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Abstract
We numerically study metastable arrays of vortices in three-dimensional Bose–Einstein
condensates by solving the Gross–Pitaevskii equation with initial imprinted vorticity. We
consider condensates confined by a harmonic plus Gaussian potential such as that used in a
recent experiment. We analyse the energy barrier that prevents the vortices from leaving the
trap and the spatial distribution of vortices for different trap parameters and winding numbers.
For configurations forming rings of vortices we interpret the results in terms of the velocity
fields produced by the vortices themselves and the spatial inhomogeneity of the condensate.
For low enough densities, we found stationary configurations of multiply quantized vortices.

1. Introduction

Since the discovery of quantized vortices in helium 3 [1]
and 4 [2], it has been known that the presence of quantized
vortices is an unquestionable proof of the superfluidity of both
ultracold liquids and gases [3]. In the context of Bose–Einstein
condensation of atomic gases, following the investigation of
single vortices in harmonic potentials, research has greatly
diversified to include several new phenomena such as, e.g., the
interplay of an additional rotating optical lattice to an existing
vortex lattice [4], the study of topological spin-textures and
novel strongly correlated phases in multi-component spinor
gases [5], and the effects of long-range interactions [6].
Nonetheless, many aspects on the dynamics and stationary
configurations of vortices in inhomogeneous superfluids still
deserve to be investigated.

In a non-rotating parabolic trap, an off-axis vortex spirals
away from the condensate in the presence of dissipation. This
is due to the lack of an energy barrier between the vortex state
and the ground state. The possibility of observing persistent
flows is related to the degree of metastability of these systems.
The larger the energy barrier, the longer the flow could survive
[7]. A way to increase such an energy barrier is to alter
the density profile of the ground state, which in turn can
be achieved by varying the confinement. In particular, a

density depression can be obtained by using a toroidal trap
generated from the combination of a standard harmonic trap
and a focused Gaussian beam. Density profile engineering
thus appears as the simplest method to increase the vortex
lifetime. When many vortices are involved, not only is the
density relevant for the lifetime of the array but also the spatial
distribution of the vortices. Furthermore, stationary arrays
may serve to study more complex superflow patterns.

In this work, we obtain possible metastable configurations
of vortices confined by toroidal traps by solving the full three-
dimensional Gross–Pitaevskii equation with initial vorticity
(GPEv), as we have described for a single vortex system
[8]. Depending on the parameters of the confinement and the
number of particles we have obtained either rings of singly
quantized vortices or multiply quantized vortices. These
configurations are obtained without imposing an external
rotation as studied in previous works. In particular, the
multiply quantized vortex has been treated in [9] where the
full three-dimensional equation with an external rotation has
been solved, while in a more recent work, approximated
analytical solutions have been obtained in non-rotating
traps [10].

By means of a constrained minimization procedure
(CMP), we also explore the effects of the anisotropy of the
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confinement on the position dependence of the energy of a
single vortex. We then address the issue of the structure of
metastable arrays of vortices with the same circulation on
pancake condensates. We compare these results with those
given by the GPEv and with predictions based on the balance of
the velocity fields developed for inhomogeneous superfluids.
For a density profile with a deep enough local minimum,
we found that multiply quantized vortices are energetically
favoured instead of the rings of singly quantized vortices.

This paper is organized as follows. Section 2 introduces
the standard model to describe vortices in Bose–Einstein
condensates, section 3 discusses single vortex properties in
anisotropic traps of current experiments, while sections 4.1
and 4.2 treat the cases of two and many vortices in pancake-
shaped condensates, respectively. Finally, in section 5 the
summary and concluding remarks are given.

2. The framework

At zero temperature an atomic Bose–Einstein condensate can
be described by the Gross–Pitaevskii energy functional for its
wavefunction ψ,

E[ψ] =
∫ (

h̄2

2m
|∇ψ |2 + Vtrap|ψ |2 +

g

2
|ψ |4

)
d3r, (1)

where Vtrap(r) is the external confining potential, m is the
atom mass and g = 4πah̄2/m is the interaction strength with
a being the s-wave scattering length. Minimization of the
energy functional leads to the Gross–Pitaevskii equation (see,
e.g., [11] and references therein), which reads(

−h̄2∇2

2m
+ Vtrap + g|ψ |2

)
ψ = μψ (2)

with μ being the chemical potential. If the initial state is vortex
free and there is no imposed external rotation, the solution
obtained is the ground state. Solutions of what we have
called the GPEv are numerically found by initially imprinting
a phase profile around the desired vorticity lines as described
in [12]. In particular, a discrete set of Nv straight line vortices
is imprinted using the wavefunction

ψ ′(r) =
[

Nv∏
k=1

(x − xk) + i(y − yk)√
(x − xk)2 + (y − yk)2

]
ψ0(r) (3)

as the initial guess for the minimization of the energy
functional, where ψ0(r) is the ground-state wavefunction.
We use a conjugate gradient method [13] to minimize the
energy (1) as a function of ψ discretized in a spatial mesh
of 256 × 256 × 128 points in the x-, y- and z-directions,
respectively. During the minimization, both the density profile
and the velocity field are modified and as a consequence the
vortex positions move either to infinity, corresponding to the
ground state, or to a nearby metastable state if there exists an
energy barrier between the initial state and the ground state. In
other words, we obtain locally stable solutions of the Gross–
Pitaevskii equation which include vortices.

In order to analyse the energy landscape, we have adopted
a CMP which fixes the vortices’ positions. We assume that
the velocity fields corresponding to the vortex configurations

are given by that of ψ ′ in (3) and minimize the energy as a
function of the density profile only, while keeping the phases
and thus the positions of the vortices fixed.

3. Vortices in anisotropic traps

In a recent experiment by Ryu et al [14], the persistence of flow
around a toroidal condensate was observed for several seconds.
The confinement was provided by a Gaussian potential added
to the standard anisotropic harmonic oscillator potential as

Vtrap(r) = 1
2m

(
ω2

xx
2 + ω2

yy
2 + ω2

zz
2
)

+ V0 e−2(x2+y2)/w2
0 ,

(4)

where w0 is the width of the Gaussian beam and V0 is its
depth. This superflow can be produced by a singly quantized
vortex oriented along the symmetry axis (ẑ) as obtained by
solving the GPEv. The Gaussian beam created a hole in the
density profile that pinned the vortex. In figure 1, we show
two-dimensional views of the density profile obtained from
the numerical solution of the GPEv for a condensate with the
experimental parameters of [14]: N = 2.5 × 105 particles,
V0/h = 3.6 kHz, w0 = 8μ m and frequencies ωx = 2π ×
51 s−1, ωy = 2π × 36 s−1 and ωz = 2π × 25 s−1.

In a parabolic potential, a centred vortex is energetically
unstable [15] and in the presence of dissipation it escapes
from the trap causing the superflow to decay. In toroidal traps,
on the other hand, vortices are known to be metastable (see,
e.g., [16]), namely, they experience an energy barrier that may
prevent them from leaving the trap at low temperature. It is
therefore of fundamental importance to examine the energy
landscape of the vortex in this case. To perform this analysis,
we will assume that the vortex line is straight. Contrary
to a three-dimensional condensate in a parabolic trap where
vortices can bend [17], we have found straight single-vortex
solutions of the GPEv for all the toroidal traps considered
in this work. Therefore, we believe that this assumption is
appropriate for describing these configurations.

It has been shown that for quasi-2D condensates the
energy of a straight vortex, Ev , as a function of its position
r0 on the xy plane roughly follows the ground-state density
profile ρ0(r) as (see, e.g., [8]),

Ev = 1

2
m

∫
d2r⊥ dz ρ(r)v2(r⊥) � ρ0(r0, z = 0)F, (5)

thus indicating that the locations of the minima and maxima
of the energy agree with those of the density profile. This
approximation provides a direct mean to explore the energy
landscape. One can immediately observe from (5) that as
the energy barrier is proportional to the density, its shape
can be controlled by the Gaussian beam through w0 and V0.
However, on the one hand, the determination of an accurate
non-phenomenological approximation for factor F is difficult,
and on the other hand, equation (5) has been derived in pancake
condensates where vortex lines can be assumed to be straight
[17]. For these reasons, we have chosen to calculate the
energy of the off-centred vortex directly using the CMP. We
assume that the phase profile φ(r) of the condensate is fixed
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Figure 1. Two-dimensional density plots of a BEC of N = 2.5 × 105 23Na atoms confined by the toroidal trap of [14]. The left panel
depicts ρ(x, y, z = 0) and the right panel ρ(x = 0, y, z).

and behaves as that of an ideal vortex at a position r0, i.e.,
that it satisfies tan φ(r) = (y − y0)/(x − x0), and then we
minimize the energy with respect to the density profile only
(see, e.g., [11]). We note however that this assumption neglects
the contribution of the background velocities that appear in
inhomogeneous superfluids [12 ,18] and breaks down if the
vortex is located close to the borders of the condensate where
the effects of image vortices are likely to manifest [19–21].
The obtained energies are shown in figure 2 along the x- and
y-directions. As qualitatively anticipated from (5) and the
geometry of the confinement, the energy barrier experienced
by a vortex displaced along the x-direction is smaller than
when it is displaced along the y-direction. Experimentally,
the trapping potential in a second set-up of Ryu et al [14]
has been made closer to cylindrically symmetric to allow for
the generation of higher circulation states. This finding has
motivated the choice of the cylindrically symmetric trap for
the study of vortex arrays to be considered hereafter.

4. Vortex arrays in pancake-shaped condensates

When several vortices are confined, the existence of
stationary configurations is determined not only by the spatial
inhomogeneity and geometry of the condensate but also by
the presence of the other vortices. These configurations can
be interpreted in terms of the balance of the velocity fields
involved as introduced previously in [12] and in terms of the
energy contributions by all the vortices as discussed here. We
focus on cylindrically symmetric pancake-shaped condensates
fixing ωx = ωy = 2π × 51 s−1 and ωz = 2π × 400 s−1.

4.1. Two vortices

The simplest example of an array is a configuration with
two singly quantized vortices with the same circulation.
In stationary conditions, the positions of the vortices do
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Figure 2. Energy of a vortex, E, as a function of its position along
the x- (circles) and y-(squares) directions, for the same parameters
as in figure 1.

not change and therefore the velocity field generated by
a given vortex in the position of the other must be
compensated by another velocity field, which we generically
call background velocity, vB . This velocity originates from
the local inhomogeneities and the shape of the density profile
as discussed by several authors under different conditions
[12, 18].

The velocity field of a straight vortex oriented along the
ẑ-axis and crossing the xy plane at a position r0 is given by

vv(r) = h̄

m

ẑ × (r − r0)

|r − r0|2 , (6)

where r lies in the xy plane. On the other hand, for the
background velocity, vB , many approximate formulae are
available [19, 22, 23] and have recently been tested [12]. The
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Figure 3. Density profile of an array of two vortices confined by the toroidal trap with N = 106, V0/h = 2 kHz and w0 = 8 μm. The left
panel depicts a density plot of the array with arrows indicating the balancing contributions to the velocity field. The right panel shows the
density profile of the array (solid line) together with the ground-state density (dashed line) along the direction in the xy plane joining the
vortex cores, η.

crudest approximation, valid in the Thomas–Fermi (TF) limit,
is given by [22, 24]

vB(r) = − h̄2

2m

ẑ × ∇ρ0(r)

ρ0(r)
ln

(
RTF

ξ

)
, (7)

where ξ = [8πρ0(r0)a]−1/2 is the healing length and RTF is the
TF radius of the cloud. Due to the cylindrical symmetry of the
trapping potential, vB only has an azimuthal component and
thus it is only possible to find stationary configurations when
the two points at which the vortices cross the xy plane are
in the same line that the centre of the trap, r = 0. Furthermore,
since the vortices have the same circulation, they must be in
opposite positions with respect to the same centre, namely, at
r0 and −r0. Equating (6) and (7) at position −r0 determines
the equilibrium radius req and also shows that a larger value of
req requires a smaller derivative of the density profile. We want
to note that in order to obtain stationary configurations using
these velocity formulae the gradient of the density should point
in the radially outward direction and thus the only possible radii
should be smaller than the position of the density maximum.
In this domain there are two solutions: one that corresponds
to the desired local energy minimum and the other one, as we
shall see, to an energy maximum.

Numerically, the locally stable vortex configuration is
obtained exactly by solving the GPEv initiated with the phase
imprinting technique. We found that the vortex lines are indeed
straight and the locations found validate the interpretation in
terms of the balance of velocities. However, a quantitative
agreement requires the use of a more accurate formula for
vB (see [12]). This balance is schematically illustrated in
figure 3 for N = 106 23Na atoms in the toroidal trap with
V0/h = 2 kHz and w0 = 8 μm, corresponding to a shallower
Gaussian depression within the range of experimental
parameters.

Similarly to the single-vortex situation, the energy minima
of two vortices placed at opposite positions correspond to a
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Figure 4. Energy of two ideal vortices in opposite positions, E, as a
function of their common radius r0 for the same parameters as in
figure 3. The dashed line marks the result for a single vortex at a
distance r0.

stationary configuration of two vortices, which we found in
good agreement with both the numerical solution of the GPEv
and the balance of velocities. In figure 4, we plot the variational
energy of the two vortices as a function of their positions. For
large values of r0, the vortices leave the condensate and the
energy goes to the ground-state value, whereas for low values
of r0 the configuration displays an energy minimum and a
barrier which corresponds to the energy maximum we have
mentioned before.

It is worthwhile to stress that while the determination
of the equilibrium configuration via the balance of velocities
requires the calculation of the ground-state density profile only
(cf equation (7)), its determination via the minimization of
the energy of ideal vortices requires the calculation of several
excited states, namely, the vortices’ configurations. Moreover,
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(a) (b) (c)

(d) (e) (f)

Figure 5. Two-dimensional view of the density profile at z = 0, ρ(x, y, z = 0) for arrays with Nv = 2, 3 and 4 vortices for several values of
the Gaussian beam and particle numbers. Panels (a)–(c) correspond to V0/h = 3 kHz, w0 = 20 μm, and N = 106, (d)–(e) V0/h = 2.3 kHz,
w0 = 5.3 μm, and N = 106, and (f) V0/h = 2.3 kHz, w0 = 5.3 μm, and N = 5 × 105. Panels (d) and (f) correspond to multiply quantized
vortices with winding numbers 2 and 4, respectively.

the same value of the ground-state density may be used for
different arrays of vortices provided one knows the geometry
of the array, as discussed in the following section.

4.2. Rings and multiply quantized vortices

Stationary configurations of rings of vortices can easily be
predicted also for larger Nv . A ring of vortices is an array
of regularly distributed vortices along a ring of radius r0 in
the xy plane. In a previous work [12], we have shown that
the velocity field on a given vortex at position r0 due to the
remaining Nv − 1 vortices in the ring gives

vv(r0) = h̄

m

(Nv − 1)

2

ẑ × r0

|r0|2 . (8)

The balance equation in this case can be used to study
how many vortices can be sustained and how the radii of
their rings compare. Indeed, it is found that the radius
increases with the increasing number of vortices and that the
maximum number of vortices is related to the maximum of
the logarithmic derivative of the density profile. We have
fixed the trap frequencies and explored the parameter space
(V0, w0) with realistic values in order to find different types
of configurations. In particular, for a simply connected
ground-state condensate we found arrays with up to four
vortices. When imprinting a larger vorticity the remaining
vortices escape from the condensate. Finally to obtain multiply
quantized vortices, we also lower the number of particles. The
density profiles of the metastable configurations at plane z = 0
obtained in this way are depicted in figure 5. For N = 106

(panels (a)–(e)), the results can be summarized as: (i) for a
given set of parameters of the Gaussian beam, the radius of

the ring increases with the number of vortices, (ii) for wider
beams, i.e., larger w0 (panels (a)–(c)) the system can sustain
larger arrays and (iii) for lower densities at the trap centre,
the radius of the ring decreases as well. Indeed, if the central
density is below a certain threshold, one may have a multiply
quantized vortex instead of a ring of several vortices. This
type of vortices, also called giant vortices, have recently been
obtained numerically in a 2D rotating two-species condensate
[25]. Examples of the configurations we have obtained are
shown in panels (d) and (f) for 2 and 4 winding numbers,
respectively.

We have further evaluated the variational energy for the
ring of vortices as a function of its radius r0 with Nv = 1, 2, 3,
and 4. These curves are depicted in the top panel of figure 6.
As in the case of two vortices, the energy minimum is shifted in
a distance req from the origin. While using a lower number of
particles and thus a lower central density, the energy minimum
remains at the origin and thus a multiple quantized vortex is
more favourable. This is displayed in the bottom panel of
figure 6. In the inset of the same figure, it may be seen that the
presence of the multiply quantized vortex is manifested in the
density by the broadening of the hole for increasing vorticity.

5. Summary and concluding remarks

We analysed metastable configurations of vortices in a
non-rotating condensate of current experimental relevance.
We evaluated the lowest energy barrier for the decay of
single vortices in the experimental non-axisymmetric trap
and considered cylindrically symmetric traps allowing the
formation of configurations with larger vorticities. In the
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Figure 6. Energy, E, of a ring of Nv ideal vortices as a function of
its radius, r0, for several values of Nv . The top panel corresponds to
the same parameters as panels (a)–(c) in figure 5, while the bottom
panel corresponds to the parameters of panel (f) in figure 5. The
vertical arrows mark the equilibrium radii of the rings. The inset in
the bottom panel shows the density at y = z = 0 as obtained from
the numerical solution of the GPEv for a multiply quantized vortex
of charge Nv at the trap centre. The thin dotted lines correspond to
ground-state results.

cylindrically symmetric trap the stationary solutions were
either a ring of singly quantized vortices or a multiply
quantized vortex localized at the trap center depending on
the number of particles. Using the balance of the associated
velocity fields, we predict the kind of stationary states we
may obtain from the knowledge of the density profile of the
ground state only. On the other hand, the knowledge of
the energy landscape of the configuration obtained from a
constrained minimization procedure allows to determine the
metastable stationary configuration and additionally provides
information on the energy barriers involved. Both predictions
are in agreement with the full numerical solution of the
Gross–Pitaevskii equation in three dimensions. At low but
finite temperature, in the presence of a small normal cloud
of uncondensed atoms, we expect these configurations to be
rather robust as they are local minima of the energy. This is
also supported by the experiments in [14] where the superflow
survives even for systems with a condensate fraction as small

as 20%. Furthermore, the obtained energy barriers could be
used for calculating the vortex lifetimes by means of quantum
tunnelling approaches [26].
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