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A theoretical framework for analyzing stochastic data from single-particle tracking in viscoelastic materials
and under the influence of a trapping potential is presented. Starting from a generalized Langevin equation, we
found analytical expressions for the two-time dynamics of a particle subjected to a harmonic potential. The
mean-square displacement and the velocity autocorrelation function of the diffusing particle are given in terms
of the time lag. In particular, we investigate the subdiffusive case. Using a power-law memory kernel, exact
expressions for the mean-square displacement and the velocity autocorrelation function are obtained in terms
of Mittag-Leffler functions and their derivatives. The behaviors for short-, intermediate-, and long-time lags are
investigated in terms of the involved parameters. Finally, the validity of usual approximations is examined.
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I. INTRODUCTION

The viscoelastic properties of complex fluids, such as
polymers, colloids, and biological materials, can be derived
from the dynamics of individual spherical particles embed-
ded in it �1,2�. Particle tracking microrheology experiments
�1–8� are based on the observation of the motion of indi-
vidual tracer particles. In a typical microrheology experi-
ment, particle positions are recorded in the form of a time
sequence and information about the dynamics is essentially
extracted by measuring the mean-square displacement
�MSD� of the probe particles �9–11�.

On the other hand, during the last 2 decades, optical traps
�or “optical tweezers”� have been increasingly used for po-
sition detection, covering a wide range of applications in
physics and biology �3,12–17�. In an optical trap, the inter-
action between the laser and the trapped particle can be ap-
proximated by a harmonic potential �18�. If the particle is
embedded in a Newtonian fluid, the temporal behavior of its
position X�t� is described by the standard Langevin equation

mẌ�t� + �Ẋ�t�� + �X = F�t� , �1�

where m is the mass of the particle, � is the friction coeffi-
cient, � is the trap stiffness, and F�t� represents the random
thermal force, which is zero centered and has a flat power
spectrum �19�. From an experimental point of view, calibra-
tion of the trap stiffness is necessary to determine the trap-
ping force at any position where the trapping potential is
harmonic. A usually employed method for calibration in nor-
mal viscous fluids is the power spectrum method �19�.

Quantitative measurements with optical traps in normal
viscous fluids have been applied in numerous microrheology
experiments. Optical tweezers microrheological technique
was extended to measure the viscoelastic properties of com-
plex fluids �20–22�. However, it has been recently noted that
the Langevin equation �1� fails to describe the stochastic mo-

tion of the trapped bead when it is embedded in a viscoelas-
tic medium �20,21�. In this case, the dynamics of the particle
differs from that in a pure viscous media because the sto-
chastic process exhibits an anomalous diffusive behavior
�2,11,22–24�. As a consequence, the use of a trapping com-
plicates the analysis of the obtained data, since the interac-
tions with the viscoelastic environment overlap with the in-
fluence of the trapping force �1,22,25�. Moreover, calibration
by power spectrum method becomes invalid because it based
on the assumption that a bead is trapped in a purely viscous
fluid. For example, in the application of optical traps in liv-
ing cells, it is necessary to take into account the a priori
unknown viscoelastic properties of the medium to properly
calibrate the trap �20�.

When particles diffuse through a soft complex fluids or
biological materials, the mean-square displacement exhibits
a slow relaxation with a power-law decay in the range of
large times. In absence of external forces, a theoretical de-
scription is now well established. A quantitative analysis of
the resulting subdiffusive behavior enables one to extract the
rheological properties of the material �1�. Based on a gener-
alized Langevin equation �GLE�, Mason and co-workers
�5,6� obtained a direct relation in the Laplace domain be-
tween the mean-square displacement of free tracer particles
and the viscoelastic parameters of the medium.

On the other hand, if the anomalously diffusing particle is
subjected to an external harmonic well, the decay of the po-
sition autocorrelation function is strongly nonexponential
�17,26,27�. For example, the corresponding GLE for a par-
ticle in a viscoelastic medium and subjected to a harmonic
potential was recently investigated by us in Ref. �27�, where
analytical expressions for the evolution of mean values and
variances in terms of Mittag-Leffler functions were obtained
for any temporal range and involved parameters. Neverthe-
less, from an experimental point of view, it is necessary to
get expressions for the two-time correlation functions. For
instance, the mean-square displacement can be expressed as

���� = lim
t→�

��X�t + �� − X�t��2� , �2�

where �X�t+��−X�t�� is the particle displacement between*mad@df.uba.ar
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two time points, t denotes the absolute time, while � is the
so-called lag time �28�. Alternative information about the
experimentally observed diffusive behavior can be extracted
from the normalized velocity autocorrelation function
�VACF� �29� defined as �27,30�

CV��� = lim
t→�

�V�t + ��V�t��
�V2�t��

. �3�

Then, to calculate the MSD and the VACF, one must know
the behavior of the two-time correlations �X�t+��X�t�� and
�V�t+��V�t��.

The aim of this paper is to obtain analytical expressions
for the MSD �2� and VACF �3� for a harmonically bounded
particle immersed in a viscoelastic environment. This en-
ables us to provide a theoretical framework to analyze the
data obtained by particle tracking microrheology experi-
ments in viscoelastic media and using a trapping potential.
For this purpose, in Sec. II, we present the corresponding
GLE. The two-time dynamics is obtained, which enables us
to calculate the MSD and VACF for arbitrary memory ker-
nels. Section III is devoted to the study of the subdiffusive
case. The complete analytical solutions are obtained and ap-
proximate expressions for different temporal ranges are
given. Moreover, the validity of the overdamped approxima-
tion is analyzed. Finally, a summary of our results is pre-
sented in Sec. IV.

II. DIFFUSION IN A HARMONIC WELL

A. Formal solution for the GLE

In what follows, we consider the dynamics of a spherical
bead of mass m immersed in a complex or viscoelastic envi-
ronment and simultaneously trapped in a harmonic potential.
The resulting motion can be described by the following
GLE:

mẌ�t� + m�
0

t

dt���t − t��Ẋ�t�� + m�0
2X = F�t� , �4�

where �0=	� /m is the frequency of the trap, ��t� is the
dissipative memory kernel representing the viscoelastic fric-
tion, and the thermal force F�t� is a zero-centered and sta-
tionary random force with a correlation function of the form

�F�t�F�t��� = C��t − t��� . �5�

The integral term in Eq. �4� represents the dependence of
the viscous force on the velocity history and the memory
kernel ��t� is related to the noise correlation function C�t�
via the second fluctuation-dissipation theorem �31�

C�t� = kBTm��t� , �6�

where T is the absolute temperature and kB is the Boltzmann
constant.

Although we consider the one-dimensional GLE �4�, our
results can be extrapolated to the two- or three-dimensional
case, assuming that the resulting motion can be described by
two or three uncoupled equations for independent coordi-
nates. This can be achieved if the trap exerts an elastic force

of the general form f =−��XX+�YY +�ZZ� and assuming that
the local environment surrounding the sphere is isotropic.
However, our model could also be used to investigate the
case of a trapped particle close to a limiting wall, where the
motion becomes anisotropic but the drag term can be sepa-
rated into components parallel and perpendicular to the sur-
face �32�.

The GLE �4� can be formally solved by means of the
Laplace transformation. Taking into account the determinis-

tic initial conditions x0=X�0� and v0= Ẋ�0�, the evolution of
the Laplace transform of the position X�t� reads

X̂�s� = x0
1

s
− �0

2Î�s�� + 
v0 +
1

m
F̂�s��Ĝ�s� , �7�

where F̂�s� is the Laplace transform of the noise. The relax-
ation function G�t� is the Laplace inversion of

Ĝ�s� =
1

s2 + s�̂�s� + �0
2 , �8�

where �̂�s� is the Laplace transform of the damping kernel
and

Î�s� =
Ĝ�s�

s
�9�

is the Laplace transform of

I�t� = �
0

t

dt�G�t�� . �10�

On the other hand, the Laplace transform of the velocity

V�t�= Ẋ�t� satisfies that

V̂�s� = 
v0 +
1

m
F̂�s��ĝ�s� − x0�0

2Ĝ�s� , �11�

where

ĝ�s� = sĜ�s� . �12�

From Eqs. �7� and �11�, a formal expression for the dis-
placement X�t� and the velocity V�t� can be written as

X�t� = �X�t�� +
1

m
�

0

t

dt�G�t − t��F�t�� , �13�

V�t� = �V�t�� +
1

m
�

0

t

dt�g�t − t��F�t�� , �14�

where

�X�t�� = x0�1 − �0
2I�t�� + v0G�t� , �15�

�V�t�� = v0g�t� − x0�0
2G�t� �16�

are the position and velocity mean values evolution, respec-
tively.

B. Expressions for the MSD and VACF

To calculate the two-time properties of the dynamical
variables involved in the expressions of the MSD �2� and
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VACF �3�, we will make use of the double Laplace transform
technique �33�. Then, from Eqs. �7� and �11�, we have

�X̂�s�X̂�s��� = x0
2�̂�s��̂�s�� + v0

2Ĝ�s�Ĝ�s�� + x0v0��̂�s�Ĝ�s��

+ �̂�s��Ĝ�s�� +
1

m2Ĝ�s�Ĝ�s���F̂�s�F̂�s��� ,

�17�

�V̂�s�V̂�s��� = v0
2ĝ�s�ĝ�s�� + x0

2�0
4Ĝ�s�Ĝ�s��

− x0v0�0
2�ĝ�s�Ĝ�s�� + ĝ�s��Ĝ�s��

+
1

m2 ĝ�s�ĝ�s���F̂�s�F̂�s��� , �18�

where

�̂�s� =
1

s
− �0

2Î�s� �19�

is the Laplace transform of ��t�=1−�0
2I�t�.

In the Appendix, we show how the last term of Eqs. �17�
and �18� can be calculated. Inserting expressions �A4� and
�A5� into Eqs. �17� and �18� and making a double Laplace
inversion, we arrive at

�X�t�X�t��� = x0
2��t���t�� + 
v0

2 −
kBT

m
�G�t�G�t��

+ x0v0���t�G�t�� + ��t��G�t��

+
kBT

m
�I�t� + I�t�� − I��t − t���� −

kBT

m
�0

2I�t�I�t�� ,

�20�

�V�t�V�t��� =
kBT

m
g��t − t��� + 
v0

2 −
kBT

m
�g�t�g�t��

+ �0
2
x0

2�0
2 −

kBT

m
�G�t�G�t��

− x0v0�0
2�g�t�G�t�� + g�t��G�t�� . �21�

Finally, by considering time lags �	0, from Eqs. �20� and
�21� we have

��X�t + �� − X�t��2�

=
2kBT

m
I��� − 2x0v0�0

2�G�t + �� − G�t���I�t + �� − I�t��

+ 
v0
2 −

kBT

m
��G�t + �� − G�t��2

+ �0
2
x0

2�0
2 −

kBT

m
��I�t + �� − I�t��2, �22�

�V�t + ��V�t�� =
kBT

m
g��� + 
v0

2 −
kBT

m
�g�t + ��g�t�

+ �0
2
x0

2�0
2 −

kBT

m
�G�t + ��G�t�

− x0v0�0
2�g�t + ��G�t� + g�t�G�t + ��� .

�23�

It is important to notice that the analytical expressions
�22� and �23� are valid for all absolute times t and time lags
�. They enable us to obtain the two-time dynamics for an
arbitrary memory kernel provided that the fluctuation-
dissipation theorem �6� is satisfied. Nevertheless, to evaluate
the relevant experimental magnitudes �2� and �3�, we must
take the limit t→�. In this case, these expressions could be
simplified as follows. Taking into account the usual assump-
tion that the time-dependent frictional coefficient ��t� goes to
zero when t→� �34� and using the final value theorem �35�,
one gets

lim
t→�

��t� = lim
s→0

s�̂�s� = 0. �24�

Noticing that the Laplace transform of the relaxation func-
tion I�t� defined through Eq. �9� is

Î�s� =
s−1

s2 + s�̂�s� + �0
2 , �25�

the application of the final value theorem and the use of
condition �24� yield �34�

I��� = 1/�0
2 �26�

and using Eqs. �9� and �12� gives

G��� = g��� = 0. �27�

Applying these conditions in order to take the limit t
→� in Eqs. �22� and �23� and using the definitions �2� and
�3�, one finally obtains the simpler expressions

���� =
2kBT

m
I��� �28�

and

CV��� = g��� . �29�

Taking into account Eqs. �26� and �27�, the equilibrium
value of the MSD is given by

���� =
2kBT

m�0
2 , �30�

while, as expected, the VACF decays to zero, i.e., CV���=0.
It is worth pointing out that in experimental realizations,

the time lag is �min
�
�max, being �min the acquisition time
interval and �max the measurement time. Moreover, if N is the
number of steps n taken at intervals �min, only small values
of n�n�N /10� are used. Therefore, it is important to obtain
valid expressions for all observational time scales instead of
getting only its behavior to large times.
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To conclude this section, we will find the extension for a
trapped particle of the widely used Mason formula �5,6�.
Taking the Laplace transform of Eq. �28� and using the defi-
nition �25� of the relaxation function I�t�, one gets

s�̂�s� =
2kBT

m

1

s�̂�s�
− s2 − �0

2, �31�

which gives a direct relation between the mean-square dis-
placement of the particle and the memory kernel. Finally,
expression �31� can be related with the viscoelastic param-
eters of the complex fluid using the generalized Stokes-
Einstein equation �1,5,6�

s�̂�s� = 6�Rs
̂�s� = 6�RĜ�s� , �32�

where R is the radius of the spherical tracer particle, 
̂�s� is
the bulk frequency-dependent viscosity of the medium, and

Ĝ�s� is the Laplace-transformed shear modulus of the vis-
coelastic fluid. Equation �32� is based on the implicit as-
sumption that Stokes drag for viscous fluids �no-slip bound-
ary conditions� can be generalized to viscoelastic fluids at all
s �6�.

III. SUBDIFFUSIVE BEHAVIOR

Notice that the previous results are valid for any memory
kernel that satisfies condition �24�. On the other hand, it is
well known that in the absence of active transport, the dy-
namics of the particle in a viscoelastic fluid or complex me-
dia is subdiffusive and thus the stochastic process presents a
long-time tail noise. The most utilized model to reproduce a
subdiffusive behavior is characterized by a noise correlation
function exhibiting a power-law time decay �27,36,37�

C�t� = C�

t−�

��1 − ��
, �33�

where ��z� is the gamma function �38�. The exponent � for a
viscoelastic medium is taken as 0���1. The proportional-
ity coefficient C� is independent of time but depends on the
exponent �.

Using the fluctuation-dissipation relation �6�, the memory
kernel ��t� can be written as

��t� =
��

��1 − ��
t−�, �34�

where ��=C� /kBT. Then, its Laplace transform reads

�̂�s� = ��s�−1. �35�

In this situation, the Laplace transform of the relaxation

function Î�s� reads

Î�s� =
s−1

s2 + ��s� + �0
2 . �36�

The complete temporal behavior of the relaxation func-
tions I�t�, G�t�, and g�t� was previously obtained by us in
Ref. �27�. Using those results in Eqs. �28� and �29�, we have

���� =
2kBT

m
�
k=0

�
�− 1�k

k!
��0��2k�2E2−�,3+�k

�k� �− ���2−�� ,

�37�

CV��� = �
k=0

�
�− 1�k

k!
��0��2kE2−�,1+�k

�k� �− ���2−�� , �38�

where E�,��y� is the generalized Mittag-Leffler function �38�
defined by the series expansion

E�,��y� = �
j=0

�
yj

���j + ��
, � 	 0, � 	 0 �39�

and E�,�
�k� �y� is the derivative of the Mittag-Leffler function

E�,�
�k� �y� =

dk

dykE�,��y� = �
j=0

�
�j + k� ! yj

j ! ����j + k� + ��
. �40�

Using the series expansions �39� and �40�, one can realize
that the short-time behavior of the MSD reads

���� 

kBT

m
��2 −

2��

��5 − ��
�4−� −

�0
2

12
�4� , �41�

where the first term shows that the particle undergoes ballis-
tic motion when time is very small �39�. The second term
comes from the influence of the viscoelastic medium while
the third term corresponds to the fact that the particle begins
to “see” the trap. The short-time behavior of the VACF can
be obtained in a similar way. In this case, we get

CV��� 
 1 −
��

��3 − ��
�2−� −

�0
2

2
�2. �42�

On the other hand, for ���2−��1, the MSD and VACF
can be obtained introducing the asymptotic behavior of the
Mittag-Leffler function �38�

E�,��− y� �
1

y��� − ��
, y 	 0 �43�

into Eqs. �37� and �38�. After some calculations, we have

���� 

2kBT

m�0
2 �1 − E�
−

�0
2

��

���� , �44�

CV��� 
 −
1

�0
2

d2

d2�
E�
−

�0
2

��

��� , �45�

where E��y�=E�,1�y� denotes the one-parameter Mittag-
Leffler function �38�.

It is worth pointing out that these expressions can be also
obtained discarding the inertial term s2 in Eq. �36�. In this
case, we get

Î�s� =
s−1

��s� + �0
2 =

1

�0
2
1

s
−

s�−1

s� + �0
2/��

� , �46�

and using that the Laplace transform of the Mittag-Leffler
function �38�
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�
0

�

e−stE��− �t��dt =
s�−1

s� + �
, �47�

one obtains expressions �44� and �45�.
Finally, if ����� /�0

2, the behaviors of the MSD and
VACF can be obtained using again the approximation �43�.
In this case, we get

���� 

2kBT

m�0
2 �1 −

��

�0
2

1

��1 − ��
�−�� , �48�

CV��� 
 −
��

�0
4

��� + 1�
��1 − ��

�−��+2�, �49�

showing a pure power-law decay.
In Figs. 1 and 2, we have plotted the MSD vs time lag

using the exact solution �37� and the approximations �44�
and �48�. Note that the exact solution exhibits a nonmono-
tonic approach to ����, while the approximations always
present a monotonic behavior.

More pronounced differences occur in the behavior of
CV��� as is evidenced in Figs. 3 and 4. Note that the approxi-
mate solutions exhibit a negative velocity autocorrelation for

all times, whereas the exact solutions alternate between posi-
tive and negative values. This behavior is related to the so-
called whip-back effect �27,37�.

These behaviors can be understood taking into account
that the approximations �44� and �45� only depend on the
one-parameter Mittag-Leffler function E��−�0

2�� /���. It is
known that the function E��−t�� is a completely monotone
function and tends to zero from above as t tends to infinity
for 0���1 �40�. Then, the approximate solutions are al-
ways monotonic for every value of �0 and 0���1. How-
ever, the exact solutions �37� and �38� are expressed as infi-
nite sums of E2−�,�

�k� �−���2−�� functions. In this case, the
solutions can exhibit a nonmonotonic behavior as is dis-
played in the previous figures. Then, the overdamped ap-
proximation must be used with care in the analysis of the
short- and intermediate-time dynamics where the MSD and
VACF exhibit a relaxation plus an oscillatory behavior.

Interestingly, Burov and Barkai �41� recently arrived to a
similar conclusion using a fractional Langevin equation.
Solving the corresponding fractional differential equation in
terms of roots of regular polynomials, they analyze the posi-
tion correlation �X�t�X�0��. As in our case, they found that
the exact solution can exhibit a nonmonotonic decay, while
the overdamped approximation gives a monotonic decay.
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FIG. 1. �Color online� MSD vs time lag for �=1 /2, ��=1, and
�0=1.4. Solid line corresponds to the exact solution �37�, dotted
line to the approximate solution �44�, and dashed line to the
asymptotic behavior �48�.
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FIG. 2. �Color online� Idem Fig. 1 for �0=0.8.
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FIG. 3. �Color online� CV vs time lag for �=1 /2, ��=1, and
�0=1.4. Solid line corresponds to the exact solution �38�, dotted
line to the approximate solution �45�, and dashed line to the
asymptotic behavior �49�.
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FIG. 4. �Color online� Idem Fig. 3 for �0=0.8.
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IV. SUMMARY

In this work, we have obtained the mean-square displace-
ment and the velocity autocorrelation function for a trapped
particle and immersed in a complex or viscoelastic media.
For this purpose, and starting from a suitable generalized
Langevin equation, we have been able to derive analytic ex-
pressions for the two-time dynamics of the processes, valid
for all absolute times and times lags. We have showed that
the MSD and VACF can be expressed as a simple expression
when the memory kernel goes to zero for large times. Fur-
thermore, we have presented a generalization of the Mason
formula valid when a trapping potential is present.

In particular, we have examined the subdiffusive case,
which is a representative example of passive transport in
viscoelastic media. Using a power-law memory kernel, exact
expressions and valid for all time lags have been obtained in
terms of Mittag-Leffler functions and their derivatives. The
behavior for short-, intermediate-, and long-time lags are
given in terms of the involved parameters. Finally, we have
showed that the usual approximations cannot reproduce the
nonmonotonic dynamics present in the exact solutions.

In summary, we have presented a theoretical method to
account for the effects of the trapping potential in the anoma-
lous behavior of the mean-square displacement and the nor-
malized velocity autocorrelation function of a particle em-
bedded in a complex or viscoelastic environment. We believe
that the presented results will be useful to analyze the ob-
tained data from microrheology experiments in viscoelastic
media using trapping potentials.
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APPENDIX

To calculate the last term of Eqs. �17� and �18�, we make
use of a relation given in Ref. �33�. Given any stationary
correlation function of the form

���t���t��� = Af��t − t��� , �A1�

the corresponding double Laplace transform writes

��̂�s��̂�s��� = A
f̂�s� + f̂�s��

s + s�
. �A2�

Then, the Laplace domain version of the fluctuation-
dissipation relation �6� reads �33�

�F̂�s�F̂�s��� = kBTm
�̂�s� + �̂�s��

s + s�
. �A3�

After some algebra and using the relations between the
kernels I�t�G�t� and g�t�, one can find that

Ĝ�s�Ĝ�s���F̂�s�F̂�s��� = kBTm� Î�s�
s�

+
Î�s��

s
−

Î�s� + Î�s��
s + s�

�
− kBTm�Ĝ�s�Ĝ�s�� + �0

2Î�s�Î�s��� ,

�A4�

ĝ�s�ĝ�s���F̂�s�F̂�s���

= kBTm
 ĝ�s� + ĝ�s��
s + s�

− ĝ�s�ĝ�s�� − �0
2Ĝ�s�Ĝ�s��� .
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