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ABSTRACT

We numerically study properties of the dynamics of vortices in nonrotating Bose-

Einstein condensates in the Thomas-Fermi regime. On the one hand, we compute

the vortex energy as a function of its position and we predict, using the expression

of the Magnus force, the vortex precession velocity. On the other hand, we calculate

the temporal evolution of the vortex-state and test the accuracy of the previous

prediction. We also investigate the validity of analytical formulae of this velocity

involving the healing length. In addition, we analyze the velocity field and the

angular momentum and we compare them to available analytical expressions.
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In a two-dimensional Bose-Einstein condensate confined by a nonrotating ax-

isymmetric trap, the nondissipative dynamics of a single off-axis vortex consists of

a precession movement [1]. On the other hand, in addition to the ordinary circu-

lating velocity field of such a vortex, which would constitute the whole field if the

vortex were located at the trap axis, there exists an induced velocity field [2]. Such

an induced field, evaluated near the vortex position, defines the so-called vortex

background velocity, which is closely related to the precession velocity. However, in

an inhomogeneous medium the above precession velocity has been recently shown

to comprise two contributions [3, 4]: one in fact corresponding to the background

velocity and the second, which may be called a ‘core’ velocity, depending on the

features of the vortex core.

In the present work we numerically analyze these issues for condensates confined

by two different trapping potentials. On the one hand, we consider the commonly

utilized harmonic potential and, on the other hand, we utilize a recently proposed

polynomial potential that can sustain locally stable off-axis vortices, yielding a wider

range of precession velocity values.

1. TRAPPING POTENTIALS

The harmonic potential has the usual form Va(r, z) = 1

2
m ω2

rr
2 + 1

2
m ω2

zz
2, where

ωr and ωz denote the radial and axial frequencies, respectively, and m is the particle

mass. And the polynomial potential reads [5]:

Vb(r, z) =
1

2
m ω2

rr
2
(r − r1)(r − r2)

r1r2

+
1

2
m ω2

zz
2 (1)

where r1 and r2 denote numerical parameters allowing to model the shape of the

potential. We have worked in the limit ωz >> ωr and thus the wavefunction can be
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factorized in the r and z cylindrical coordinates as the product Ψ(r) = Ψ(r)f(z),

being f(z) a Gaussian function [6]. In particular, we have fixed ωr = 2π × 100 Hz

and ωz = 200ωr. Our condensates are formed by Rubidium atoms with a number of

particles N = 105. The function Ψ(r) is obtained by solving the 2D Gross-Pitaevskii

(GP) equation:

(

−
h̄2∇2

2m
+ Vtrap(r, 0) + g2D |Ψ(r)|2

)

Ψ = µΨ(r), (2)

where the effective two-dimensional coupling constant between the atoms is g2D =

0.34 for the present system. In Fig. 1 (a) and (b) we show the reduced ground state

densities ρ(r) = |Ψ(r)|2 for both trapping potentials. The number of particles is

large enough to assume that the Thomas Fermi (TF) approximation is appropriate

to describe the ground state density, which thus may be obtained by neglecting the

kinetic term in the above expression. Therefore, the shape of this function has the

form of the respective inverted potentials. On the other hand, the vortex states

are numerically obtained by phase imprinting methods. The corresponding density

profiles ρv(r) (Fig. 1) are similar to that of the ground state ρ0(r), except for the

presence of the vortex core.

2. VORTEX PRECESSION VELOCITY IN INHOMOGENEOUS

MEDIA

When the energy E depends on the vortex position r0, the vortex velocity vp

may be extracted from the following expression [7], related to the Magnus Force [8]:

2 π h̄ ρ0(r0) (ẑ × vp) = ∇E(r0) , (3)

being r0 = |r0|. For this purpose we have numerically computed the energy E as a
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function of the vortex position for both trapping potentials. In Fig. 2 we depict the

vortex energy Ev = E −E0, being E0 the ground state energy. We also plot in that

figure a theoretical estimate of the vortex energy Etheor
v , which is displayed as solid

lines. Such an estimate has been derived [9, 10] under the hypothesis that the size

of the vortex core is of the order of the healing length ξ, which is utilized as a cutoff

parameter in the corresponding integral. Thus, the theoretical prediction reads

Etheor
v (r0) =

πh̄2

m
ρ0(r0) ln(RTF /ξ) , (4)

where RTF denotes the condensate radius and ξ =
√

h̄2/(2 3/2 m g2D ρ0(r0)). Figure

3 shows the vortex precession velocity as a function of the vortex position, calcu-

lated from Eq. (3), for both trapping potentials. We have also performed numerical

simulations of the time evolution of the system, in order to obtain the exact preces-

sion velocity, for several initial conditions marked as star dots in the same graph. It

may be observed that the prediction extracted from the numerically obtained energy

values shows an excellent agreement with the exact precession velocity.

3. VORTEX VELOCITY FIELD

The velocity field induced by a single vortex in an inhomogeneous condensate is

called the background velocity vB(r). This velocity does not include the divergent

part due to the vortex itself, that is, if v(r) denotes the total velocity field, then

vB(r) = v(r) −
h̄

m

1

|r − r0|2
ẑ × (r − r0). (5)

Sheehy and Radzihovsky [2] have derived the following approximate expression valid

near the vortex core

vB(r)theor ≃
h̄

2m

ẑ ×∇ρ0(r0)

ρ0(r0)
ln

(

|r − r0||∇ρ0(r0)|

2ρ0(r0)

)

, (6)
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which was obtained under the assumption ∇ · j ≡ 0, being j the particle current

density. Now, taking into account the continuity equation, we realize that such an

assumption could only be valid outside the vortex core, where ∂ρv/∂t = 0. Thus,

Eq. (6) should be utilized up to the border of the core at most, but not inside it,

where ∂ρv/∂t 6= 0. In Fig. 4 we depict the theoretical estimate (6) together with

our numerical results. We may see that the theoretical prediction yields lower values

than the numerical results for the trapping potential Va, whereas it yields for Vb a

rather large overestimate.

4. RELATION BETWEEN THE BACKGROUND VELOCITY

AND THE VORTEX PRECESSION VELOCITY

It is well known that a vortex moves with the background velocity in a uniform

superfluid. Various authors have assumed, generalizing this concept, that a vortex

in an inhomogeneous system should move with the background velocity evaluated

at |r − r0| ∼ lc(r0), being lc the size of the core [2]. Now, if we locate the border of

the core where the form factor acquires the value F ≃ 0.95 (see Fig. 4), we obtain

lc ≃ 5 ξ(r0) from our numerical results. Thus we have also calculated according to

this procedure such a background velocity for all the vortex positions denoted as

star dots in Fig. 3. We have found in all cases severe discrepancies between the

background and the exact precession velocities. Particularly, for the vortex location

at x = 8 (trapping potential Va, Figs. 3 and 4 (a)) we have obtained a precession

velocity ≃ 0.34 and a background velocity ≃ 0.23, while for a vortex at x = −8.5

(trapping potential Vb, Figs. 3 and 4 (b)) the precession velocity is ≃ 0.11 and

the background velocity is ≃ 0.05. Such discrepancies were recently predicted by

Nilsen et al. [3], who proposed that in order to obtain a better approximation to the
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precession velocity than that of the background, a corrective term should be added

to the latter as follows,

vp ≃ vB − f
h̄

2m

ẑ ×∇ρ0

ρ0

, (7)

where f = 1 and the last term corresponds to a ‘core’ contribution [3] to the preces-

sion velocity. The proposal of Ref. [3] was later numerically tested for the harmonic

trapping potential [4] finding that f = 2 was actually the best figure to reproduce

the results. Now the present study confirms that the expression (7) with f = 2

yields the best agreement with the numerical results for both trapping potentials.

5. ANGULAR MOMENTUM

Finally, we have also numerically investigated the accuracy of an available for-

mula for the angular momentum of an off-axis vortex [11]:

Lz(r0) = h̄
∫

∞

r0

2πr dr ρ0(r), (8)

finding an excellent agreement with the numerical results for both trapping poten-

tials, as seen in Fig. 5.

6. CONCLUDING REMARKS

We shall summarize in the following the main conclusions of the present study.

Firstly, we have seen that the vortex velocity value arising from the balance between

the Magnus force and the force stemming from the gradient of the vortex energy,

constitutes a very good estimate of the vortex precession velocity. On the other hand,

we have found that previously reported formulae for the background velocity, yield

values that may substantially differ from numerically computed ones. In addition,
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we have shown that such a velocity differs appreciably from the vortex precession

velocity through a ‘core’ contribution, in accordance with our previous findings.

Finally, we have encountered that a previously reported analytical estimate of the

angular momentum turns out to be a very accurate one.
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FIGURE CAPTIONS

FIGURE 1: Section of the particle density at y = 0 for the trapping potentials Va

in (a) and Vb in (b). The abscisa is given in units of the harmonic oscillator length

lr =
√

h̄/(mωr). The solid lines correspond to the respective ground states, while

the dotted lines correspond to states with a vortex located at x/lr = 8 and y/lr = 0

in (a), and x/lr = −8.5 and y/lr = 0 in (b). We have set r1 = 10 lr and r2 = 18 lr

in the expression of Vb (Eq. (1)).

FIGURE 2: Vortex energy in units of h̄ωr as a function of the vortex position

r0 = (x, 0) for the trapping potentials Va in (a) and Vb in (b). The dots correspond

to the numerical results, while the solid lines correspond to the theoretical estimate

(4).

FIGURE 3: Vortex precession velocity in units of lrωr as a function of the vortex

position along the x-axis. Solid lines and dots correspond to values extracted from

Eq. (3) with respective energy values arising from Fig. 2. The star dots correspond

to values arising from numerical simulations of the time evolution of each initial

configuration.

FIGURE 4: Background velocity field in units of lrωr at y = 0. The filled dots

correspond to numerical results, while the solid lines correspond to the theoretical

estimate (6). The dots-plus-dotted lines correspond to the form factor F = ρv/ρ0

(arbitrary scales), while the vertical dashed lines show the limits of the core region.

(a): Vortex located at x/lr = 8 and y/lr = 0 with the trapping potential Va. (b):

Vortex located at x/lr = −8.5 and y/lr = 0 with the trapping potential Vb.

FIGURE 5: Angular momentum in units of h̄ as a function of the vortex position

along the x-axis for the trapping potentials Va in (a) and Vb in (b). The dots

correspond to the numerical results, while the solid line corresponds to Eq. (8).
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