
correct results.

In Fig. 4 we plot h��� from Eq. �16�. We consider two
different initial states. The bottom row corresponds to tran-
sitions from the uppermost valence-band state, and it is thus
an extension of the results of Sec. III to general values of �.
On the bottom-left panel we plot three possible transitions to
final states differing only in their radial quantum number t.
Pictorially, these states would lie, in Fig. 2, on a vertical line.
We see that for values of � up to about 0.5 �small QDs� the
transition to the final state with s=0 is the dominant one,
which is consistent with the analytical results of Sec. III for
��0. With increasing � the relative strength of the different
transitions is altered, and for ��1.4 the order of the three
transitions is inverted compared to the situation at ��0.5.
The bottom-right panel shows transitions to final states with
varying z projection of the OAM for fixed radial quantum
number t=0. These transitions can be visualized in Fig. 2 as
having final states lying on the lowest diagonal going up and
to the right. The top row of Fig. 4 presents analogous results
but for transitions originating in the valence-band state �s
=1, n=1�, chosen somewhat arbitrarily to illustrate the
more general case. Besides a change in scale from top to
bottom panels, the similarities among them are obvious.

We briefly comment on the relative strength of transitions
induced by plane waves and those induced by TL, as done in
Sec. IV A �see Eq. �15��, but now for the case of an arbitrary
initial state. For �→0 we note that the integral in h��� tends
to a constant �see Appendix B� and we recover the result of
h������l�/2. On the other hand, we cannot give a simple ex-
pression for the ratio of transition strengths for large �, and
the actual dependence on � must be found by solving the
integral in Eq. �16�.

0 1 2
s

10�1

10�3

10�5

Log�h�

p�2
p�1
p�0

FIG. 3. Strength of the optical-transition from uppermost
valence-band state: logarithm of the dimensionless function h���
�Eq. �12�� as a function of the radial quantum number s of the final
electronic state for �=0.01 and beam parameters l=1 and p
=0,1 ,2. For this small value of � the TL-induced excitation is
dominated by the transition from the state ℷ= �00�� in the valence
band to the state 
= �s2�� with s=0 in the conduction band; the
transition amplitudes to states with s�0 are several orders of mag-
nitude smaller.
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FIG. 4. Strength of the optical transition from general valence-
band states: dimensionless function h��� �Eq. �16��. Light parameter
p=1 in all cases. Top left: from state �s=1,n=1� to �t ,m=2�. Top
right: from state �s=1,n=1� to �t=1,m�. Bottom left: from state
�s=0,n=0� to �t ,m=1�. Bottom right: from state �s=0,n=0� to �t
=0,m�. Transitions from the same initial state are displayed on the
same row. Curves on the left column represent transitions to final
states with varying radial quantum number t. Curves on the right
column represent transitions to final states with varying z projection
of the OAM m.
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C. Manipulation of electronic states

Our study suggests that twisted light is a versatile tool to
optically manipulate states in QDs. By a smart choice of
beam parameters, QD size, and external static magnetic field
one can select precisely the electronic level to be populated.
In the following, we illustrate, with two examples, how this
can be accomplished.

Let us assume that we wish to connect the uppermost
valence-band state with the f-shell conduction-band state
�n=1, s=1� �see Eq. �2�� on a small QD ���1�; this tran-
sition is depicted as a dashed line in Fig. 2. We first choose
the light-beam parameters: tune the laser on resonance �or
close� with the energy difference between these states ��E
=Eg+3��c� and take l=1 and p=0 �from our previous
analysis, the value of p is not very important�. With this
requirements, not only the desired transition is possible but
also another one that promotes an electron from the p-shell
valence-band state �n=−1, s=0� to the d-shell conduction-
band state �n=1, s=0�. Nevertheless, if a static magnetic
field is applied, one of these transitions can be moved off
resonance from the light �see in Sec. II the general expres-
sions for the energy levels with magnetic field�, leaving only
one dominant transition.

For our second example we will assume that the laser
cannot be tuned precisely to match the energy difference
between a couple of states and that we deal with a QD of
larger size of, say, about 400 nm. This last assumption means
that, by modifying the light-beam waist, we can choose � on
the interval �0,1�. Then, by selecting the light-beam param-
eter l we instantly eliminate transitions between states differ-
ing more than l in their z projection of OAM. Furthermore,
by adjusting the beam waist, we see that we can change the
probability of transition depending on the value of the radial
quantum number of the electronic states �see Fig. 4�. To fix
ideas, let us imagine that the emission line of the light beam
is centered around Eg+2��c with width ��c. Under these
conditions, transitions from the uppermost valence-band
state to shells p ,d , f in the conduction band are possible. If
we choose beam parameters l=1 and p=0, and waist such
that ��1 the dominant transition will become that to the
f-shell conduction-band state �t=1,m=1�. Thus, we con-
clude that even if the laser cannot be precisely tuned, we still
can decide which will be the dominant transitions.

V. CONCLUDING REMARKS

We have investigated the theory of optical absorption of
twisted light—carrying orbital angular momentum—by disk-
shaped semiconductor-based quantum dots in the presence of
a static magnetic field and calculated the dipole transition
matrix element, which is the basic building block for other
specific studies of optical response.

As a first general result we made explicit the selection
rule for the conservation of the z projection of the orbital
angular momentum. In addition, we observe that not only
vertical but also more general transitions are possible, due to
the fact that the z component of the orbital angular momen-
tum of a TL beam can assume any integer value.

Different scenarios were explored according to what the
initial and final states of the electron in the QD are. In the
first place, we studied the transitions of an electron from the
uppermost valence-band state to any conduction-band states
and obtained analytical expressions in terms of powers of the
ratio � of the QD size to the light-beam waist. For realistic
values of � the strength of the transition induced by TL can
be around 10% of the value of the transition using common
laser �nontwisted� fields. We also considered the transitions
that bring an electron from any valence-band states to any
conduction-band states. This case was studied for larger val-
ues of �, and it enabled us to qualitatively think of the phys-
ics of similar systems, such as large QDs or quantum disks.
Finally, we found that � plays also a role in selecting the
most likely transitions. In all scenarios, we found that a
smart choice of beam parameters �z projection of OAM, ra-
dial quantum number, energy, and beam waist� allows one to
select which state the electron will be promoted to.

The current availability of sources of coherent beams of
TL permits us to envisage their use for more versatile quan-
tum control of electronic states in QDs and the indirect con-
trol of magnetization in doped QDs. Our theoretical analysis
suggests that it may be possible to select precisely the elec-
tronic level one wishes to populate using the appropriate
combination of beam parameters �and nanostructure size�. In
particular, derived formulas and results for � around 0.1 are
directly applicable to disk-shaped semiconductor-based
quantum dots; therefore, our predictions may be experimen-
tally verified using current technology.

We have left unexplored the interesting issue of the gen-
eration of local nanometric-scale magnetic fields. It should
be clear that—although this effect may be small—the ab-
sorption of twisted-light photons entails a transfer of OAM
to the system with the resulting emergence of an electronic
current within the QD, which in turn produces a magnetic
field.8
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APPENDIX A: LAGUERRE POLYNOMIALS

The Laguerre polynomials verify the following identities.
The orthogonality condition

�
0

�

e−xxLn
�x�Lm

�x�dx =
��n +  + 1�

n!
�nm, �A1�

the relation
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Lm
���x� = �

n=0

� �� + m

m − n
��n�1 − ��m−nLn

��x�

� �� + m

m
��1 − m��L0

��x� + �� + m

m − 1
��L1

��x�

�A2�

from Niukkanen,19 and the second line is for �→0. Also,

x = �1 + l�L0
l �x� − L1

l �x� �A3�

and

Lm
��x� = �

n

�� − �m−n

�m − n�!
Ln

�x� , �A4�

where �a�i=��a+ i� /��a� is a Pochhammer symbol. Finally

Lm
k �x�Ln

l �x� = �
=0

�

�− 1�DLm+n−
k+l �x� . �A5�

APPENDIX B: ANALYTICAL SOLUTION FOR
ANY-TO-ANY TRANSITION

Without loss of generality, we make l ,n ,m�0 in Eq.
�16�,

h��� = �l/2�
0

�

dxxme−x�1+�/2�Lp
m−n��x�Lt

m�x�Ls
n�x� , �B1�

and solve the integral, for small �, using Eqs. �A2� and �A4�,
and L0

n−m�x�=1. Writing h���=�l/2�I0+ I1+¯� in orders of �,

I0 = �m − n + p

p
� �n − m�s−t

�s − t�!
��t + m + 1�

t!
,

I1 = ��l + p

p
� �n − m�s−t

�s − t�!
��t + m + 1�

t!
�1 + l

2
− p� + �	� l + p

p − 1
�

+
1

2
�l + p

p
�
I11, �B2�

where �a�i=��a+ i� /��a� is a Pochhammer symbol and I11
=�0

�dxxme−xL1
l �x�Lt

m�x�Ls
n�x� can be formally reduced using

Eq. �A5�.
Equation �B1� admits also a simple solution for the par-

ticular case of p=0, following the same reasoning as done in
Sec. IV A.
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